Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Environmental impacts and decarbonization strategies in the cement and concrete industries


The use of cement and concrete, among the most widely used man-made materials, is under scrutiny. Owing to their large-scale use, production of cement and concrete results in substantial emission of greenhouse gases and places strain on the availability of natural resources, such as water. Projected urbanization over the next 50–100 years therefore indicates that the demand for cement and concrete will continue to increase, necessitating strategies to limit their environmental impact. In this Review, we shed light on the available solutions that can be implemented within the next decade and beyond to reduce greenhouse gas emissions from cement and concrete production. As the construction sector has proven to be very slow-moving and risk-averse, we focus on minor improvements that can be achieved across the value chain, such as the use of supplementary cementitious materials and optimizing the clinker content of cement. Critically, the combined effect of these marginal gains can have an important impact on reducing greenhouse gas emissions by up to 50% if all stakeholders are engaged. In doing so, we reveal credible pathways for sustainable concrete use that balance societal needs, environmental requirements and technical feasibility.

Key points

  • Large-scale replacement of cement by other materials is not possible within the next decade.

  • The environmental impact of cement and concrete production is low per unit volume of material, but the amounts used make the impact of the concrete sector highly important.

  • Reductions in CO2 emissions are possible through the introduction of improvements across the cement and concrete value chain.

  • By engaging all stakeholders in the construction sector, immediate greenhouse gas savings on the order of 50% could be reached without heavy investment in new industrial infrastructure or modification of existing standards.

  • Research and development are urgently needed to allow post-2050 construction to meet future emissions-reduction targets.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The contribution of cement and concrete production to global warming.
Fig. 2: The cement value chain.
Fig. 3: Carbonation profile through concrete.


  1. 1.

    Slaton, A. E. Reinforced Concrete and the Modernization of American Building, 1900–1930 (John Hopkins Univ. Press, 2001).

  2. 2.

    Krausmann, F., Lauk, C., Haas, W. & Wiedenhofer, D. From resource extraction to outflows of wastes and emissions: The socioeconomic metabolism of the global economy, 1900–2015. Glob. Environ. Chang. 52, 131–140 (2018).

    Google Scholar 

  3. 3.

    Monteiro, P. J. M., Miller, S. A. & Horvath, A. Towards sustainable concrete. Nat. Mater. 16, 698–699 (2017).

    Google Scholar 

  4. 4.

    Bajželj, B., Allwood, J. M. & Cullen, J. M. Designing climate change mitigation plans that add up. Environ. Sci. Technol. 47, 8062–8069 (2013).

    Google Scholar 

  5. 5.

    Cullen, J. M., Allwood, J. M. & Bambach, M. D. Mapping the global flow of steel: from steelmaking to end-use goods. Environ. Sci. Technol. 46, 13048–13055 (2012).

    Google Scholar 

  6. 6.

    Cullen, J. M. & Allwood, J. M. Mapping the global flow of aluminum: from liquid aluminum to end-use goods. Environ. Sci. Technol. 47, 3057–3064 (2013).

    Google Scholar 

  7. 7.

    Nath, A. J., Lal, R. & Das, A. K. Fired bricks: CO2 emission and food insecurity. Glob. Chall. 2, 1700115 (2018).

    Google Scholar 

  8. 8.

    Barcelo, L., Kline, J., Walenta, G. & Gartner, E. Cement and carbon emissions. Mater. Struct. 47, 1055–1065 (2014).

    Google Scholar 

  9. 9.

    Scrivener, K. L., John, V. M. & Gartner, E. M. Eco-efficient cements: potential economically viable solutions for a low-CO2 cement-based materials industry. Cem. Concr. Res. 114, 2–26 (2018).

    Google Scholar 

  10. 10.

    Waters, C. N. et al. The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science 351, aad2622 (2016).

    Google Scholar 

  11. 11.

    Francis, A. J. The Cement Industry 1796–1914: a History (David and Charles, 1977).

  12. 12.

    Swilling, M. et al. The Weight of Cities: Resource Requirements of Future Urbanization (UN Environment — International Resource Panel, 2018).

  13. 13.

    United Nations, Department of Economic and Social Affairs, Population Division. World urbanization prospects: 2018: Highlights. United Nations (2019).

  14. 14.

    Röck, M. et al. Embodied GHG emissions of buildings – the hidden challenge for effective climate change mitigation. Appl. Energy 258, 114107 (2020).

    Google Scholar 

  15. 15.

    Hoxha, E., Habert, G., Lasvaux, S., Chevalier, J. & Le Roy, R. Influence of construction material uncertainties on residential building LCA reliability. J. Clean. Prod. 144, 33–47 (2017).

    Google Scholar 

  16. 16.

    Huntzinger, D. N. & Eatmon, T. D. A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies. J. Clean. Prod. 17, 668–675 (2009).

    Google Scholar 

  17. 17.

    Penrose, B. Occupational exposure to cement dust: changing opinions of a respiratory hazard. Health History 16, 25–44 (2014).

    Google Scholar 

  18. 18.

    Van den Heede, P. & De Belie, N. Environmental impact and life cycle assessment (LCA) of traditional and ‘green’ concretes: literature review and theoretical calculations. Cem. Concr. Compos. 34, 431–442 (2012).

    Google Scholar 

  19. 19.

    Habert, G., Bouzidi, Y., Chen, C. & Jullien, A. Development of a depletion indicator for natural resources used in concrete. Resour. Conserv. Recycl. 54, 364–376 (2010).

    Google Scholar 

  20. 20.

    Miller, S. A., Horvath, A. & Monteiro, P. J. M. Impacts of booming concrete production on water resources worldwide. Nat. Sustain. 1, 69–76 (2018).

    Google Scholar 

  21. 21.

    Davis, S. J. et al. Net-zero emissions energy systems. Science 360, eaas9793 (2018).

    Google Scholar 

  22. 22.

    Miller, S. A. & Moore, F. C. Climate and health damages from global concrete production. Nat. Clim. Chang. 10, 439–443 (2020).

    Google Scholar 

  23. 23.

    Habert, G. in Eco-Efficient Concrete (eds. Pacheco-Torgal, F., Jalali, S., Labrincha, J. & John, V. M.) 3–25 (Woodhead Publishing, 2013).

  24. 24.

    Sogut, M. Z., Oktay, Z. & Hepbasli, A. Energetic and exergetic assessment of a trass mill process in a cement plant. Energy Convers. Manag. 50, 2316–2323 (2009).

    Google Scholar 

  25. 25.

    Madlool, N. A., Saidur, R., Hossain, M. S. & Rahim, N. A. A critical review on energy use and savings in the cement industries. Renew. Sustain. Energy Rev. 15, 2042–2060 (2011).

    Google Scholar 

  26. 26.

    Shindell, D., Faluvegi, G., Seltzer, K. & Shindell, C. Quantified, localized health benefits of accelerated carbon dioxide emissions reductions. Nat. Clim. Chang. 8, 291–295 (2018).

    Google Scholar 

  27. 27.

    Regional Activity Centre for Cleaner Production (CP/RAC) Manual of Pollution Prevention in the Cement Industry (CP/RAC, 2008).

  28. 28.

    United States Environmental Protection Agency (USEPA) Emission Factor Documentation for AP-42, Section 11.6: Portland Cement Manufacturing (USEPA, 1994).

  29. 29.

    Nkhama, E. et al. Effects of airborne particulate matter on respiratory health in a community near a cement factory in Chilanga, Zambia: results from a panel study. Int. J. Environ. Res. Public Health 14, 1351 (2017).

    Google Scholar 

  30. 30.

    Miller, S. A., Horvath, A. & Monteiro, P. J. M. Readily implementable techniques can cut annual CO2 emissions from the production of concrete by over 20%. Environ. Res. Lett. 11, 074029 (2016).

    Google Scholar 

  31. 31.

    Chevallier, R. Illegal sand mining in South Africa. SAIIA Policy Briefing No. 116 SAIIA (2014).

  32. 32.

    Heard, R., Hendrickson, C. & McMichael, F. C. Sustainable development and physical infrastructure materials. MRS Bull. 37, 389–394 (2012).

    Google Scholar 

  33. 33.

    Van Oers, L. & Guinée, J. The abiotic depletion potential: background, updates, and future. Resources 5, 16 (2016).

    Google Scholar 

  34. 34.

    Langer, W. H. Geologic and societal factors affecting the international oceanic transport of aggregate. Nonrenewable Resour. 4, 303–309 (1995).

    Google Scholar 

  35. 35.

    Kecojevic, V., Nelson, T. & Schissler, A. An analysis of aggregates production in the United States: historical data and issues facing the industry. Miner. Energy - Raw Mater. Rep. 19, 25–33 (2004).

    Google Scholar 

  36. 36.

    Torres, A., Brandt, J., Lear, K. & Liu, J. A looming tragedy of the sand commons. Science 357, 970–971 (2017).

    Google Scholar 

  37. 37.

    Shaji, J. & Anilkuar, R. Socio-environmental impact of river sand mining: an example from Neyyar River, Thiruvananthapuram District of Kerala, India. J. Humanit. Soc. Sci. 19, 1–7 (2014).

    Google Scholar 

  38. 38.

    Tejpal, M., Jaglan, M. S., Chaudhary, K. & Haryana, B. S. Geo-enyironmental consequences of river sand and stone mining: A case study of narnaul block. Trans. Inst. Indian Geogr. 36, 217–234 (2014).

    Google Scholar 

  39. 39.

    Macedo, A. B., de Almeida Mello Freire, D. J. & Akimoto, H. Environmental management in the Brazilian non-metallic small-scale mining sector. J. Clean. Prod. 11, 197–206 (2003).

    Google Scholar 

  40. 40.

    Bringezu, S. et al. Assessing Global Resource Use: a Systems Approach to Resource Efficiency and Pollution Reduction (UNESCO, 2017).

  41. 41.

    Schuurmans, A. et al. LCA of finer sand in concrete (5 pp). Int. J. Life Cycle Assess. 10, 131–135 (2005).

    Google Scholar 

  42. 42.

    Ioannidou, D., Nikias, V., Brière, R., Zerbi, S. & Habert, G. Land-cover-based indicator to assess the accessibility of resources used in the construction sector. Resour. Conserv. Recycl. 94, 80–91 (2015).

    Google Scholar 

  43. 43.

    Ioannidou, D., Meylan, G., Sonnemann, G. & Habert, G. Is gravel becoming scarce? Evaluating the local criticality of construction aggregates. Resour. Conserv. Recycl. 126, 25–33 (2017).

    Google Scholar 

  44. 44.

    Knoeri, C., Binder, C. R. & Althaus, H.-J. Decisions on recycling: construction stakeholders’ decisions regarding recycled mineral construction materials. Resour. Conserv. Recycl. 55, 1039–1050 (2011).

    Google Scholar 

  45. 45.

    Magnusson, S., Lundberg, K., Svedberg, B. & Knutsson, S. Sustainable management of excavated soil and rock in urban areas – A literature review. J. Clean. Prod. 93, 18–25 (2015).

    Google Scholar 

  46. 46.

    Kataguiri, K., Boscov, M. E. G., Teixeira, C. E. & Angulo, S. C. Characterization flowchart for assessing the potential reuse of excavation soils in Sao Paulo city. J. Clean. Prod. 240, 118215 (2019).

    Google Scholar 

  47. 47.

    Ouellet-Plamondon, C. M. & Habert, G. Self-compacted clay based concrete (SCCC): proof-of-concept. J. Clean. Prod. 117, 160–168 (2016).

    Google Scholar 

  48. 48.

    Hu, M., Van Der Voet, E. & Huppes, G. Dynamic material flow analysis for strategic construction and demolition waste management in Beijing. J. Ind. Ecol. 14, 440–456 (2010).

    Google Scholar 

  49. 49.

    Wang, H., Yue, Q., Lu, Z., Schuetz, H. & Bringezu, S. Total material requirement of growing China: 1995–2008. Resources 2, 270–285 (2013).

    Google Scholar 

  50. 50.

    Concrete Sustainability Council (CSC). CSC-certification for concrete and its supply chain. Annual report 2017/2018. CSC (2019).

  51. 51.

    Miller, S. A., John, V. M., Pacca, S. A. & Horvath, A. Carbon dioxide reduction potential in the global cement industry by 2050. Cem. Concr. Res. 114, 115–124 (2018).

    Google Scholar 

  52. 52.

    Josa, A., Aguado, A., Cardim, A. & Byars, E. Comparative analysis of the life cycle impact assessment of available cement inventories in the EU. Cem. Concr. Res. 37, 781–788 (2007).

    Google Scholar 

  53. 53.

    Gartner, E. Industrially interesting approaches to “low-CO2” cements. Cem. Concr. Res. 34, 1489–1498 (2004).

    Google Scholar 

  54. 54.

    Damtoft, J. S., Lukasik, J., Herfort, D., Sorrentino, D. & Gartner, E. M. Sustainable development and climate change initiatives. Cem. Concr. Res. 38, 115–127 (2008).

    Google Scholar 

  55. 55.

    International Energy Agency (IEA) Cement Sustainability Initiative (CSI) Technology Roadmap - Low-Carbon Transition in the Cement Industry (2018).

  56. 56.

    Chen, C., Habert, G., Bouzidi, Y. & Jullien, A. Environmental impact of cement production: detail of the different processes and cement plant variability evaluation. J. Clean. Prod. 18, 478–485 (2010).

    Google Scholar 

  57. 57.

    Vollset, S. E. et al. Fertility, mortality, migration, and population scenarios for 195 countries and territories from 2017 to 2100: a forecasting analysis for the Global Burden of disease study. Lancet (2020).

    Article  Google Scholar 

  58. 58.

    Szabó, L., Hidalgo, I., Císcar, J. C., Soria, A. & Russ, P. Energy Consumption and CO2 Emissions from the World Cement Industry (European Commission, 2003).

  59. 59.

    Cement Sustainability Initiative (CSI)/European Cement Research Academy (ECRA) CSI/ECRA-Technology Papers 2017 Development of State of the Art Techniques in Cement Manufacturing: Trying to Look Ahead (CSI/ECRA, 2017).

  60. 60.

    Schneider, M. Process technology for efficient and sustainable cement production. Cem. Concr. Res. 78, 14–23 (2015).

    Google Scholar 

  61. 61.

    Habert, G., Billard, C., Rossi, P., Chen, C. & Roussel, N. Cement production technology improvement compared to factor 4 objectives. Cem. Concr. Res. 40, 820–826 (2010).

    Google Scholar 

  62. 62.

    The European Cement Association (CEMBUREAU). Cement Industry Contributes to Waste Management. Key Facts (CEMBUREAU, 2005).

  63. 63.

    The European Cement Association (CEMBUREAU). The Role of Cement in the 2050 Low Carbon Economy 1–64 (CEMBUREAU, 2013).

  64. 64.

    Shima, H., Tateyashiki, H., Matsuhashi, R. & Yoshida, Y. An advanced concrete recycling technology and its applicability assessment through input-output analysis. J. Adv. Concr. Technol. 3, 53–67 (2005).

    Google Scholar 

  65. 65.

    Global Cement and Concrete Association (GCCA) Getting the numbers right. GCCA (2018).

  66. 66.

    Cancio Díaz, Y. et al. Limestone calcined clay cement as a low-carbon solution to meet expanding cement demand in emerging economies. Dev. Eng. 2, 82–91 (2017).

    Google Scholar 

  67. 67.

    Lothenbach, B., Le Saout, G., Gallucci, E. & Scrivener, K. Influence of limestone on the hydration of Portland cements. Cem. Concr. Res. 38, 848–860 (2008).

    Google Scholar 

  68. 68.

    Snellings, R. Assessing, understanding and unlocking supplementary cementitious materials. RILEM Tech. Lett. 1, 50–55 (2016).

    Google Scholar 

  69. 69.

    Chen, C., Habert, G., Bouzidi, Y., Jullien, A. & Ventura, A. LCA allocation procedure used as an incitative method for waste recycling: an application to mineral additions in concrete. Resour. Conserv. Recycl. 54, 1231–1240 (2010).

    Google Scholar 

  70. 70.

    Alujas, A., Fernández, R., Quintana, R., Scrivener, K. L. & Martirena, F. Pozzolanic reactivity of low grade kaolinitic clays: Influence of calcination temperature and impact of calcination products on OPC hydration. Appl. Clay Sci. 108, 94–101 (2015).

    Google Scholar 

  71. 71.

    Habert, G., Choupay, N., Escadeillas, G., Guillaume, D. & Montel, J. M. Clay content of argillites: Influence on cement based mortars. Appl. Clay Sci. 43, 322–330 (2009).

    Google Scholar 

  72. 72.

    Sánchez Berriel, S. et al. Assessing the environmental and economic potential of limestone calcined clay cement in Cuba. J. Clean. Prod. 124, 361–369 (2015).

    Google Scholar 

  73. 73.

    Antoni, M., Rossen, J., Martirena, F. & Scrivener, K. Cement substitution by a combination of metakaolin and limestone. Cem. Concr. Res. 42, 1579–1589 (2012).

    Google Scholar 

  74. 74.

    Damineli, B. L., Kemeid, F. M., Aguiar, P. S. & John, V. M. Measuring the eco-efficiency of cement use. Cem. Concr. Compos. 32, 555–562 (2010).

    Google Scholar 

  75. 75.

    Shanks, W. et al. How much cement can we do without? Lessons from cement material flows in the UK. Resour. Conserv. Recycl. 141, 441–454 (2019).

    Google Scholar 

  76. 76.

    Miller, S. A., Monteiro, P. J. M. M., Ostertag, C. P. & Horvath, A. Comparison indices for design and proportioning of concrete mixtures taking environmental impacts into account. Cem. Concr. Compos. 68, 131–143 (2016).

    Google Scholar 

  77. 77.

    Cazacliu, B. & Ventura, A. Technical and environmental effects of concrete production: dry batch versus central mixed plant. J. Clean. Prod. 18, 1320–1327 (2010).

    Google Scholar 

  78. 78.

    Wassermann, R., Katz, A. & Bentur, A. Minimum cement content requirements: a must or a myth? Mater. Struct. 42, 973–982 (2009).

    Google Scholar 

  79. 79.

    Choplin, A. Cementing Africa: cement flows and city-making along the West African corridor (Accra, Lomé, Cotonou, Lagos). Urban Stud. 57, 1977–1993 (2020).

    Google Scholar 

  80. 80.

    John, V. M., Quattrone, M., Abrão, P. C. R. A. & Cardoso, F. A. Rethinking cement standards: opportunities for a better future. Cem. Concr. Res. 124, 105832 (2019).

    Google Scholar 

  81. 81.

    Oliveira, L. S., Pacca, S. A. & John, V. M. Variability in the life cycle of concrete block CO2 emissions and cumulative energy demand in the Brazilian Market. Constr. Build. Mater. 114, 588–594 (2016).

    Google Scholar 

  82. 82.

    Proske, T., Hainer, S., Rezvani, M. & Graubner, C.-A. Eco-friendly concretes with reduced water and cement contents — mix design principles and laboratory tests. Cem. Concr. Res. 51, 38–46 (2013).

    Google Scholar 

  83. 83.

    John, V. M., Damineli, B. L., Quattrone, M. & Pileggi, R. G. Fillers in cementitious materials — Experience, recent advances and future potential. Cem. Concr. Res. 114, 65–78 (2018).

    Google Scholar 

  84. 84.

    European Committee for Standardization (CEN) EN 197-1. Cement - Part 1: Composition, specifications and conformity criteria for common cements (CEN, 2018).

  85. 85.

    Formoso, C. T., Soibelman, L., De Cesare, C. & Isatto, E. L. Material waste in building industry: main causes and prevention. J. Constr. Eng. Manag. 128, 316–325 (2002).

    Google Scholar 

  86. 86.

    de Brito Prado Vieira, L., de Figueiredo, A. D., Moriggi, T. & John, V. M. Waste generation from the production of ready-mixed concrete. Waste Manag. 94, 146–152 (2019).

    Google Scholar 

  87. 87.

    Berodier, E., Aron, L., Princeton, J. & Bartolini, I. in Proceedings of the International Conference of Sustainable Production and Use of Cement and Concrete (eds. Martirena-Hernandez, J., Alujas-Díaz, A. & Amador-Hernandez, M.) (Springer, 2020).

  88. 88.

    Kourehpaz, P. & Miller, S. A. Eco-efficient design indices for reinforced concrete members. Mater. Struct. 52, 96 (2019).

    Google Scholar 

  89. 89.

    Orr, J. J., Darby, A. P., Ibell, T. J., Evernden, M. C. & Otlet, M. Concrete structures using fabric formwork. Struct. Eng. 89, 20–26 (2011).

    Google Scholar 

  90. 90.

    Guiraud, P., Habert, G. & Semat, A. in fib Symposium 2012: Concrete Structures for Sustainable Community - Proceedings 337–340 (FIB International, 2012).

  91. 91.

    Habert, G. et al. Reducing environmental impact by increasing the strength of concrete: quantification of the improvement to concrete bridges. J. Clean. Prod. 35, 250–262 (2012).

    Google Scholar 

  92. 92.

    Miller, S. A. The role of cement service-life on the efficient use of resources. Environ. Res. Lett. 15, 024004 (2020).

    Google Scholar 

  93. 93.

    Hajiesmaeili, A., Pittau, F., Denarié, E., Habert, G. Life cycle analysis of strengthening existing RC structures with R-PE-UHPFRC. Sustainability 11, 6923 (2019)

    Google Scholar 

  94. 94.

    Shanks, W. et al. How much cement can we do without? Lessons from cement material flows in the UK. Resour. Conserv. Recycl. 141, 441–454 (2019).

    Google Scholar 

  95. 95.

    Dubois, A. & Gadde, L. E. The construction industry as a loosely coupled system: implications for productivity and innovation. Constr. Manag. Econ. 20, 621–631 (2002).

    Google Scholar 

  96. 96.

    Dainty, A. R. J. & Brooke, R. J. Towards improved construction waste minimisation: a need for improved supply chain integration? Struct. Surv. 22, 20–29 (2004).

    Google Scholar 

  97. 97.

    Seaden, G. & Manseau, A. Public policy and construction innovation. Build. Res. Inf. 29, 182–196 (2001).

    Google Scholar 

  98. 98.

    Papadonikolaki, E. & Wamelink, H. Inter- and intra-organizational conditions for supply chain integration with BIM. Build. Res. Inf. 45, 649–664 (2017).

    Google Scholar 

  99. 99.

    Shi, C., Qu, B. & Provis, J. L. Recent progress in low-carbon binders. Cem. Concr. Res. 122, 227–250 (2019).

    Google Scholar 

  100. 100.

    Juenger, M. C. G., Winnefeld, F., Provis, J. L. & Ideker, J. H. Advances in alternative cementitious binders. Cem. Concr. Res. 41, 1232–1243 (2011).

    Google Scholar 

  101. 101.

    Lord, M. Zero carbon industry plan. Rethinking cement. Beyond Zero Emissions (2017).

  102. 102.

    Habert, G., d’Espinose de Lacaillerie, J. B. & Roussel, N. An environmental evaluation of geopolymer based concrete production: reviewing current research trends. J. Clean. Prod. 19, 1229–1238 (2011).

    Google Scholar 

  103. 103.

    Miller, S. A. & Myers, R. J. Environmental impacts of alternative cement binders. Environ. Sci. Technol. 54, 677–686 (2019).

    Google Scholar 

  104. 104.

    Gartner, E. & Sui, T. Alternative cement clinkers. Cem. Concr. Res. 114, 27–39 (2018).

    Google Scholar 

  105. 105.

    Provis, J. L. Alkali-activated materials. Cem. Concr. Res. 114, 40–48 (2018).

    Google Scholar 

  106. 106.

    Ben Haha, M., Winnefeld, F. & Pisch, A. Advances in understanding ye’elimite-rich cements. Cem. Concr. Res. 123, 105778 (2019).

    Google Scholar 

  107. 107.

    Kelly, T. D. & Matos, G. R. Historical Statistics for Mineral and Material Commodities in the United States (United States Geological Survey, 2014).

  108. 108.

    Duxson, P. et al. Geopolymer technology: the current state of the art. J. Mater. Sci. 42, 2917–2933 (2007).

    Google Scholar 

  109. 109.

    Duxson, P., Provis, J., Lukey, G. & Vandeventer, J. The role of inorganic polymer technology in the development of ‘green concrete’. Cem. Concr. Res. 37, 1590–1597 (2007).

    Google Scholar 

  110. 110.

    Gourley, J. T. Geopolymers in Australia. J. Aust. Ceram. Soc. 50, 102–110 (2014).

    Google Scholar 

  111. 111.

    United States Geological Survey. Mineral Commodity Summaries 2019 (United States Geological Survey, 2019).

  112. 112.

    Bernal, S. A. Advances in near-neutral salts activation of blast furnace slags. RILEM Tech. Lett. 1, 39–44 (2016).

    Google Scholar 

  113. 113.

    Bernal, S. A., Rodríguez, E. D., Kirchheim, A. P. & Provis, J. L. Management and valorisation of wastes through use in producing alkali-activated cement materials. J. Chem. Technol. Biotechnol. 91, 2365–2388 (2016).

    Google Scholar 

  114. 114.

    Walling, S. A. & Provis, J. L. Magnesia-based cements: a journey of 150 years, and cements for the future? Chem. Rev. 116, 4170–4204 (2016).

    Google Scholar 

  115. 115.

    Dewald, U. & Achternbosch, M. Why more sustainable cements failed so far? Disruptive innovations and their barriers in a basic industry. Environ. Innov. Soc. Transit. 19, 15–30 (2016).

    Google Scholar 

  116. 116.

    Favier, A., De Wolf, C., Scrivener, K. & Habert, G. A sustainable future for the European Cement and Concrete Industry: Technology assessment for full decarbonisation of the industry by 2050. ETH Zürich (2018).

  117. 117.

    Zevenhoven, R. & Kohlmann, J. in Proceedings of the Second Nordic Minisymposium on Carbon Dioxide Capture and Storage 13–18 (Center for Environment and Sustainability, Chalmers, 2001).

  118. 118.

    Morrison, J., Jauffret, G., Galvez-Martos, J. L. & Glasser, F. P. Magnesium-based cements for CO2 capture and utilisation. Cem. Concr. Res. 85, 183–191 (2016).

    Google Scholar 

  119. 119.

    Atakan, V., Sahu, S., Quinn, S., Hu, X. & De Cristofaro, N. Why CO2 matters - advances in a new class of cement. ZKG Int. 67, 60–63 (2014).

    Google Scholar 

  120. 120.

    Meyer, V., de Cristofaro, N., Bryant, J. & Sahu, S. Solidia cement an example of carbon capture and utilization. Key Eng. Mater. 761, 197–203 (2018).

    Google Scholar 

  121. 121.

    Lehtinen, M. J. in Mineral Deposits of Finland (eds. Maier, W. D., Lahtinen, R. & O’Brien, H.) 685–710 (Elsevier, 2015).

  122. 122.

    Morandeau, A., Thiéry, M. & Dangla, P. Investigation of the carbonation mechanism of CH and C-S-H in terms of kinetics, microstructure changes and moisture properties. Cem. Concr. Res. 56, 153–170 (2014).

    Google Scholar 

  123. 123.

    Stefanoni, M., Angst, U. & Elsener, B. Corrosion rate of carbon steel in carbonated concrete – A critical review. Cem. Concr. Res. 103, 35–48 (2018).

    Google Scholar 

  124. 124.

    Bertolini, L., Elsener, B., Pedeferri, P., Redaelli, E. & Polder, R. B. Corrosion of Steel in Concrete: Prevention, Diagnosis, Repair 2nd edn (Wiley, 2014).

  125. 125.

    Xi, F. et al. Substantial global carbon uptake by cement carbonation. Nat. Geosci. 9, 880–883 (2016).

    Google Scholar 

  126. 126.

    Thiery, M., Villain, G., Dangla, P. & Platret, G. Investigation of the carbonation front shape on cementitious materials: effects of the chemical kinetics. Cem. Concr. Res. 37, 1047–1058 (2007).

    Google Scholar 

  127. 127.

    Thiery, M., Dangla, P., Belin, P., Habert, G. & Roussel, N. Carbonation kinetics of a bed of recycled concrete aggregates: a laboratory study on model materials. Cem. Concr. Res. 46, 50–65 (2013).

    Google Scholar 

  128. 128.

    Andersson, R., Fridh, K., Stripple, H. & Häglund, M. Calculating CO2 uptake for existing concrete structures during and after service life. Environ. Sci. Technol. 47, 11625–11633 (2013).

    Google Scholar 

  129. 129.

    Cao, Z. et al. The sponge effect and carbon emission mitigation potentials of the global cement cycle. Nat. Commun. 11, 3777 (2020).

    Google Scholar 

  130. 130.

    Renforth, P. The negative emission potential of alkaline materials. Nat. Commun. 10, 1401 (2019).

    Google Scholar 

  131. 131.

    Sanjuán, M. Á., Andrade, C., Mora, P. & Zaragoza, A. Carbon dioxide uptake by mortars and concretes made with Portuguese cements. Appl. Sci. 10, 646 (2020).

    Google Scholar 

  132. 132.

    European Committee for Standardization (CEN) PD CEN/TR 17310:2019. Carbonation and CO2 uptake in concrete (CEN, 2019).

  133. 133.

    Engelsen, C., Mehus, J., Pade, C. & Sæther, D. Carbon Dioxide Uptake in Demolished and Crushed Concrete (Norwegian Building Research Institute, 2005).

  134. 134.

    Suer, P., Lindqvist, J.-E., Arm, M. & Frogner-Kockum, P. Reproducing ten years of road ageing — accelerated carbonation and leaching of EAF steel slag. Sci. Total. Environ. 407, 5110–5118 (2009).

    Google Scholar 

  135. 135.

    Zhan, B. J., Xuan, D. X. & Poon, C. S. Enhancement of recycled aggregate properties by accelerated CO2 curing coupled with limewater soaking process. Cem. Concr. Compos. 89, 230–237 (2018).

    Google Scholar 

  136. 136.

    Stefanoni, M., Angst, U. M. & Elsener, B. Kinetics of electrochemical dissolution of metals in porous media. Nat. Mater. 18, 942–947 (2019).

    Google Scholar 

  137. 137.

    Soja, W., Maraghechi, H., Georget, F. & Scrivener, K. Changes of microstructure and diffusivity in blended cement pastes exposed to natural carbonation. MATEC Web Conf. 199, 02009 (2018).

    Google Scholar 

  138. 138.

    Borges, P. H. R., Costa, J. O., Milestone, N. B., Lynsdale, C. J. & Streatfield, R. E. Carbonation of CH and C–S–H in composite cement pastes containing high amounts of BFS. Cem. Concr. Res. 40, 284–292 (2010).

    Google Scholar 

  139. 139.

    Soja, W. Carbonation of Low Carbon Binders (EPFL, 2019).

  140. 140.

    Roussel, N. Rheological requirements for printable concretes. Cem. Concr. Res. 112, 76–85 (2018).

    Google Scholar 

  141. 141.

    Perrot, A. 3D Printing of Concrete (Wiley, 2019).

  142. 142.

    Voldsund, M. et al. Comparison of technologies for CO2 capture from cement production — part 1: technical evaluation. Energies 12, 559 (2019).

    Google Scholar 

  143. 143.

    Sutter, D., Werner, M., Zappone, A. & Mazzotti, M. Developing CCS into a realistic option in a country’s energy strategy. Energy Procedia 37, 6562–6570 (2013).

    Google Scholar 

  144. 144.

    Rootzén, J. & Johnsson, F. Managing the costs of CO2 abatement in the cement industry. Clim. Policy 17, 781–800 (2017).

    Google Scholar 

  145. 145.

    Havercroft, I., Macrory, R. B. & Stewart, R. B. Carbon Capture and Storage. Emerging Legal and Regulatory Issues (Hart Publishing, 2011).

  146. 146.

    Intergovernmental Panel on Climate Change (IPCC) Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty (IPCC, 2018).

  147. 147.

    Van Vuuren, D. P. et al. the need for negative emission technologies. Nat. Clim. Chang. 8, 391–396 (2018).

    Google Scholar 

  148. 148.

    von Bahr, B. et al. Experiences of environmental performance evaluation in the cement industry. Data quality of environmental performance indicators as a limiting factor for benchmarking and rating. J. Clean. Prod. 11, 713–725 (2003).

    Google Scholar 

  149. 149.

    Purnell, P. Material nature versus structural nurture: the embodied carbon of fundamental structural elements. Environ. Sci. Technol. 46, 454–461 (2012).

    Google Scholar 

  150. 150.

    Cemex. Low carbon concrete: if CO2 reduction started from the initial planning phase [French]. (2018).

  151. 151.

    Orr, J. et al. Minimising energy in construction: practitioners’ views on material efficiency. Resour. Conserv. Recycl. 140, 125–136 (2019).

    Google Scholar 

  152. 152.

    De Wolf, C., Pomponi, F. & Moncaster, A. Measuring embodied carbon dioxide equivalent of buildings: a review and critique of current industry practice. Energy Build. 140, 68–80 (2017).

    Google Scholar 

  153. 153.

    Hollberg, A., Lützkendorf, T. & Habert, G. Top-down or bottom-up? – How environmental benchmarks can support the design process. Build. Environ. 153, 148–157 (2019).

    Google Scholar 

  154. 154.

    Steininger, K. W., Meyer, L., Nabernegg, S. & Kirchengast, G. Sectoral carbon budgets as an evaluation framework for the built environment. Build. Cities 1, 337–360 (2020).

    Google Scholar 

  155. 155.

    Habert, G. et al. Carbon budgets for buildings: harmonising temporal, spatial and sectoral dimensions. Build. Cities 1, 429–452 (2020).

    Google Scholar 

  156. 156.

    Müller, C. Use of cement in concrete according to European standard EN 206-1. HBRC J. 8, 1–7 (2012).

    Google Scholar 

  157. 157.

    Passer, A., Deutsch, R. & Scherz, M. in BAU Congress 2018 250–262 (Bautechnik, 2018).

  158. 158.

    Häfliger, I.-F. et al. Buildings environmental impacts’ sensitivity related to LCA modelling choices of construction materials. J. Clean. Prod. 156, 805–816 (2017).

    Google Scholar 

  159. 159.

    Flower, D. J. M. & Sanjayan, J. G. Green house gas emissions due to concrete manufacture. Int. J. Life Cycle Assess. 12, 282–288 (2007).

    Google Scholar 

  160. 160.

    Koordinationskonferenz der Bau- und Liegenschaftsorgane der öffentlichen Bauherren (KBOB). Ökobilanzdaten im Baubereich 2009/1:2016. KBOB (2016).

  161. 161.

    Zou, L. et al. Spatial variation of PCDD/F and PCB emissions and their composition profiles in stack flue gas from the typical cement plants in China. Chemosphere 195, 491–497 (2018).

    Google Scholar 

  162. 162.

    Schuhmacher, M., Nadal, M. & Domingo, J. L. Environmental monitoring of PCDD/Fs and metals in the vicinity of a cement plant after using sewage sludge as a secondary fuel. Chemosphere 74, 1502–1508 (2009).

    Google Scholar 

  163. 163.

    Zemba, S. et al. Emissions of metals and polychlorinated dibenzo(p)dioxins and furans (PCDD/Fs) from Portland cement manufacturing plants: Inter-kiln variability and dependence on fuel-types. Sci. Total. Environ. 409, 4198–4205 (2011).

    Google Scholar 

  164. 164.

    Gupta, R. K., Majumdar, D., Trivedi, J. V. & Bhanarkar, A. D. Particulate matter and elemental emissions from a cement kiln. Fuel Process. Technol. 104, 343–351 (2012).

    Google Scholar 

  165. 165.

    Ogunbileje, J. O. et al. Lead, mercury, cadmium, chromium, nickel, copper, zinc, calcium, iron, manganese and chromium (VI) levels in Nigeria and United States of America cement dust. Chemosphere 90, 2743–2749 (2013).

    Google Scholar 

  166. 166.

    Marceau, M. L. L., Nisbet, M. A. A. & VanGeem, M. G. G. Life Cycle Inventory of Portland Cement Manufacture (Portland Cement Association, 2006).

  167. 167.

    Conesa, J. A., Gálvez, A., Mateos, F., Martín-Gullón, I. & Font, R. Organic and inorganic pollutants from cement kiln stack feeding alternative fuels. J. Hazard. Mater. 158, 585–592 (2008).

    Google Scholar 

  168. 168.

    Lv, D. et al. Effects of co-processing sewage sludge in cement kiln on NOx, NH3 and PAHs emissions. Chemosphere 159, 595–601 (2016).

    Google Scholar 

  169. 169.

    Li, X., Poon, C., Sun, H., Lo, I. M. & Kirk, D. Heavy metal speciation and leaching behaviors in cement based solidified/stabilized waste materials. J. Hazard. Mater. 82, 215–230 (2001).

    Google Scholar 

  170. 170.

    Hillier, S. R., Sangha, C. M., Plunkett, B. A. & Walden, P. J. Long-term leaching of toxic trace metals from Portland cement concrete. Cem. Concr. Res. 29, 515–521 (1999).

    Google Scholar 

  171. 171.

    Joseph, A., Snellings, R., Van den Heede, P., Matthys, S. & De Belie, N. The use of municipal solid waste incineration ash in various building materials: a Belgian point of view. Materials 11, 141 (2018).

    Google Scholar 

  172. 172.

    Van Gerven, T. et al. Carbonation of MSWI-bottom ash to decrease heavy metal leaching, in view of recycling. Waste Manag. 25, 291–300 (2005).

    Google Scholar 

  173. 173.

    Gartner, E. & Hirao, H. A review of alternative approaches to the reduction of CO2 emissions associated with the manufacture of the binder phase in concrete. Cem. Concr. Res. 78, 126–142 (2015).

    Google Scholar 

  174. 174.

    Mack-Vergara, Y. L. & John, V. M. Life cycle water inventory in concrete production — a review. Resour. Conserv. Recycl. 122, 227–250 (2017).

    Google Scholar 

  175. 175.

    Meldrum, J., Nettles-Anderson, S., Heath, G. & Macknick, J. Life cycle water use for electricity generation: a review and harmonization of literature estimates. Environ. Res. Lett. 8, 015031 (2013).

    Google Scholar 

  176. 176.

    Cabernard, L., Pfister, S. & Hellweg, S. A new method for analyzing sustainability performance of global supply chains and its application to material resources. Sci. Total. Environ. 684, 164–177 (2019).

    Google Scholar 

Download references


The work of A.F., G.H. and K.L.S. has been supported by the European Climate Foundation for a project on “a sustainable future for the European cement and concrete industry”. The work of V.M.J. is supported by the National Institute on Advanced Eco-Efficient Cement-Based Technologies - CEMtec (FAPESP grant no 2014/50948-3 and CNPq grant no 465593/2014-3).

Author information




All authors contributed to the writing of the article. All authors made a substantial contribution to the discussion of content and reviewing the early version of the article. A.F., S.A.M. and G.H. researched data for the article. G.H., S.A.M., A.H. and J.L.P. reviewed and edited the last version of the manuscript before submission.

Corresponding author

Correspondence to G. Habert.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Earth & Environment thanks J. Gragory, M. Geiker and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.



A mixture of hydraulic cement, fine aggregate and water that hardens; used for coating surfaces, such as ceilings, walls and partitions.

Portland cement

A cement constituted by 90–95% clinker, 2–3% gypsum and minor additives. It is the most common cement type.


The active part of Portland cement. It is a dark-grey, nodular material made by heating ground limestone and clay at a temperature of about 1,400–1,500 °C.

Ready-mix concrete

Concrete manufactured and delivered to a purchaser in a fresh state.

Cement kiln dust

Collected during the firing of raw materials during the clinker manufacturing process. Consists of four major components: unreacted raw feed, partially calcined feed and clinker dust, free lime and enriched salts of alkali sulfates, halides and other volatile compounds.


A granular material, such as sand, gravel or crushed stone, used with a cementing medium to form hydraulic-cement concrete or mortar.


A finely divided mineral product, at least 65 % of which passes the 75-μm sieve.

Supplementary cementitious materials

An inorganic material that contributes to the properties of a cementitious mixture through hydraulic or pozzolanic activity.

Fly ash

Mineral residue of coal combustion composed of the fine particles driven out of coal-fired boilers, together with the fuel gases.

Blast-furnace slag

By-product of iron-making and steel-making, obtained by quenching molten iron slag from a blast furnace in water or steam.

Dead load

Loads that are relatively constant over time, including the weight of the structure itself and immovable fixtures.


Action of tensioning tendons of reinforced structure after the surrounding concrete has been cast. It is applied for prestressed concrete and reduces tensile forces in the structure.

Carbonation depth

Depth within the structure at which the pH is greater than 9.


The subbase is the main load-bearing layer of the pavement, usually composed of unbound aggregates, while the base and the wearing course are asphalt-bound layers positioned above the subbase.


Combustion process, where fuels are burnt in a nearly pure oxygen environment, as opposed to air, resulting in a CO2-separation efficiency theoretically close to 100%.

Exposure class

The exposure condition of a concrete structure, which defines the concrete prescription required to assure the durability of the concrete structure over its life cycle.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Habert, G., Miller, S.A., John, V.M. et al. Environmental impacts and decarbonization strategies in the cement and concrete industries. Nat Rev Earth Environ 1, 559–573 (2020).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing