Abstract
Tectonic or subduction erosion refers to the removal of upper-plate material from the forearc at convergent margins. Subduction erosion has been suggested to represent a major process associated with the transfer of crustal material into the Earth’s mantle at subduction zones. However, few studies have attempted to trace the fate of eroded forearc crust beneath volcanic arcs, where the eroded crust might first emerge after mixing with the upper mantle, owing to the formidable challenge associated with quantifying the rate of subduction erosion and the contribution of eroded crust to arc magmas. In this Review, we summarize the evidence for subduction erosion at convergent margins and show that, through integration of geochemical and geological data in arc settings where critical crustal lithologies can be accessed, quantification of the contribution of eroded forearc crust to arc magmas is possible. We further emphasize the importance of establishing arc–forearc compositional links and illustrate the role of arc petrogenetic models for determining whether the eroded forearc crust contributes substantially (that is, greater than a few percent) to the construction of new arc crust in subduction zones or whether it is primarily exported to the deeper mantle.
Key points
-
Subduction zones recycle upper-plate crust by subduction erosion in volumes that can exceed those of the subducted trench sediments.
-
The composition of the eroded crust is varied and can include upper and lower continental crust, as well as oceanic crust.
-
Strong, compositional forearc–arc links exist.
-
Arc magma petrogenesis plays a key role in elucidating forearc–arc connectivity.
-
Tectonically eroded crust can refertilize shallow and deep mantle alike.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Hadal aragonite records venting of stagnant paleoseawater in the hydrated forearc mantle
Communications Earth & Environment Open Access 03 December 2021
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$99.00 per year
only $8.25 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout







References
Huene, R. V. & Scholl, D. W. Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust. Rev. Geophys. 29, 279–316 (1991).
Morris, J. D., Leeman, W. P. & Tera, F. The subducted component in island arc lavas: constraints from Be isotopes and B–Be systematics. Nature 344, 31–36 (1990).
Plank, T. & Langmuir, C. H. Tracing trace elements from sediment input to volcanic output at subduction zones. Nature 362, 739–743 (1993).
White, W. M. & Patchett, J. Hf–Nd–Sr isotopes and incompatible element abundances in island arcs: implications for magma origins and crust-mantle evolution. Earth Planet. Sci. Lett. 67, 167–185 (1984).
White, W. M. Probing the Earth’s deep interior through geochemistry. Geochem. Perspect. 4, 95–251 (2015).
Plank, T. & Langmuir, C. H. The geochemical composition of subducting sediment and its consequences for the crust and the mantle. Chem. Geol. 145, 325–394 (1998).
Clift, P. D., Vannucchi, P. & Morgan, J. P. Crustal redistribution, crust–mantle recycling and Phanerozoic evolution of the continental crust. Earth Sci. Rev. 97, 80–104 (2009).
Vannucchi, P., Morgan, J. P. & Balestrieri, M. L. Subduction erosion, and the de-construction of continental crust: The Central America case and its global implications. Gondwana Res. 40, 184–198 (2016).
Clift, P. D. & Vannucchi, P. Controls on tectonic accretion versus erosion in subduction zones: Implications for the origin and recycling of the continental crust. Rev. Geophys. 42, RG2001 (2004).
Scholl, D. W. & von Huene, R. in 4-D Framework of Continental Crust Vol. 200 (eds Hatcher, R. D. Jr, Carlson, M. P., McBride, J. H. & Catalán, J. R. M.) 9–32 (Geological Society of America, 2007).
Kay, R. W., Sun, S. S. & Lee-Hu, C. N. Pb and Sr isotopes in volcanic rocks from the Aleutian Islands and Pribilof Islands, Alaska. Geochim. Cosmochim. Acta 42, 263–273 (1978).
Chauvel, C., Lewin, E., Carpentier, M., Arndt, N. T. & Marini, J. C. Role of recycled oceanic basalt and sediment in generating the Hf–Nd mantle array. Nat. Geosci. 1, 64–67 (2008).
Chauvel, C., Marini, J.-C., Plank, T. & Ludden, J. N. Hf-Nd input flux in the Izu-Mariana subduction zone and recycling of subducted material in the mantle. Geochem. Geophys. Geosyst. 10, Q01001 (2009).
Andersen, M. B. et al. The terrestrial uranium isotope cycle. Nature 517, 256–359 (2015).
Hofmann, A. W. in Treatise on Geochemistry Vol. 2 (eds Holland, H. D., Turekian, K. K. & Carlson, R. W.) 61–101 (Elsevier, 2003).
Sobolev, A. V. et al. The amount of recycled crust in sources of mantle-derived melts. Science 316, 412–417 (2007).
Parolari, M., Gómez-Tuena, A., Cavazos-Tovar, J. G. & Hernández-Quevedo, G. A balancing act of crust creation and destruction along the western Mexican convergent margin. Geology 46, 455–458 (2018).
Straub, S. M. et al. Crustal recycling by subduction erosion in the central Mexican Volcanic Belt. Geochim. Cosmochim. Acta 166, 29–52 (2015).
Mahlburg Kay, S., Godoy, E. & Kurtz, A. Episodic arc migration, crustal thickening, subduction erosion, and magmatism in the south-central Andes. Geol. Soc. Am. Bull. 117, 67–88 (2005).
Stern, C. R. Subduction erosion: Rates, mechanisms, and its role in arc magmatism and the evolution of the continental crust and mantle. Gondwana Res. 20, 284–308 (2011).
Willbold, M. & Stracke, A. Trace element composition of mantle end-members: Implications for recycling of oceanic and upper and lower continental crust. Geochem. Geophys. Geosyst. 7, Q04004 (2006).
Stracke, A. Earth’s heterogeneous mantle: A product of convection-driven interaction between crust and mantle. Chem. Geol. 330–331, 274–299 (2012).
Stern, R. J. & Scholl, D. W. Yin and yang of continental crust creation and destruction by plate tectonic processes. Int. Geol. Rev. 52, 1–31 (2010).
Huene, R. V., Ranero, C. R. & Vannucchi, P. Generic model of subduction erosion. Geology 32, 913–916 (2004).
Vannucchi, P., Scholl, D. W., Meschede, M. & McDougall-Reid, K. Tectonic erosion and consequent collapse of the Pacific margin of Costa Rica: Combined implications from ODP Leg 170, seismic offshore data and regional geology of the Nicoya Peninsula. Tectonics 20, 649–668 (2001).
Vannucchi, P. et al. Fast rates of subduction erosion along the Costa Rica Pacific margin: Implications for nonsteady rates of crustal recycling at subduction zones. J. Geophys. Res. 108, 2511 (2003).
Ranero, C. R. & Huene, R. V. Subduction erosion along the Middle American convergent margin. Nature 404, 748–752 (2000).
Vannucchi, P., Galeotti, S., Clift, P. D., Ranero, C. R. & Huene, R. V. Long-term subduction-erosion long the Guatemalan margin of the Middle American Trench. Geology 32, 617–620 (2004).
Morris, J. D., Gosse, J., Brachfeld, S. & Tera, F. Cosmogenic Be-10 and the solid Earth: studies in geomagnetism, subduction zone processes, and active tectonics. Rev. Mineral. Geochem. 50, 207–270 (2002).
Miller, D. M., Goldstein, S. L. & Langmuir, C. H. Cerium/lead and lead isotope ratios in arc magmas and the enrichment of lead in the continents. Nature 368, 514–520 (1994).
Kelemen, P. B., Hanghoi, K. & Greene, A. R. in Treatise on Geochemistry Vol. 3 (ed. Rudnick, R. L.) 593–659 (Elsevier-Pergamon, 2003).
Elliott, T., Plank, T., Zindler, A., White, W. & Bourdon, B. Element transport from subducted slab to juvenile crust at the Mariana arc. J. Geophys. Res. 102, 14991–15019 (1997).
Nielsen, S. G. & Marschall, H. R. Geochemical evidence for mélange melting in global arcs. Sci. Adv. 3, 1602402 (2017).
Yogodzinski, G. M., Vervoort, J. D., Brown, S. T. & Gerseny, M. Subduction controls of Hf and Nd isotopes in lavas of the Aleutian island arc. Earth Planet. Sci. Lett. 300, 226–238 (2010).
Yogodzinski, G. M. et al. The role of subducted basalt in the source of island arc magmas: evidence from seafloor lavas of the western Aleutians. J. Petrol. 56, 441–492 (2015).
Castillo, P. R., Lonsdale, P. F., Moran, C. L. & Hawkins, J. W. Geochemistry of mid-Cretaceous Pacific crust being subducted along the Tonga–Kermadec Trench: Implications for the generation of arc lavas. Lithos 112, 87–102 (2009).
Kendrick, M. A. et al. Subduction-related halogens (Cl, Br and I) and H2O in magmatic glasses from Southwest Pacific Backarc Basins. Earth Planet. Sci. Lett. 400, 165–176 (2014).
Barnes, J. D., Sharp, Z. D. & Fischer, T. P. Chlorine isotope variations across the Izu-Bonin-Mariana arc. Geology 36, 883–886 (2008).
Barnes, J. D. & Straub, S. M. Chlorine stable isotope variations in Izu Bonin tephra: Implications for serpentinite subduction. Chem. Geol. 272, 62–74 (2010).
Hildreth, W. & Moorbath, S. Crustal contributions to arc magmatism in the Andes of central Chile. Contrib. Mineral. Petrol. 98, 455–489 (1988).
Seely, D. R., Vail, P. R. & Walton, G. G. in The Geology of Continental Margins (eds Burk, C. A. & Drake, C. L.) 249–260 (Springer, 1974).
Karig, D. E. Tectonic erosion at trenches. Earth Planet. Sci. Lett. 21, 209–212 (1974).
Karig, D. E. & Sharman, G. F. Subduction and accretion in trenches. Earth Planet. Sci. Lett. 86, 377–389 (1975).
Dickinson, W. R. Plate tectonics in geologic history. Science 174, 107–113 (1971).
Hussong, D. M., Edwards, P. B., Johnson, S. H., Campbell, J. F. & Sutton, G. H. in The Geophysics of the Pacific Ocean Basin and its Margin Vol. 19 (eds Sutton, G. H., Manghani, M. H., Moberly, R. & Mcafee, E. U.) 71–85 (American Geophysical Union, 1976).
Scholl, D. W., Huene, R. V., Vallier, T. L. & Howell, D. G. Sedimentary masses and concepts about tectonic processes at underthrust ocean margins. Geochim. Cosmochim. Acta 8, 564–568 (1980).
Vannucchi, P. et al. Past seismic slip-to-the-trench recorded in Central America megathrust. Nat. Geosci. 10, 935–940 (2017).
Tatsumi, Y. & Eggins, E. Subduction Zone Magmatism (Blackwell, 1995).
Kessel, R., Schmidt, M. W., Ulmer, P. & Pettke, T. Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth. Nature 437, 724–727 (2005).
Behn, M. D., Kelemen, P. B., Hirth, G., Hacker, B. R. & Massonne, H.-J. Diapirs as the source of the sediment signature in arc lavas. Nat. Geosci. 4, 641–646 (2011).
Marschall, H. R. & Schumacher, J. C. Arc magmas sourced from mélange diapirs in subduction zones. Nat. Geosci. 5, 862–867 (2012).
Gerya, T. V., Yuen, D. A. & Sevre, E. O. D. Dynamical causes for incipient magma chambers above slabs. Geology 32, 89–92 (2004).
Mibe, K., Kawamoto, T., Matsukage, K. N., Fei, Y. & Ono, S. Slab melting versus slab dehydration in subduction-zone magmatism. Proc. Natl Acad. Sci. USA 108, 8177–8182 (2011).
Cruz-Uribe, A. M., Marschall, H. R., Gaetani, G. A. & Le Roux, V. Generation of alkaline magmas in subduction zones by partial melting of mélange diapirs — An experimental study. Geology 46, 343–346 (2018).
Codillo, E. A., Le Roux, V. & Marschall, H. R. Arc-like magmas generated by mélange-peridotite interaction in the mantle wedge. Nat. Comm. 9, 2864 (2018).
Scholl, D. W. & Von Huene, R. in Earth Accretionary Systems in Space and Time Vol. 318 (eds Cawood, P. A. & Kroener, A.) 105–125 (Geological Society of London, 2009).
Clift, P., Schouten, H. & Vannucchi, P. in Earth Accretionary Systems in Space and Time Vol. 318 (eds Cawood, P. A. & Kroener, A.) 75–103 (Geological Society of London, 2009).
Rutland, R. W. R. Andean orogeny and ocean floor spreading. Nature 233, 252–255 (1971).
Ziegler, A. M., Barrett, S. F. & Scotese, C. R. Palaeoclimate, sedimentation and continental accretion. Philos. Trans. R. Soc. Lond. Ser. A 301, 253–264 (1981).
Miller, H. Das Problem des hypothetischen “Pazifischen Kontinentes” gesehen von der chilenischen Pazifikküste. Geol. Rundsch. 59, 927–938 (1970).
Miller, H. Vergleichende Studien an prämesozoischen Gesteinen Chiles unter besonderer Berücksichtigung ihrer Kleintektonik. Geotek. Forsch. 36, 1–64 (1970).
Murauchi, J. in The Ocean World Vol. 303–305 (ed. Uda, M.) (Proceedings of the Joint Oceanographic Assembly, 1971).
Bangs, N. L. B., Gulick, S. P. S. & Shipley, T. H. Seamount subduction erosion in the Nankai Trough and its potential impact on the seismogenic zone. Geology 34, 701–704 (2006).
Huene, R. V. & Lallemand, S. Tectonic erosion along the Japan and Peru convergent margins. Geol. Soc. Am. Bull. 102, 704–720 (1990).
Schaaf, P. et al. Paleogene continental margin truncation in southwestern Mexico: Geochronological evidence. Tectonics 14, 1339–1350 (1995).
Morán-Zenteno, D. J. et al. Cenozoic magmatism of the Sierra Madre del Sur and tectonic truncation of the Pacific margin of southern Mexico. Earth Sci. Rev. 183, 85–114 (2018).
Isozaki, Y., Aoki, K., Nakama, T. & Yanai, S. New insight into a subduction-related orogen: A reappraisal of the geotectonic framework and evolution of the Japanese Islands. Gondwana Res. 18, 82–105 (2010).
Hussong, D. M. & Uyeda, S. in Initial Reports of the Deep Sea Drilling Project Vol. 60 (eds Hussong, D. M. & Uyeda, S.) 909–929 (U.S. Government Printing Office, 1982).
Seely, D. R. & Dickinson, W. R. in Geology of Continental Margins (eds Curray, J. R. et al) 1–22 (American Association of Petroleum Geologists, 1977).
Dickinson, W. R. & Seely, D. R. Structure and stratigraphy of forearc regions. AAPG Bull. 63, 2–31 (1979).
Karig, D. E., Caldwell, J. G. & Paramentier, E. M. Effects of accretion on the geometry of the descending lithosphere. J. Geophys. Res. 81, 6281–6291 (1976).
Dickinson, W. R. in Tectonics of Sedimentary Basins (eds Busby, C. J. & Ingersoll, R. V.) 221–261 (Blackwell, 1995).
Fuller, C. W., Willett, S. D. & Brandon, M. T. Formation of forearc basins and their influence on subduction zone earthquakes. Geology 34, 65–68 (2006).
Noda, A. Forearc basins: types, geometries, and relationships to subduction zone dynamics. Geol. Soc. Am. Bull. 128, 879–889 (2016).
Huene, R. V. & Culotta, R. Tectonic erosion at the front of the Japan Trench convergent margin. Tectonophysics 160, 75–90 (1989).
Boston, B., Moore, G. F., Nakamura, Y. & Kodaira, S. Forearc slope deformation above the Japan Trench megathrust: Implications for subduction erosion. Earth Planet. Sci. Lett. 462, 26–34 (2017).
Regalla, C., Fisher, D. M., Kirby, E. & Furlong, K. P. Relationship between outer forearc subsidence and plate boundary kinematics along the Northeast Japan convergent margin. Geochem. Geophys. Geosyst. 14, 5227–5243 (2013).
Regalla, C., Fisher, D. M., Kirby, E., Oakley, D. & Taylor, S. Slip inversion along inner fore-arc faults, Eastern Tohoku, Japan. Tectonics 36, 2647–2668 (2017).
Ranero, C. R. et al. Hydrogeological system of erosional convergent margins and its influence on tectonics and interplate seismogenesis. Geochem. Geophys. Geosyst. 9, Q03S04 (2008).
Sallarès, V., Charvis, P., Flueh, E. R. & Bialas, J. Seismic structure of Cocos and Malpelo Volcanic Ridges and implications for hot spot-ridge interaction. J. Geophys. Res. Solid Earth 108, 2564 (2003).
Vannucchi, P. et al. Rapid pulses of uplift, subsidence, and subduction erosion offshore Central America: Implications for building the rock record of convergent margins. Geology 41, 995–998 (2013).
Morell, K. D., Fisher, D. M. & Bangs, N. Plio-quaternary outer forearc deformation and mass balance of the southern Costa Rica convergent margin. J. Geophys. Res. Solid Earth 124, 9795–9815 (2019).
Riedinger, N. et al. Interplay of subduction tectonics, sedimentation, and carbon cycling. Geochem. Geophys. Geosyst. 20, 4939–4955 (2019).
Zeumann, S. & Hampel, A. Deformation of erosive and accretive forearcs during subduction of migrating and non-migrating aseismic ridges: Results from 3-D finite element models and application to the Central American, Peruvian, and Ryukyu margins. Tectonics 34, 1769–1791 (2015).
Edwards, J. H., Kluesner, J. W., Silver, E. A. & Bangs, N. L. Pleistocene vertical motions of the Costa Rican outer forearc from subducting topography and a migrating fracture zone triple junction. Geosphere 14, 510–534 (2018).
Ranero, C. R. & Sallares, V. Geophysical evidence for hydration of the crust and mantle of the Nazca plate during bending at the north Chile trench. Geology 32, 549–552 (2004).
Hensen, C., Wallmann, K., Schmidt, M., Ranero, C. R. & Suess, E. Fluid expulsion related to mud extrusion off Costa Rica — A window to the subducting slab. Geology 32, 201–204 (2004).
Vannucchi, P., Sage, F., Morgan, J. P., Remitti, F. & Collot, J. Y. Toward a dynamic concept of the subduction channel at erosive convergent margins with implications for interplate material transfer. Geochem. Geophys. Geosyst. 13, Q02003 (2012).
Cloos, M. & Shreve, R. L. Subduction-channel model of prism accretion, melange formation, sediment subduction, and subduction erosion at convergent plate margins: 1. Background and description. Pure Appl. Geophys. 128, 456–500 (1988).
Cloos, M. & Shreve, R. L. Subduction-channel model of prism accretion, melange formation, sediment subduction, and subduction erosion at convergent plate margins. 2. Implications and discussion. Pure Appl. Geophys. 128, 501–545 (1988).
Clift, P. D. & Hartley, A. Slow rates of subduction erosion along the Andean margin and reduced global crustal recycling. Geology 35, 503–506 (2007).
Sutherland, R. et al. Reactivation of tectonics, crustal underplating, and uplift after 60 Myr of passive subsidence, Raukumara Basin, Hikurangi-Kermadec fore arc, New Zealand: implications for global growth and recycling of continents. Tectonics 28, TC5017 (2009).
Scholl, D. W. Seismic imaging evidence that forearc underplating built the accretionary rock record of coastal North and South America. Geol. Mag. 1–14 https://doi.org/10.1017/S0016756819000955 (2019).
Polonia, A., Torelli, L., Brancolini, G. & Loreto, M. F. Tectonic accretion versus erosion along the southern Chile trench: Oblique subduction and margin segmentation. Tectonics 26, TC3005 (2007).
Bassett, D. et al. Three-dimensional velocity structure of the northern Hikurangi margin, Raukumara, New Zealand: implications for the growth of continental crust by subduction erosion and tectonic underplating. Geochem. Geophys. Geosyst. 11, Q10013 (2010).
Bangs, N. L., Christeson, G. L. & Shipley, T. H. Structure of the Lesser Antilles subduction zone backstop and its role in a large accretionary system. J. Geophys. Res. 108, 2358 (2003).
Armstrong, R. L. Radiogenic isotopes: the case for crustal recycling on a near-steady-state no-continental-growth Earth. Phil. Trans. R. Soc. Lond. A 301, 443–472 (1981).
Vervoort, J. D. & Blichert-Toft, J. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochim. Cosmochim. Acta 63, 533–556 (1999).
Bouvier, A., Vervoort, J. D. & Patchett, P. J. The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet. Sci. Lett. 273, 48–57 (2008).
Willbold, M. & Stracke, A. Formation of enriched mantle components by recycling of upper and lower continental crust. Chem. Geol. 276, 188–197 (2010).
Workman, R. K. et al. Recycled metasomatized lithosphere as the origin of the Enriched Mantle II (EM2) end-member: Evidence from the Samoan Volcanic Chain. Geochem. Geophys. Geosyst. 5, Q04008 (2004).
Kelley, K. A., Plank, T., Farr, L., Ludden, J. & Staudigel, H. Subduction cycling of U, Th, and Pb. Earth Planet. Sci. Lett. 234, 369–383 (2005).
Annen, C., Blundy, J. D. & Sparks, R. S. J. The genesis of intermediate and silicic magmas in deep crustal hot zones. J. Petrol. 47, 505–539 (2006).
Perfit, M. R., Gust, D. A., Bence, A. E., Arculus, R. J. & Taylor, S. R. Chemical characteristics of island-arc basalts: implications for mantle sources. Chem. Geol. 30, 227–256 (1980).
Turner, S. J., Langmuir, C. H., Dungan, M. A. & Escrig, S. The importance of mantle wedge heterogeneity to subduction zone magmatism and the origin of EM1. Earth Planet. Sci. Lett. 472, 216–228 (2017).
Hawkesworth, C. J., Gallagher, K., Hergt, J. M. & McDermott, F. Mantle and slab contributions in arc magmas. Annu. Rev. Earth Planet. Sci. 21, 175–204 (1993).
Rogers, G. & Hawkesworth, C. J. A geochemical traverse across the North Chilean Andes: evidence for crust generation from the mantle wedge. Earth Plant. Sci. Lett. 91, 271–285 (1989).
Vervoort, J. D., Plank, T. & Prytulak, J. The Hf–Nd isotopic composition of marine sediments. Geochim. Cosmochim. Acta 75, 5903–5926 (2011).
Ludden, J. N., Plank, T., Larson, R. & Escutia, C. in Proceedings of the Ocean Drilling Program, Scientific Results Vol. 185 (eds Ludden, J. N., Plank, T., & Escutia, C.) 1–35 (Ocean Drilling Program, 2006).
Contreras-Reyes, E. et al. (eds) in The Evolution of the Chilean-Argentinean Andes (eds Folguera, A. et al.) 3–29 (Springer, 2018).
Holm, P. M., Søager, N., Thorup Dyhr, C. & Rohde Nielsen, M. Enrichments of the mantle sources beneath the Southern Volcanic Zone (Andes) by fluids and melts derived from abraded upper continental crust. Contrib. Mineral. Petrol. 167, 1004 (2014).
Stern, C. R. Role of subduction erosion in the generation of Andean magmas. Geology 19, 78–81 (1991).
Mahlburg Kay, S., Mpodozis, C. & Gardeweg, M. in Orogenic Andesites and Crustal Growth Vol. 385 (eds Gomez-Tuena, A., Straub, S. M., & Zellmer, G. F.) 303–334 (Geological Society of London, 2014).
Goss, A. R., Mahlburg Kay, S. & Mpodozis, C. Andean adakite-like high-Mg andesites on the northern margin of the Chilean–Pampean flat-slab (27–28.5°S) associated with frontal arc migration and fore-arc subduction erosion. J. Petrol. 54, 2193–2234 (2013).
Goss, A. R. & Kay, S. M. Extreme high field strength element (HFSE) depletion and near-chondritic Nb/Ta ratios in Central Andean adakite-like lavas (~28°S, ~68°W). Earth Planet. Sci. Lett. 279, 97–109 (2009).
Mahlburg Kay, S. & Mpodozis, C. Magmatism as a probe to the Neogene shallowing of the Nazca Plate beneath the modern Chilean flat-slab. J. S. Am. Earth Sci. 15, 39–57 (2002).
Jicha, B. R. & Mahlburg Kay, S. Quantifying arc migration and the role of forearc subduction erosion in the central Aleutians. J. Volcanol. Geotherm. Res. 360, 84–99 (2018).
Mahlburg Kay, S. et al. The calc-alkaline Hidden Bay and Kagalaska plutons and the construction of the central Aleutian oceanic arc crust. J. Petrol. 60, 393–439 (2019).
Karlstrom, L., Lee, C. T. A. & Manga, M. The role of magmatically driven lithospheric thickening on arc front migration. Geochem. Geophys. Geosyst. 15, 2655–2675 (2014).
Giambiagi, L. et al. in Geodynamic Processes in the Andes of Central Chile and Argentina Vol. 399 (eds Sepúlveda, S. A. et al.) 63 (Geological Society of London, 2015).
Holm, P. M., Søager, S., Alfastsen, M. & Bertotto, G. W. Subduction zone mantle enrichment by fluids and Zr–Hf-depleted crustal melts as indicated by backarc basalts of the Southern Volcanic Zone, Argentina. Lithos 262, 135–152 (2016).
Wieser, P. E. et al. New constraints from Central Chile on the origins of enriched continental compositions in thick-crusted arc magmas. Geochim. Cosmochim. Acta 267, 51–74 (2019).
Mahlburg Kay, S., Mpodozis, C. & Coira, B. in Geology and Ore Deposits of the Central Andes Vol. 7 (ed. Skinner, B. J.) 27–59 (Society of Economic Geologists, 1999).
Ramos, V. A. The Grenville-age basement of the Andes. J. S. Am. Earth Sci. 29, 77–91 (2010).
Woerner, G., Moorbath, S. & Harmon, R. S. Andean Cenozoic volcanic centers reflect basement isotopic remains. Geology 20, 1103–1106 (1992).
van Keken, P. E. et al. A community benchmark for subduction zone modeling. Phys. Earth Planet. Inter. 171, 187–197 (2008).
Turner, S. J. & Langmuir, C. H. What processes control the chemical compositions of arc front stratovolcanoes? Geochem. Geophys. Geosyst. 16, 1865–1893 (2015).
Turner, S. J., Langmuir, C. H., Katz, R. F., Dungan, M. A. & Escrig, S. Parental arc magma compositions dominantly controlled by mantle-wedge thermal structure. Nat Geosci. 9, 772–776 (2016).
Jacques, G. et al. Across-arc geochemical variations in the Southern Volcanic Zone, Chile (34.5–38.0°S): constraints on mantle wedge and slab input compositions. Geochim. Cosmochim. Acta 123, 218–243 (2013).
Vannucchi, P., Morgan, J. P., Silver, E. A. & Kluesner, J. W. Origin and dynamics of depositionary subduction margins. Geochem. Geophys. Geosyst. 17, 1966–1974 (2016).
Schindlbeck, J. C. et al. Late Cenozoic tephrostratigraphy offshore the southern Central American Volcanic Arc: 2. Implications for magma production rates and subduction erosion. Geochem. Geophys. Geosyst. 17, 4585–4604 (2016).
Gazel, E. et al. Galapagos-OIB signature in southern Central America: Mantle refertilization by arc–hot spot interaction. Geochem. Geophys. Geosyst. 10, Q02S11 (2009).
Goss, A. R. & Kay, S. M. Steep REE patterns and enriched Pb isotopes in southern Central American arc magmas: Evidence for forearc subduction erosion? Geochem. Geophys. Geosyst. 7, Q05016 (2006).
Herrstrom, E. A., Reagan, M. K. & Morris, J. D. Variations in lava composition associated with flow of asthenosphere beneath southern Central America. Geology 23, 617–620 (1995).
Abratis, M. & Woerner, G. Ridge collision, slab-window formation, and the flux of Pacific asthenosphere into the Caribbean realm. Geology 29, 127–130 (2001).
Feigenson, M. D., Carr, M. J., Maharaj, S. V., Juliano, S. & Bolge, L. Lead isotopic compositions of Central American volcanoes: Influence of the Galapagos plume. Geochem. Geophys. Geosyst. 5, Q06001 (2004).
Gazel, E. et al. Continental crust generated in oceanic arcs. Nat Geosci. 8, 321–327 (2015).
Gómez-Tuena, A., Cavazos-Tovar, J. G., Parolari, M., Straub, S. M. & Espinasa-Pereña, R. Geochronological and geochemical evidence of continental crust ‘relamination’ in the origin of intermediate arc magmas. Lithos 322, 52–66 (2018).
Gómez-Tuena, A., Mori, L. & Straub, S. M. Geochemical and petrological insights into the tectonic origin of the Transmexican Volcanic Belt. Earth Sci. Rev. 183, 153–181 (2018).
Gómez-Tuena, A., Díaz-Bravo, B., Vázquez-Duarte, A., Pérez-Arvizu, O. & Laura Mori, L. in Orogenic Andesites and Crustal Growth Vol. 385 (eds Gomez-Tuena, A., Straub, S. M., & Zellmer, G. F.) 65–101 (Geological Society of London, 2014).
Gómez-Tuena, A. et al. Temporal control of subduction magmatism in the eastern Trans-Mexican Volcanic Belt: Mantle sources, slab contributions, and crustal contamination. Geochem. Geophys. Geosyst. 8, 8912 (2003).
Morán-Zenteno, D. J., Corona-Chavez, P. & Tolson, G. Uplift and subduction erosion in southwestern Mexico since the Oligocene: pluton geobarometry constraints. Earth Planet. Sci. Lett. 141, 51–65 (1996).
Keppie, D. F., Hynes, A. J., Lee, J. K. W. & Norman, M. Oligocene-Miocene back-thrusting in southern Mexico linked to the rapid subduction erosion of a large forearc block. Tectonics 31, TC2008 (2012).
Ducea, M. N. et al. Rates of sediment recycling beneath the Acapulco trench: Constraints from (U-Th)/He thermochronology. J. Geophys. Res. 109, B09404 (2004).
Cavazos-Tovar, J. G., Gómez-Tuena, A. & Parolari, M. The origin and evolution of the Mexican Cordillera as registered in modern detrital zircons. Gondwana Res. 86, 83–102 (2020).
Pindell, J. L. et al. A plate-kinematic framework for models of Caribbean evolution. Tectonophysics 55, 121–138 (1988).
Rogers, R. D., Mann, P. & Emmet, P. A. Tectonic terranes of the Chortis block based on integration of regional aeromagnetic and geologic data. Geol. Soc. Am. Spec. Pap. 428, 65–88 (2007).
Ferrari, L. et al. Late Cretaceous-Oligocene magmatic record in southern Mexico: The case for a temporal slab window along the evolving Caribbean-North America-Farallon triple boundary. Tectonics 33, 1738–1765 (2014).
Silva-Romo, G. et al. Timing of the Cenozoic basins of Southern Mexico and its relationship with the Pacific truncation process: Subduction erosion or detachment of the Chortís block. J. S. Am. Earth Sci. 83, 178–194 (2018).
Straub, S. M. et al. Formation of hybrid arc andesites beneath thick continental crust. Earth Planet. Sci. Lett. 303, 337–347 (2011).
Wallace, P. J. & Carmichael, I. S. E. Quaternary volcanism near the Valley of Mexico: implications for subduction zone magmatism and the effects of crustal thickness variations on primitive magma compositions. Contrib. Mineral. Petrol. 135, 291–314 (1999).
Rasoazanamparany, C. et al. Temporal and compositional evolution of Jorullo volcano, Mexico: implications for magmatic processes associated with a monogenetic eruption. Chem. Geol. 434, 62–80 (2016).
Ortega-Gutiérrez, F., Martiny, B. M., Morán-Zenteno, D. J., Reyes-Salas, A. M. & Solé-Viñas, J. Petrology of very high temperature crustal xenoliths in the Puente Negro intrusion: a sapphire-spinel-bearing Oligocene andesite, Mixteco terrane, southern Mexico. Rev. Mex. Cienc. Geol. 28, 593–629 (2011).
Ortega-Gutiérrez, F. et al. Petrology of high-grade crustal xenoliths in the Chalcatzingo Miocene subvolcanic field, southern Mexico: buried basement of the Guerrero-Morelos platform and tectonostratigraphic implications. Int. Geol. Rev. 54, 1597–1634 (2012).
Ortega-Gutiérrez, F., Gómez-Tuena, A., Elías-Herrera, M., Reyes-Salas, M. & Macías-Romo, C. Petrology and geochemistry of the Valle de Santiago lower-crust xenoliths: Young tectonothermal processes beneath the central Trans-Mexican volcanic belt. Lithosphere 6, 335–360 (2014).
Plank, T. in Treatise on Geochemistry 2nd edn Vol. 4 (eds Holland, H. & Turekian, K.) 607–629 (Elsevier, 2014).
Keppie, J. D., Dostal, J., Murphy, J. B. & Nance, R. D. Synthesis and tectonic interpretation of the westernmost Paleozoic Variscan orogen in southern Mexico: From rifted Rheic margin to active Pacific margin. Tectonophysics 461, 277–290 (2008).
Ranero, C. R., Vannucchi, P., Huene, R. V. & Proponents, C. Drilling the seismogenic zone of an erosional convergent margin: IODP Costa Rica Seismogenesis Project CRISP. Sci. Drill. Spec. Issue 1, 51–54 (2007).
Straub, S. M., LaGatta, A. B., Martin-Del Pozzo, A. L. & Langmuir, C. H. Evidence from high-Ni olivines for a hybridized peridotite/pyroxenite source for orogenic andesites from the central Mexican Volcanic Belt. Geochem. Geophys. Geosyst. 9, Q03007 (2008).
Straub, S. M. et al. in Orogenic Andesites and Crustal Growth Vol. 385 (eds Gomez-Tuena, A, Straub, S. M., & Zellmer, G. F.) 31–64 (Geological Society of London, 2014).
Morris, J. D. & Hart, S. R. Isotopic and incompatible element constraints on the genesis of island arc volcanics from Cold Bay and Amak Island, Aleutians, and implications for mantle structure. Geochim. Cosmochim. Acta 47, 2015–2030 (1983).
Ringwood, A. E. The petrological evolution of island arc systems. J. Geol. Soc. 130, 183–204 (1974).
Gill, J. Orogenic Andesites and Plate Tectonics (Springer, 1981).
Kelemen, P. B. Genesis of high Mg# andesites and the continental crust. Contrib. Mineral. Petrol. 120, 1–19 (1995).
Plank, T. & Langmuir, C. H. An evaluation of the global variations in the major element chemistry of arc basalts. Earth Planet. Sci. Lett. 90, 349–370 (1988).
Turner, S. J. & Langmuir, C. H. The global chemical systematics of arc front stratovolcanoes: Evaluating the role of crustal processes. Earth Planet. Sci. Lett. 422, 182–193 (2015).
Carmichael, I. S. The andesite aqueduct: perspectives on the evolution of intermediate magmatism in west-central (105–99°W) Mexico. Contrib. Mineral. Petrol. 143, 641–663 (2002).
Langmuir, C. H., Klein, E. M. & Plank, T. in Mantle Flow and Melt Generation at Mid-Ocean Ridges (eds Morgan, J. P., Blackman, D. K. & Sinton, J. M.) 183–280 (American Geophysical Union, 1992).
Hirose, K. Melting experiments on lherzolite KLB-1 under hydrous conditions and generation of high-magnesian andesitic melts. Geology 25, 42–44 (1997).
Wood, B. J. & Turner, S. P. Origin of primitive high-Mg andesite: Constraints from natural examples and experiments. Earth Planet. Sci. Lett. 283, 59–66 (2009).
Grove, T. L. & Till, C. B. H2O-rich mantle melting near the slab–wedge interface. Contrib. Mineral. Petrol. 174, 80 (2019).
Gómez-Tuena, A., Langmuir, C. H., Goldstein, S. L., Straub, S. M. & Ortega-Gutierrez, F. Geochemical evidence for slab melting in the Trans-Mexican Volcanic Belt. J. Petrol. 48, 537–562 (2007).
Defant, M. & Drummond, M. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347, 662–665 (1990).
Kay, R. W. Aleutian magnesian andesites: melts from subducted Pacific Ocean crust. J. Volcanol. Geotherm. Res. 4, 117–132 (1978).
Yogodzinksi, G., Volynets, O. N., Koloskov, A. V., Seliverstov, N. I. & Matvenko, V. V. Magnesian andesites and the subduction component in a strongly calc-alkaline series at Piip Volcano, far western Aleutians. J. Petrol. 35, 163–204 (1994).
Kogiso, T., Hirschmann, M. & Pertermann, M. High-pressure partial melting of mafic lithologies in the mantle. J. Petrol. 45, 2407–2422 (2004).
Hauri, E. Major-element variability in the Hawaiian mantle plume. Nature 382, 415–419 (1996).
Gómez-Tuena, A. et al. The origin of a primitive trondhjemite from the Trans-Mexican Volcanic Belt and its implications for the construction of a modern continental arc. Geology 36, 471–474 (2008).
Bindeman, I. N., Ponomareva, V. V., Bailey, J. C. & Valley, J. W. Volcanic arc of Kamchatka: a province with high-δ18O magma sources and large-scale 18O/16O depletion of the upper crust. Geochim. Cosmochim. Acta 68, 841–865 (2004).
Bryant, J. A., Yogodzinksi, G. M. & Churikova, T. G. High-Mg# andesitic lavas of the Shisheisky Complex, Northern Kamchatka: implications for primitive calc-alkaline magmatism. Contrib. Mineral. Petrol. 161, 791–810 (2011).
Portnyagin, M., Bindeman, I. N., Hoernle, K., Hauff, F. in: Volcanism and Subduction: The Kamchatka Region (eds Eichelberger, J., Gordeev, E., Izbekov, P., Kasahara, M. & Lees, J.) Geophysical Monograph Series. 199–239 (American Geophysical Union, 2007).
Price, R. C. et al. The anatomy of an andesite volcano: a time–stratigraphic study of andesite petrogenesis and crustal evolution at Ruapehu Volcano, New Zealand. J. Petrol. 53, 2139–2189 (2012).
Cameron, E. et al. The petrology, geochronology and geochemistry of Hauhungatahi volcano, SW Taupo Volcanic Zone. J. Volcanol. Geotherm. Res. 190, 179–191 (2010).
Beier, C., Haase, K. M., Brandl, P. A. & Krumm, S. H. Primitive andesites from the Taupo Volcanic Zone formed by magma mixing. Contrib. Mineral. Petrol. 173, 33 (2017).
Yogodzinski, G. M., Kay, R. W., Volynets, O. N., Koloskov, A. V. & Kay, S. M. Magnesian andesite in the western Aleutian Komandorsly region: Implications for slab melting and processes in the mantle wedge. Geol. Soc. Am. Bull. 107, 505–519 (1995).
Borg, L. E., Clynne, M. A. & Bullen, T. D. The variable role of slab-derived fluids in the generation of a suite of primitive calc-alkaline lavas from the southernmost Cascades, California. Can. Mineral. 35, 425–452 (1997).
Bullen, T. D. & Clynne, M. A. Trace element and isotopic constraints on magmatic evolution at Lassen Volcanic center. J. Geophys. Res. 95, 19671–19691 (1990).
Sisson, T. W., Salters, V. J. M. & Larson, P. B. Petrogenesis of Mount Rainier andesite: Magma flux and geologic controls on the contrasting differentiation styles at stratovolcanoes of the southern Washington Cascades. Geol. Soc. Am. Bull. 126, 122–144 (2014).
Grove, T. L., Parman, S. W., Bowring, S. A., Price, R. C. & Baker, M. B. The role of an H2O-rich fluid component in the generation of primitive basaltic andesites and andesites from the Mt. Shasta region, N California. Contrib. Mineral. Petrol. 142, 375–396 (2002).
Kelemen, P. B. & Behn, M. D. Formation of lower continental crust by relamination of buoyant arc lavas and plutons. Nat. Geosci. 9, 197–205 (2016).
Hacker, B. R., Kelemen, P. B. & Behn, M. D. Differentiation of the continental crust by relamination. Earth Planet. Sci. Lett. 307, 501–516 (2011).
Eichelberger, J. C. Andesitic volcanism and crustal evolution. Nature 275, 21–27 (1978).
Reubi, O. & Blundy, J. Assimilation of plutonic roots, formation of high-K ‘exotic’ melt inclusions and genesis of andesitic magmas at Volcán de Colima, Mexico. J. Petrol. 49, 2221–2243 (2009).
Streck, M. J., Leeman, W. P. & Chesley, J. High-magnesian andesite from Mount Shasta: a product of magma mixing and contamination, not a primitive mantle melt. Geology 35, 351–354 (2007).
Kent, A. J. R., Darr, C., Koleszar, A. M., Salisbury, M. J. & Cooper, K. M. Preferential eruption of andesitic magmas through recharge filtering. Nat. Geosci. 3, 631–636 (2010).
Nixon, G. T. Petrology of the younger andesites and dacites of Iztaccihuatl Volcano, Mexico: II. Chemical stratigraphy, magma mixing, and the composition of basaltic magma influx. J. Petrol. 29, 265–303 (1988b).
Straub, S. M. & Martin-Del Pozzo, A. L. The significance of phenocryst diversity in tephra from recent eruptions at Popocatepetl volcano (Central Mexico). Contrib. Mineral. Petrol. 140, 487–510 (2001).
Streck, M. J. & Leeman, W. P. Petrology of “Mt. Shasta” high-magnesian andesite (HMA): A product of multi-stage crustal assembly. Am. Mineral. 102, 216–240 (2018).
Leeman, W. P. & Smith, D. J. The role of magma mixing, identification of mafic magma inputs, and structure of the underlying magmatic system at Mount St. Helens. Am. Mineral. 103, 1925–1944 (2018).
Mamani, M., Tassara, A. & Woerner, G. Composition and structural control of crustal domains in the central Andes. Geochem. Geophys. Geosyst. 9, Q03006 (2008).
Farner, M. J. & Lee, C. A. Effects of crustal thickness on magmatic differentiation in subduction zone volcanism: a global study. Earth Planet. Sci. Lett. 470, 96–107 (2017).
Bindeman, I. N. & Bailey, T. R. Trace elements in anorthite megacrysts from the Kurile Island Arc: a window to across-arc geochemical variations in magma compositions. Earth Planet. Sci. Lett. 169, 209–226 (1999).
Sas, M., Debari, S. M., Clynne, M. A. & Rusk, B. G. Using mineral geochemistry to decipher slab, mantle, and crustal input in the generation of high-Mg andesites and basaltic andesites from the northern Cascade Arc. Am. Mineral. 102, 948–965 (2017).
Zamboni, D. et al. New insights into the Aeolian Islands and other arc source compositions from high-precision olivine chemistry. Lithos 272–273, 185–191 (2017).
Kent, A. J. R. & Elliott, T. R. Melt inclusions from Marianas arc lavas: implications for the composition and formation of island arc magmas. Chem. Geol. 183, 265–288 (2002).
Rowe, M. C., Nielsen, R. L. & Kent, A. J. K. Anomalously high Fe contents in rehomogenized olivine-hosted melt inclusions from oxidized magmas. Am. Mineral. 91, 82–91 (2006).
Straub, S. M. et al. The processes of melt differentiation in arc volcanic rocks: Insights from OIB-type arc magmas in the central Mexican Volcanic Belt. J. Petrol. 54, 665–701 (2013).
McGee, L. E., Beier, C., Smith, I. E. M. & Turner, S. P. Dynamics of melting beneath a small-scale basaltic system: a U-Th–Ra study from Rangitoto volcano, Auckland volcanic field, New Zealand. Contrib. Mineral. Petrol. 162, 547–563 (2011).
Larrea, P., Widom, E., Siebe, C., Salinas, S. & Kuentz, D. A re-interpretation of the petrogenesis of Paricutin volcano: Distinguishing crustal contamination from mantle heterogeneity. Chem. Geol. 504, 66–82 (2019).
Workman, R. K. & Hart, S. R. Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet. Sci. Lett. 231, 53–72 (2005).
McKenzie, D. & O’Nions, R. K. The source regions of ocean island basalts. J. Petrol. 36, 133–159 (1995).
Marini, J. C., Chauvel, C. & Maury, R. C. Hf isotope compositions of northern Luzon arc lavas suggest involvement of pelagic sediments in their source. Contrib. Mineral. Petrol. 149, 216–232 (2005).
Klaver, K. et al. Temporal and spatial variations in provenance of Eastern Mediterranean Sea sediments: implications for Aegean and Aeolian arc volcanism. Geochim. Cosmochim. Acta 153, 149–168 (2015).
Rudnick, R. & Gao, S. in Treatise on Geochemistry Vol. 3 (ed. Rudnick, R. L.) 1–64 (Elsevier-Pergamon, 2003).
Gale, A., Dalton, C. A., Langmuir, C. H., Su, Y. & Schilling, J. G. The mean composition of ocean ridge basalts. Geochem. Geophys. Geosyst. 14, 489–518 (2013).
Salters, V. J. M., Mallick, S., Hart, S. R., Langmuir, C. H. & Stracke, A. Domains of depleted mantle: New evidence from hafnium and neodymium isotopes. Geochem. Geophys. Geosyst. 12, Q08001 (2011).
Shimaoka, A., Imamura, M. & Kaneoka, I. Beryllium isotopic systematics in island arc volcanic rocks from northeast Japan: Implications for the incorporation of oceanic sediments into island arc magmas. Chem. Geol. 443, 158–172 (2016).
Tera, F., Brown, L., Morris, J. & Sacks, I. S. Sediment incorporation in island-arc magmas: Inferences from 10Be. Geochim. Cosmochim. Acta 50, 535–550 (1986).
Freymuth, H., Andersen, M. B. & Elliott, T. Uranium isotope fractionation during slab dehydration beneath the Izu arc. Earth Planet. Sci. Lett. 522, 244–225 (2019).
Nielsen, S. G. et al. Tracking along-arc sediment inputs to the Aleutian arc using thallium isotopes. Geochim. Cosmochim. Acta 181, 217–237 (2016).
Bellot, N. et al. Ce isotope systematics of island arc lavas from the Lesser Antilles. Geochim. Cosmochim. Acta 168, 261–279 (2015).
Luhr, J. F., Pier, J. G., Aranda-Gomez, J. J. & Posedek, F. A. Crustal contamination in early Basin-and-Range hawaiites of the Los Encinos Volcanic Field, central México. Contrib. Mineral. Petrol. 118, 321–339 (1995).
Luhr, J. F., Aranda-Gomez, J. J. & Housh, T. San Quintin volcanic field, Baja California Norte, México: geology, petrology, and geochemistry. J. Geophys. Res. Solid Earth 100, 10353–10380 (1995).
Cai, Y. et al. Hafnium isotope evidence for slab melt contributions in hot slab arcs: an example of the Central Mexican Volcanic Belt. Chem. Geol. 377, 45–55 (2014).
Guilbaud, M.-N. et al. Petrographic, geochemical and isotopic (Sr–Nd–Pb–Os) study of Plio-Quaternary volcanics and the Tertiary basement in the Jorullo-Tacámbaro area, Michoacán-Guanajuato Volcanic Field, Mexico. J. Petrol. 60, 2317–2338 (2019).
Risse, A., Trumbull, R. B., Kay, S. M., Coira, B. & Romer, R. L. Multi-stage evolution of late Neogene mantle-derived magmas from the central Andes back-arc in the Southern Puna Plateau of Argentina. J. Petrol. 10, 1963–1995 (2013).
Søager, N., Holm, P. M. & Llambías, E. J. Payenia volcanic province, southern Mendoza, Argentina: OIB mantle upwelling in a backarc environment. Chem. Geol. 349–350, 36–53 (2013).
Søager, N., Holm, P. M. & Thirlwall, M. F. Sr, Nd, Pb and Hf isotopic constraints on mantle sources and crustal contaminants in the Payenia volcanic province, Argentina. Lithos 212–215, 368–378 (2015).
GEOROC. Geochemistry of Rocks of the Oceans and Continents. GEOROC http://georoc.mpch-mainz.gwdg.de/georoc/ (2019).
Carr, M. J., Feigenson, M. D., Bolge, L. L., Walker, J. A. & Gazel, E. RU_CAGeochem v.2, a database and sample repository for Central American volcanic rocks at Rutgers University, Version 1.0. Interdisciplinary Earth Data Alliance (IEDA). https://doi.org/10.1594/IEDA/100403 (2013).
Mamani, M., Wörner, G. & Sempere, T. Geochemical variations in igneous rocks of the Central Andean orocline (13°S to 18°S): tracing crustal thickening and magma generation through time and spa‑ce. Geol. Soc. Am. Bull. 122, 162–182 (2010).
Vermeesch, P. IsoplotR: A free and open toolbox for geochronology. Geosci. Front. 9, 1479–1493 (2019).
Acknowledgements
S.M.S. acknowledges support from National Science Foundation grants OCE 09-61359, EAR 12-20481 and EAR 19-21624, and a Kyoto University Visiting Fellowship. A.G.-T.’s studies were supported by Consejo Nacional de Ciencia y Tecnología (CONACyT, Mexico) grant 239494.
Author information
Authors and Affiliations
Contributions
S.M.S. conceived and drafted the manuscript, which was revised and amended by P.V. and A.G.-T. P.V. provided updated rates of forearc erosion and sediment subduction (Supplementary Information). All authors contributed to the discussion.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information
Nature Reviews Earth & Environment thanks A. Stracke, C. Stern, S. Kay and the other anonymous reviewer(s) for their contribution to the peer review of this work
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Glossary
- Subduction erosion
-
Tectonic removal of upper-plate material in subduction zones.
- Forearc
-
Region between arc and trench.
- Primary arc magmas
-
Mantle-wedge magmas prior to modification in the crustal basement.
- Frontal accretion
-
Accretion of lower-plate material to the forearc.
- Underplating
-
Accretion of lower-plate material to the base of the upper plate.
- Frontal prism
-
An actively deforming wedge at the toe of the forearc.
- Accretionary prism
-
Wedge-shaped body constructed mostly of sediment that has been scraped off the subducting plate.
- Backstop
-
Point of coherent, resistive upper-plate rock framework closest to the trench.
- Basal erosion
-
Tectonic removal of upper-plate material from the underside of the upper plate.
- Subduction channel
-
Plate-boundary shear zone conveying material from the shallow part of the subduction zone towards the mantle.
- Slab diapirs
-
Low-density material that buoyantly rises from the slab into the mantle wedge.
- Slab partial melts
-
Partial melt released from subducted lithologies into the mantle wedge.
- Hydrofracturing
-
Rock failure induced by overpressured fluids.
- Frontal erosion
-
Tectonic removal of material from the frontal part of the forearc.
- Arc crust production rate
-
Rate of arc crustal growth by addition of mantle-derived melts to arc crust per time increment, given in km3 per km of arc length per Myr, or km3/km/Myr, when normalized to the length of global arcs.
- εNd
-
Deviation of 144Nd/143Nd from the CHondritic Uniform Reservoir (CHUR) ratio, calculated as εNd = [(144Nd/143Nd/0.51263) − 1] × 10,000.
- Mg#
-
The molar ratio of Mg/(Mg + Fe2+) in magmas. Primary mantle melts usually have a Mg# ≥ 72.
- Corner flow
-
Mantle-wedge flow towards the subducting slab induced by viscous coupling between the downgoing slab and overlying mantle wedge.
- Slab fluids
-
Fluid expelled from subducting lithospheric plate into the mantle wedge.
- Ambient mantle
-
Mantle wedge that is not affected by a slab component.
- εHf
-
Deviation of 176Hf/177Hf from the CHondritic Uniform Reservoir (CHUR) ratio, calculated as εHf = [(176Hf/177Hf/0.282785) − 1] × 10,000.
- Mélange diapirs
-
Slab diapirs rising from zones of the intensely sheared and mixed metamorphic sedimentary and igneous rocks at the interface between the subducted slab and the mantle.
- Recharge mixing
-
Mixing of different magma batches incited by the ascent of new primary melt.
Rights and permissions
About this article
Cite this article
Straub, S.M., Gómez-Tuena, A. & Vannucchi, P. Subduction erosion and arc volcanism. Nat Rev Earth Environ 1, 574–589 (2020). https://doi.org/10.1038/s43017-020-0095-1
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s43017-020-0095-1
This article is cited by
-
Deconstructing plate tectonic reconstructions
Nature Reviews Earth & Environment (2023)
-
Growth of continental crust in intra-oceanic and continental-margin arc systems: Analogs for Archean systems
Science China Earth Sciences (2022)
-
Crustal magmatic controls on the formation of porphyry copper deposits
Nature Reviews Earth & Environment (2021)
-
Hadal aragonite records venting of stagnant paleoseawater in the hydrated forearc mantle
Communications Earth & Environment (2021)
-
Recognition of trench basins in collisional orogens: Insights from the Yarlung Zangbo suture zone in southern Tibet
Science China Earth Sciences (2020)