Vegetation fires in the Anthropocene


Vegetation fires are an essential component of the Earth system but can also cause substantial economic losses, severe air pollution, human mortality and environmental damage. Contemporary fire regimes are increasingly impacted by human activities and climate change, but, owing to the complex fire–human–climate interactions and incomplete historical or long-term datasets, it is difficult to detect and project fire-regime trajectories. In this Review, we describe recent global and regional trends in fire activity and examine projections for fire regimes in the near future. Although there are large uncertainties, it is likely that the economic and environmental impacts of vegetation fires will worsen as a result of anthropogenic climate change. These effects will be particularly prominent in flammable forests in populated temperate zones, the sparsely inhabited flammable boreal zone and fire-sensitive tropical rainforests, and will contribute to greenhouse gas emissions. The impacts of increased fire activity can be mitigated through effective stewardship of fire regimes, which should be achieved through evidence-based fire management that incorporates indigenous and local knowledge, combined with planning and design of natural and urban landscapes. Increasing transdisciplinary research is needed to fully understand how Anthropocene fire regimes are changing and how humans must adapt.

Key points

  • Vegetation fires are an ancient and essential component of the Earth system, and have shaped the evolution of plants, animals and biogeochemical processes. There are discernible global geographic and temporal patterns of fire activity reflecting the interplay of climate, vegetation and ignitions.

  • Anthropogenic influences on fire activity have become more pronounced since the late eighteenth century, reflecting the effects of industrialization and climate change, land clearance, human population growth, replacement of indigenous and traditional fire management, and the subsequent development of large-scale firefighting and fuels management in the twentieth century.

  • The human settlement and infrastructure embedded in flammable vegetation contributes to economically disastrous fires.

  • Large and frequent fires in boreal and tropical forests have the potential to cause terrestrial carbon stores to become major greenhouse gas sources, amplifying climate change.

  • Detecting and predicting changes in fire activity is difficult due to relatively brief fire records, bioregional variability and human involvement. To understand how Anthropocene fire regimes are changing, and how humans must adapt, researchers from biological sciences, physical sciences and humanities and fire-management practitioners must work together.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Vegetation fire in the Earth system.
Fig. 2: Global patterns of fire and vegetation.
Fig. 3: Trends in vegetation-fire activity.
Fig. 4: Relationships and feedbacks between climate, fire and vegetation.
Fig. 5: Conversion of infrequently burned forest to a frequently burned, treeless state.
Fig. 6: Adaptation to Anthropocene fire regimes on fire-prone landscape.


  1. 1.

    Scott, A. C., Bowman, D. M., Bond, W. J., Pyne, S. J. & Alexander, M. E. Fire on Earth: An Introduction (Wiley, 2013).

  2. 2.

    Ward, D. et al. The changing radiative forcing of fires: global model estimates for past, present and future. Atmos. Chem. Phys. 12, 10857–10886 (2012).

    Google Scholar 

  3. 3.

    Bowman, D. M. et al. Fire in the Earth system. Science 324, 481–484 (2009).

    Google Scholar 

  4. 4.

    Carslaw, K. et al. A review of natural aerosol interactions and feedbacks within the Earth system. Atmos. Chem. Phys. 10, 1701–1737 (2010).

    Google Scholar 

  5. 5.

    Peterson, D. A. et al. Wildfire-driven thunderstorms cause a volcano-like stratospheric injection of smoke. NPJ Clim. Atmos. Sci. 1, 30 (2018).

    Google Scholar 

  6. 6.

    McRae, R. H., Sharples, J. J. & Fromm, M. Linking local wildfire dynamics to pyroCb development. Nat. Hazards Earth Syst. Sci. 15, 417–428 (2015).

    Google Scholar 

  7. 7.

    Rosenfeld, D. TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall. Geophys. Res. Lett. 26, 3105–3108 (1999).

    Google Scholar 

  8. 8.

    Thomas, J. L. et al. Quantifying black carbon deposition over the Greenland ice sheet from forest fires in Canada. Geophys. Res. Lett. 44, 7965–7974 (2017).

    Google Scholar 

  9. 9.

    Skiles, S. M., Flanner, M., Cook, J. M., Dumont, M. & Painter, T. H. Radiative forcing by light-absorbing particles in snow. Nat. Clim. Change 8, 964–971 (2018).

    Google Scholar 

  10. 10.

    Krebs, P., Pezzatti, G. B., Mazzoleni, S., Talbot, L. M. & Conedera, M. Fire regime: history and definition of a key concept in disturbance ecology. Theory Biosci. 129, 53–69 (2010).

    Google Scholar 

  11. 11.

    Keeley, J. E. & Fotheringham, C. Role of fire in regeneration from seed. Seeds 2, 311–330 (2000).

    Google Scholar 

  12. 12.

    Noble, I. R. & Slatyer, R. O. The use of vital attributes to predict successional changes in plant communities subject to recurrent disturbances. Vegetatio 43, 5–21 (1980).

    Google Scholar 

  13. 13.

    Enright, N. J., Fontaine, J. B., Bowman, D. M., Bradstock, R. A. & Williams, R. J. Interval squeeze: altered fire regimes and demographic responses interact to threaten woody species persistence as climate changes. Front. Ecol. Environ. 13, 265–272 (2015).

    Google Scholar 

  14. 14.

    Glikson, A. Fire and human evolution: the deep-time blueprints of the Anthropocene. Anthropocene 3, 89–92 (2013).

    Google Scholar 

  15. 15.

    Huffman, M. R. The many elements of traditional fire knowledge: synthesis, classification, and aids to cross-cultural problem solving in fire-dependent systems around the world. Ecol. Soc. 18, 3 (2013).

    Google Scholar 

  16. 16.

    Trauernicht, C., Brook, B. W., Murphy, B. P., Williamson, G. J. & Bowman, D. M. Local and global pyrogeographic evidence that indigenous fire management creates pyrodiversity. Ecol. Evol. 5, 1908–1918 (2015).

    Google Scholar 

  17. 17.

    Scherjon, F. et al. Burning the land: an ethnographic study of off-site fire use by current and historically documented foragers and implications for the interpretation of past fire practices in the landscape. Curr. Anthropol. 56, 314–315 (2015).

    Google Scholar 

  18. 18.

    Mertz, O. et al. Swidden change in Southeast Asia: understanding causes and consequences. Hum. Ecol. 37, 259–264 (2009).

    Google Scholar 

  19. 19.

    Bowman, D. M. et al. The human dimension of fire regimes on Earth. J. Biogeogr. 38, 2223–2236 (2011).

    Google Scholar 

  20. 20.

    Calkin, D. E., Stonesifer, C. S., Thompson, M. P. & McHugh, C. W. Large airtanker use and outcomes in suppressing wildland fires in the United States. Int. J. Wildland Fire 23, 259–271 (2014).

    Google Scholar 

  21. 21.

    Le Page, Y., Oom, D., Silva, J. M., Jönsson, P. & Pereira, J. M. Seasonality of vegetation fires as modified by human action: observing the deviation from eco‐climatic fire regimes. Glob. Ecol. Biogeogr. 19, 575–588 (2010).

    Google Scholar 

  22. 22.

    Abatzoglou, J. T., Williams, A. P., Boschetti, L., Zubkova, M. & Kolden, C. A. Global patterns of interannual climate–fire relationships. Glob. Change Biol. 24, 5164–5175 (2018).

    Google Scholar 

  23. 23.

    Bowman, D. M. et al. Human exposure and sensitivity to globally extreme wildfire events. Nat. Ecol. Evol. 1, 0058 (2017).

    Google Scholar 

  24. 24.

    Sharples, J. J. et al. Natural hazards in Australia: extreme bushfire. Clim. Change 139, 85–99 (2016).

    Google Scholar 

  25. 25.

    Tedim, F. et al. Defining extreme wildfire events: difficulties, challenges, and impacts. Fire 1, 9 (2018).

    Google Scholar 

  26. 26.

    Ladds, M., Keating, A., Handmer, J. & Magee, L. How much do disasters cost? A comparison of disaster cost estimates in Australia. Int. J. Disaster Risk Reduct. 21, 419–429 (2017).

    Google Scholar 

  27. 27.

    Kramer, H. A., Mockrin, M. H., Alexandre, P. M. & Radeloff, V. C. High wildfire damage in interface communities in California. Int. J. Wildland Fire 28, 641–650 (2019).

    Google Scholar 

  28. 28.

    Thomas, D., Butry, D., Gilbert, S., Webb, D. & Fung, J. The Costs and Losses of Wildfires. NIST Special Publication 1215 (NIST, 2017).

  29. 29.

    Fann, N. et al. The health impacts and economic value of wildland fire episodes in the US: 2008–2012. Sci. Total Environ. 610, 802–809 (2018).

    Google Scholar 

  30. 30.

    Read, P. & Denniss, R. With costs approaching $100 billion, the fires are Australia’s costliest natural disaster. The Conversation (2020).

  31. 31.

    Steffen, W. et al. Trajectories of the Earth System in the Anthropocene. Proc. Natl Acad. Sci.USA 115, 8252–8259 (2018).

    Google Scholar 

  32. 32.

    Steffen, W. et al. The emergence and evolution of Earth system science. Nat. Rev. Earth Environ. 1, 54–63 (2020).

    Google Scholar 

  33. 33.

    Bowman, D. M., O’Brien, J. A. & Goldammer, J. G. Pyrogeography and the global quest for sustainable fire management. Annu. Rev. Environ. Resour. 38, 57–80 (2013).

    Google Scholar 

  34. 34.

    Giglio, L., Boschetti, L., Roy, D. P., Humber, M. L. & Justice, C. O. The Collection 6 MODIS burned area mapping algorithm and product. Remote Sens. Environ. 217, 72–85 (2018).

    Google Scholar 

  35. 35.

    Randerson, J. T., Chen, Y., Van Der Werf, G. R., Rogers, B. M. & Morton, D. C. Global burned area and biomass burning emissions from small fires. J. Geophys. Res. 117, G04012 (2012).

    Google Scholar 

  36. 36.

    Archibald, S., Lehmann, C. E., Gómez-Dans, J. L. & Bradstock, R. A. Defining pyromes and global syndromes of fire regimes. Proc. Natl Acad. Sci. USA 110, 6442–6447 (2013).

    Google Scholar 

  37. 37.

    Kelley, D. I. et al. How contemporary bioclimatic and human controls change global fire regimes. Nat. Clim. Change 9, 690–696 (2019).

    Google Scholar 

  38. 38.

    Lavorel, S., Flannigan, M. D., Lambin, E. F. & Scholes, M. C. Vulnerability of land systems to fire: Interactions among humans, climate, the atmosphere, and ecosystems. Mitig. Adapt. Strateg. Global Change 12, 33–53 (2007).

    Google Scholar 

  39. 39.

    Van Der Werf, G. R., Randerson, J. T., Giglio, L., Gobron, N. & Dolman, A. Climate controls on the variability of fires in the tropics and subtropics. Global Biogeochem. Cycles 22 (2008).

  40. 40.

    Krawchuk, M. A., Moritz, M. A., Parisien, M.-A., Van Dorn, J. & Hayhoe, K. Global pyrogeography: the current and future distribution of wildfire. PLoS ONE 4, e5102 (2009).

    Google Scholar 

  41. 41.

    Pausas, J. G. & Ribeiro, E. The global fire–productivity relationship. Global Ecol. Biogeogr. 22, 728–736 (2013).

    Google Scholar 

  42. 42.

    McKenzie, D. & Littell, J. S. Climate change and the eco-hydrology of fire: Will area burned increase in a warming western USA? Ecol. Appl. 27, 26–36 (2017).

    Google Scholar 

  43. 43.

    Bowman, D. M., Murphy, B. P., Williamson, G. J. & Cochrane, M. A. Pyrogeographic models, feedbacks and the future of global fire regimes. Global Ecol. Biogeogr. 23, 821–824 (2014).

    Google Scholar 

  44. 44.

    Haberle, S. G., Hope, G. S. & van der Kaars, S. Biomass burning in Indonesia and Papua New Guinea: natural and human induced fire events in the fossil record. Palaeogeogr. Palaeoclimatol. Palaeoecol. 171, 259–268 (2001).

    Google Scholar 

  45. 45.

    Cochrane, M. A. Fire science for rainforests. Nature 421, 913–919 (2003).

    Google Scholar 

  46. 46.

    Flannigan, M. D., Logan, K. A., Amiro, B. D., Skinner, W. R. & Stocks, B. Future area burned in Canada. Clim. Change 72, 1–16 (2005).

    Google Scholar 

  47. 47.

    Abatzoglou, J. T. & Kolden, C. A. Climate change in western US deserts: potential for increased wildfire and invasive annual grasses. Rangel. Ecol. Manag. 64, 471–478 (2011).

    Google Scholar 

  48. 48.

    Balch, J. K., Bradley, B. A., D’Antonio, C. M. & Gómez‐Dans, J. Introduced annual grass increases regional fire activity across the arid western USA (1980–2009). Glob. Change Biol. 19, 173–183 (2013).

    Google Scholar 

  49. 49.

    Andreae, M. O. & Merlet, P. Emission of trace gases and aerosols from biomass burning. Global Biogeochem. Cycles 15, 955–966 (2001).

    Google Scholar 

  50. 50.

    Van Der Werf, G. R. et al. Global fire emissions estimates during 1997-2016. Earth Syst. Sci. Data 9, 697–720 (2017).

    Google Scholar 

  51. 51.

    Walker, X. J. et al. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature 572, 520–523 (2019).

    Google Scholar 

  52. 52.

    Cramer, W. et al. Tropical forests and the global carbon cycle: impacts of atmospheric carbon dioxide, climate change and rate of deforestation. Philos. Trans. R. Soc. B Biol. Sci. 359, 331–343 (2004).

    Google Scholar 

  53. 53.

    Kurz, W. et al. Quantifying the impacts of human activities on reported greenhouse gas emissions and removals in Canada’s managed forest: conceptual framework and implementation. Can. J. For. Res. 48, 1227–1240 (2018).

    Google Scholar 

  54. 54.

    Doerr, S. H. & Santín, C. Global trends in wildfire and its impacts: perceptions versus realities in a changing world. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150345 (2016).

    Google Scholar 

  55. 55.

    Bowman, D. Wildfire science is at a loss for comprehensive data. Nature 560, 7–8 (2018).

    Google Scholar 

  56. 56.

    Foreman, P. W. A framework for testing the influence of Aboriginal burning on grassy ecosystems in lowland, mesic south–eastern Australia. Australian J. Botany 64, 626–642 (2016).

    Google Scholar 

  57. 57.

    Van Wagner, C. Age-class distribution and the forest fire cycle. Can. J. For. Res. 8, 220–227 (1978).

    Google Scholar 

  58. 58.

    Larsen, C. P. S. Fire and climate dynamics in the boreal forest of northern Alberta, Canada, from AD 1850 to 1989. Holocene 6, 449–456 (1996).

    Google Scholar 

  59. 59.

    Bergeron, Y., Flannigan, M., Gauthier, S., Leduc, A. & Lefort, P. Past, current and future fire frequency in the Canadian boreal forest: implications for sustainable forest management. AMBIO 33, 356–360 (2004).

    Google Scholar 

  60. 60.

    Marlon, J. R. et al. Long-term perspective on wildfires in the western USA. Proc. Natl Acad. Sci. USA 109, E535–E543 (2012).

    Google Scholar 

  61. 61.

    Marlon, J. R. et al. Climate and human influences on global biomass burning over the past two millennia. Nat. Geosci. 1, 697–702 (2008).

    Google Scholar 

  62. 62.

    Chuvieco, E. et al. Historical background and current developments for mapping burned area from satellite Earth observation. Remote Sens. Environ. 225, 45–64 (2019).

    Google Scholar 

  63. 63.

    Forkel, M. et al. Recent global and regional trends in burned area and their compensating environmental controls. Environ. Res. Commun. 1, 051005 (2019).

    Google Scholar 

  64. 64.

    Schultz, M. G. et al. Global wildland fire emissions from 1960 to 2000. Global Biogeochem. Cycles 22, GB2002 (2008).

    Google Scholar 

  65. 65.

    Clode, D. & Elgar, M. A. Fighting fire with fire: does a policy of broad-scale prescribed burning improve community safety? Soc. Nat. Resour. 27, 1192–1199 (2014).

    Google Scholar 

  66. 66.

    Keeley, J. E. Fire intensity, fire severity and burn severity: a brief review and suggested usage. Int. J. Wildland Fire 18, 116–126 (2009).

    Google Scholar 

  67. 67.

    Jolly, W. M. et al. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 6, 7537 (2015).

    Google Scholar 

  68. 68.

    Justice, C. et al. The MODIS fire products. Remote Sens. Environ. 83, 244–262 (2002).

    Google Scholar 

  69. 69.

    Andela, N. et al. A human-driven decline in global burned area. Science 356, 1356–1362 (2017).

    Google Scholar 

  70. 70.

    Burrows, N., Ward, B. & Robinson, A. Fuel dynamics and fire spread in spinifex grasslands of the Western Desert. Proc. R. Soc. Queensland 115, 69–76 (2009).

    Google Scholar 

  71. 71.

    Bird, R. B., Codding, B. F., Kauhanen, P. G. & Bird, D. W. Aboriginal hunting buffers climate-driven fire-size variability in Australia’s spinifex grasslands. Proc. Natl Acad. Sci. USA 109, 10287–10292 (2012).

    Google Scholar 

  72. 72.

    Taylor, A. H., Trouet, V., Skinner, C. N. & Stephens, S. Socioecological transitions trigger fire regime shifts and modulate fire–climate interactions in the Sierra Nevada, USA, 1600–2015 CE. Proc. Natl Acad. Sci. USA 113, 13684–13689 (2016).

    Google Scholar 

  73. 73.

    Westerling, A. L., Hidalgo, H. G., Cayan, D. R. & Swetnam, T. W. Warming and earlier spring increase western US forest wildfire activity. Science 313, 940–943 (2006).

    Google Scholar 

  74. 74.

    Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl Acad. Sci. USA 113, 11770–11775 (2016).

    Google Scholar 

  75. 75.

    Balch, J. K. et al. Switching on the Big Burn of 2017. Fire 1, 17 (2018).

    Google Scholar 

  76. 76.

    Williams, A. P. et al. Observed impacts of anthropogenic climate change on wildfire in California. Earths Future 7, 892–910 (2019).

    Google Scholar 

  77. 77.

    Westerling, A. L. Increasing western US forest wildfire activity: sensitivity to changes in the timing of spring. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150178 (2016).

    Google Scholar 

  78. 78.

    Balshi, M. S. et al. Assessing the response of area burned to changing climate in western boreal North America using a Multivariate Adaptive Regression Splines (MARS) approach. Glob. Change Biol. 15, 578–600 (2009).

    Google Scholar 

  79. 79.

    Jain, P., Wang, X. & Flannigan, M. D. Trend analysis of fire season length and extreme fire weather in North America between 1979 and 2015. Int. J. Wildland Fire 26, 1009–1020 (2018).

    Google Scholar 

  80. 80.

    Flannigan, M. et al. Fuel moisture sensitivity to temperature and precipitation: climate change implications. Clim. Change 134, 59–71 (2016).

    Google Scholar 

  81. 81.

    Hanes, C. C. et al. Fire-regime changes in Canada over the last half century. Can. J. For. Res. 49, 256–269 (2018).

    Google Scholar 

  82. 82.

    Veraverbeke, S. et al. Lightning as a major driver of recent large fire years in North American boreal forests. Nat. Clim. Change 7, 529–534 (2017).

    Google Scholar 

  83. 83.

    Turetsky, M. R. et al. Global vulnerability of peatlands to fire and carbon loss. Nat. Geosci. 8, 11–14 (2015).

    Google Scholar 

  84. 84.

    O’Connor, F. M. et al. Possible role of wetlands, permafrost, and methane hydrates in the methane cycle under future climate change: A review. Rev. Geophys. 48, RG4005 (2010).

    Google Scholar 

  85. 85.

    Gibson, C. M. et al. Wildfire as a major driver of recent permafrost thaw in boreal peatlands. Nat. Commun. 9, 3041 (2018).

    Google Scholar 

  86. 86.

    Bowman, D. M., Walsh, A. & Prior, L. D. Landscape analysis of Aboriginal fire management in Central Arnhem Land, north Australia. J. Biogeogr. 31, 207–223 (2004).

    Google Scholar 

  87. 87.

    Bird, R. B., Bird, D. W., Codding, B. F., Parker, C. H. & Jones, J. H. The “fire stick farming” hypothesis: Australian Aboriginal foraging strategies, biodiversity, and anthropogenic fire mosaics. Proc. Natl Acad. Sci. USA 105, 14796–14801 (2008).

    Google Scholar 

  88. 88.

    Cruz, M. et al. Anatomy of a catastrophic wildfire: the Black Saturday Kilmore East fire in Victoria, Australia. For. Ecol. Manag. 284, 269–285 (2012).

    Google Scholar 

  89. 89.

    Ndalila, M. N., Williamson, G. J. & Bowman, D. M. Geographic patterns of fire severity following an extreme Eucalyptus forest fire in southern Australia: 2013 Forcett-Dunalley fire. Fire 1, 40 (2018).

    Google Scholar 

  90. 90.

    Di Virgilio, G. et al. Climate change increases the potential for extreme wildfires. Geophys. Res. Lett. 46, 8517–8526 (2019).

    Google Scholar 

  91. 91.

    Styger, J., Marsden-Smedley, J. & Kirkpatrick, J. Changes in lightning fire incidence in the Tasmanian Wilderness World Heritage Area, 1980–2016. Fire 1, 38 (2018).

    Google Scholar 

  92. 92.

    Bowman, D. M., Bliss, A., Bowman, C. J. & Prior, L. D. Fire caused demographic attrition of the Tasmanian palaeoendemic conifer Athrotaxis cupressoides. Austral Ecol. 44, 1322–1339 (2019).

    Google Scholar 

  93. 93.

    Boer, M. M., de Dios, V. R. & Bradstock, R. A. Unprecedented burn area of Australian mega forest fires. Nat. Clim. Change 10, 171–172 (2020).

    Google Scholar 

  94. 94.

    van Oldenborgh, G. J. et al. Attribution of the Australian bushfire risk to anthropogenic climate change. Nat. Hazards Earth Syst. Sci. Discuss. 2020, 1–46 (2020).

    Google Scholar 

  95. 95.

    Bowman, D. M. et al. Human–environmental drivers and impacts of the globally extreme 2017 Chilean fires. AMBIO 48, 350–362 (2019).

    Google Scholar 

  96. 96.

    Gómez-González, S., Ojeda, F. & Fernandes, P. M. Portugal and Chile: Longing for sustainable forestry while rising from the ashes. Environ. Sci. Policy 81, 104–107 (2018).

    Google Scholar 

  97. 97.

    Fusco, E. J., Finn, J. T., Balch, J. K., Nagy, R. C. & Bradley, B. A. Invasive grasses increase fire occurrence and frequency across US ecoregions. Proc. Natl Acad. Sci. USA 116, 23594–23599 (2019).

    Google Scholar 

  98. 98.

    Setterfield, S. A., Rossiter‐Rachor, N. A., Hutley, L. B., Douglas, M. M. & Williams, R. J. Biodiversity research: turning up the heat: the impacts of Andropogon gayanus (gamba grass) invasion on fire behaviour in northern Australian savannas. Divers. Distrib. 16, 854–861 (2010).

    Google Scholar 

  99. 99.

    Van Marle, M. J. et al. Historic global biomass burning emissions based on merging satellite observations with proxies and fire models (1750–2015). Geosci. Model Dev. 10, 3329–3357 (2017).

    Google Scholar 

  100. 100.

    Le Quéré, C. et al. Global carbon budget 2018. Earth Syst. Sci. Data 10, 2141–2194 (2018).

    Google Scholar 

  101. 101.

    Wooster, M. J., Perry, G. L. W. & Zoumas, A. Fire, drought and El Niño relationships on Borneo (Southeast Asia) in the pre-MODIS era (1980–2000). Biogeosciences 9, 317–340 (2012).

    Google Scholar 

  102. 102.

    Chen, Y. et al. A pan-tropical cascade of fire driven by El Niño/Southern Oscillation. Nat. Clim. Change 7, 906–911 (2017).

    Google Scholar 

  103. 103.

    Stocker, T. F. et al. (eds) Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 1535 pp (Cambridge Univ. Press, 2013).

  104. 104.

    Flannigan, M. et al. Global wildland fire season severity in the 21st century. For. Ecol. Manag. 294, 54–61 (2013).

    Google Scholar 

  105. 105.

    Abatzoglou, J. T., Williams, A. P. & Barbero, R. Global emergence of anthropogenic climate change in fire weather indices. Geophys. Res. Lett. 46, 326–336 (2019).

    Google Scholar 

  106. 106.

    Romps, D. M., Seeley, J. T., Vollaro, D. & Molinari, J. Projected increase in lightning strikes in the United States due to global warming. Science 346, 851–854 (2014).

    Google Scholar 

  107. 107.

    Knorr, W., Arneth, A. & Jiang, L. Demographic controls of future global fire risk. Nat. Clim. Change 6, 781–785 (2016).

    Google Scholar 

  108. 108.

    Kloster, S. & Lasslop, G. Historical and future fire occurrence (1850 to 2100) simulated in CMIP5 Earth System Models. Glob. Planet. Change 150, 58–69 (2017).

    Google Scholar 

  109. 109.

    Moritz, M. A. et al. Climate change and disruptions to global fire activity. Ecosphere 3, 1–22 (2012).

    Google Scholar 

  110. 110.

    Wotton, B. M. & Flannigan, M. D. Length of the fire season in a changing climate. Forestry Chron. 69, 187–192 (1993).

    Google Scholar 

  111. 111.

    Wotton, B., Flannigan, M. & Marshall, G. Potential climate change impacts on fire intensity and key wildfire suppression thresholds in Canada. Environ. Res. Lett. 12, 095003 (2017).

    Google Scholar 

  112. 112.

    Barbero, R., Abatzoglou, J. T., Larkin, N. K., Kolden, C. A. & Stocks, B. Climate change presents increased potential for very large fires in the contiguous United States. Int. J. Wildland Fire 24, 892–899 (2015).

    Google Scholar 

  113. 113.

    Westerling, A. L., Turner, M. G., Smithwick, E. A., Romme, W. H. & Ryan, M. G. Continued warming could transform Greater Yellowstone fire regimes by mid-21st century. Proc. Natl Acad. Sci. USA 108, 13165–13170 (2011).

    Google Scholar 

  114. 114.

    Buotte, P. C. et al. Near-future forest vulnerability to drought and fire varies across the western United States. Glob. Change Biol. 25, 290–303 (2019).

    Google Scholar 

  115. 115.

    Kitzberger, T., Falk, D. A., Westerling, A. L. & Swetnam, T. W. Direct and indirect climate controls predict heterogeneous early-mid 21st century wildfire burned area across western and boreal North America. PLoS ONE 12, e0188486 (2017).

    Google Scholar 

  116. 116.

    Turco, M. et al. Exacerbated fires in Mediterranean Europe due to anthropogenic warming projected with non-stationary climate-fire models. Nat. Commun. 9, 3821 (2018).

    Google Scholar 

  117. 117.

    Turco, M. et al. Decreasing fires in mediterranean Europe. PLoS ONE 11, e0150663 (2016).

    Google Scholar 

  118. 118.

    Batllori, E., Parisien, M. A., Krawchuk, M. A. & Moritz, M. A. Climate change-induced shifts in fire for mediterranean ecosystems. Global Ecol. Biogeogr. 22, 1118–1129 (2013).

    Google Scholar 

  119. 119.

    Mekonnen, Z. A., Riley, W. J., Randerson, J. T., Grant, R. F. & Rogers, B. M. Expansion of high-latitude deciduous forests driven by interactions between climate warming and fire. Nat. Plants 5, 952–958 (2019).

    Google Scholar 

  120. 120.

    Harris, R. M., Remenyi, T. A., Williamson, G. J., Bindoff, N. L. & Bowman, D. M. Climate–vegetation–fire interactions and feedbacks: trivial detail or major barrier to projecting the future of the Earth system? Wiley Interdiscip. Rev. Clim. Change 7, 910–931 (2016).

    Google Scholar 

  121. 121.

    Hantson, S. et al. The status and challenge of global fire modelling. Biogeosciences 13, 3359–3375 (2016).

    Google Scholar 

  122. 122.

    Pechony, O. & Shindell, D. T. Driving forces of global wildfires over the past millennium and the forthcoming century. Proc. Natl Acad. Sci. USA 107, 19167–19170 (2010).

    Google Scholar 

  123. 123.

    Flannigan, M., Stocks, B., Turetsky, M. & Wotton, M. Impacts of climate change on fire activity and fire management in the circumboreal forest. Glob. Change Biol. 15, 549–560 (2009).

    Google Scholar 

  124. 124.

    Podur, J. & Wotton, M. Will climate change overwhelm fire management capacity? Ecol. Model. 221, 1301–1309 (2010).

    Google Scholar 

  125. 125.

    Teckentrup, L. et al. Response of simulated burned area to historical changes in environmental and anthropogenic factors: a comparison of seven fire models. Biogeosciences 16, 3883–3910 (2019).

    Google Scholar 

  126. 126.

    Nepstad, D. C., Stickler, C. M., Filho, B. S. & Merry, F. Interactions among Amazon land use, forests and climate: prospects for a near-term forest tipping point. Philos. Trans. R. Soc. B Biol. Sci. 363, 1737–1746 (2008).

    Google Scholar 

  127. 127.

    Swann, A. L., Hoffman, F. M., Koven, C. D. & Randerson, J. T. Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proc. Natl Acad. Sci. USA 113, 10019–10024 (2016).

    Google Scholar 

  128. 128.

    Bond, W. J. & Midgley, G. F. Carbon dioxide and the uneasy interactions of trees and savannah grasses. Philos. Trans. R. Soc. B Biol. Sci. 367, 601–612 (2012).

    Google Scholar 

  129. 129.

    Hurteau, M. D., Liang, S., Westerling, A. L. & Wiedinmyer, C. Vegetation-fire feedback reduces projected area burned under climate change. Sci. Rep. 9, 2838 (2019).

    Google Scholar 

  130. 130.

    Liu, Z. & Wimberly, M. C. Direct and indirect effects of climate change on projected future fire regimes in the western United States. Sci. Total Environ. 542, 65–75 (2016).

    Google Scholar 

  131. 131.

    Stevens-Rumann, C. S. et al. Evidence for declining forest resilience to wildfires under climate change. Ecol. Lett. 21, 243–252 (2018).

    Google Scholar 

  132. 132.

    Wilkin, K., Ackerly, D. & Stephens, S. Climate change refugia, fire ecology and management. Forests 7, 77 (2016).

    Google Scholar 

  133. 133.

    Kashian, D. M., Romme, W. H., Tinker, D. B., Turner, M. G. & Ryan, M. G. Carbon storage on landscapes with stand-replacing fires. Bioscience 56, 598–606 (2006).

    Google Scholar 

  134. 134.

    Wiggins, E. B. et al. Smoke radiocarbon measurements from Indonesian fires provide evidence for burning of millennia-aged peat. Proc. Natl Acad. Sci. USA 115, 12419–12424 (2018).

    Google Scholar 

  135. 135.

    Donovan, V. M., Wonkka, C. L. & Twidwell, D. Surging wildfire activity in a grassland biome. Geophys. Res. Lett. 44, 5986–5993 (2017).

    Google Scholar 

  136. 136.

    Bladon, K. D. Rethinking wildfires and forest watersheds. Science 359, 1001–1002 (2018).

    Google Scholar 

  137. 137.

    Cannon, S. H. & DeGraff, J. in Landslides–Disaster Risk Reduction (eds Sassa, K. & Canuti, P.) 177–190 (Springer, 2009).

  138. 138.

    Garfin, G. et al. Managing for Future Risks of Fire, Extreme Precipitation, and Post-fire Flooding. Report to the U.S. Bureau of Reclamation, from the Project Enhancing Water Supply Reliability (Institute of the Environment, 2016).

  139. 139.

    Sanderson, B. M. & Fisher, R. A. A fiery wake-up call for climate science. Nat. Clim. Change 515, 175–177 (2020).

    Google Scholar 

  140. 140.

    King, A. D., Pitman, A. J., Henley, B. J., Ukkola, A. M. & Brown, J. R. The role of climate variability in Australian drought. Nat. Clim. Change 10, 177–179 (2020).

    Google Scholar 

  141. 141.

    Moritz, M. A. et al. Learning to coexist with wildfire. Nature 515, 58–66 (2014).

    Google Scholar 

  142. 142.

    Kolden, C. A. We’re not doing enough prescribed fire in the Western United States to mitigate wildfire risk. Fire 2, 30 (2019).

    Google Scholar 

  143. 143.

    Fernandes, P. M. & Botelho, H. S. A review of prescribed burning effectiveness in fire hazard reduction. Int. J. Wildland Fire 12, 117–128 (2003).

    Google Scholar 

  144. 144.

    Price, O. F., Penman, T. D., Bradstock, R. A., Boer, M. M. & Clarke, H. Biogeographical variation in the potential effectiveness of prescribed fire in south‐eastern Australia. J. Biogeogr. 42, 2234–2245 (2015).

    Google Scholar 

  145. 145.

    Hurteau, M. D., Koch, G. W. & Hungate, B. A. Carbon protection and fire risk reduction: toward a full accounting of forest carbon offsets. Front. Ecol. Environ. 6, 493–498 (2008).

    Google Scholar 

  146. 146.

    Stephens, S. L. Evaluation of the effects of silvicultural and fuels treatments on potential fire behaviour in Sierra Nevada mixed-conifer forests. For. Ecol. Manag. 105, 21–35 (1998).

    Google Scholar 

  147. 147.

    Campbell, J. L., Harmon, M. E. & Mitchell, S. R. Can fuel‐reduction treatments really increase forest carbon storage in the western US by reducing future fire emissions? Front. Ecol. Environ. 10, 83–90 (2012).

    Google Scholar 

  148. 148.

    Clarke, H. & Evans, J. P. Exploring the future change space for fire weather in southeast Australia. Theor. Appl. Climatol. 136, 513–527 (2019).

    Google Scholar 

  149. 149.

    Price, O. F. & Bradstock, R. A. The efficacy of fuel treatment in mitigating property loss during wildfires: Insights from analysis of the severity of the catastrophic fires in 2009 in Victoria, Australia. J. Environ. Manag. 113, 146–157 (2012).

    Google Scholar 

  150. 150.

    Williamson, G., Bowman, D. M. S., Price, O. F., Henderson, S. & Johnston, F. A transdisciplinary approach to understanding the health effects of wildfire and prescribed fire smoke regimes. Environ. Res. Lett. 11, 125009 (2016).

    Google Scholar 

  151. 151.

    Broome, R. A., Johnston, F. H., Horsley, J. & Morgan, G. G. A rapid assessment of the impact of hazard reduction burning around Sydney, May 2016. Med. J. Aust. 205, 407–408 (2016).

    Google Scholar 

  152. 152.

    U.S. Environmental Protection Agency, Office of Air and Radiation. The Benefits and Costs of the Clean Air Act from 1990 to 2020: Final Report — Rev. A (U.S. Environmental Protection Agency, Office of Air and Radiation, 2011).

  153. 153.

    Bowman, D. et al. Can air quality management drive sustainable fuels management at the temperate wildland–urban interface? Fire 1, 27 (2018).

    Google Scholar 

  154. 154.

    Mistry, J. & Berardi, A. Bridging indigenous and scientific knowledge. Science 352, 1274–1275 (2016).

    Google Scholar 

  155. 155.

    Reyes-García, V. & Benyei, P. Indigenous knowledge for conservation. Nat. Sustain. 2, 657–658 (2019).

    Google Scholar 

  156. 156.

    Bird, R. B., Tayor, N., Codding, B. F. & Bird, D. W. Niche construction and Dreaming logic: aboriginal patch mosaic burning and varanid lizards (Varanus gouldii) in Australia. Proc. R. Soc. B Biol. Sci. 280, 20132297 (2013).

    Google Scholar 

  157. 157.

    Jackson, S. T. & Hobbs, R. J. Ecological restoration in the light of ecological history. Science 325, 567–569 (2009).

    Google Scholar 

  158. 158.

    Bowman, D. M. & Legge, S. Pyrodiversity — why managing fire in food webs is relevant to restoration ecology. Restor. Ecol. 24, 848–853 (2016).

    Google Scholar 

  159. 159.

    Schoennagel, T. et al. Adapt to more wildfire in western North American forests as climate changes. Proc. Natl Acad. Sci. USA 114, 4582–4590 (2017).

    Google Scholar 

  160. 160.

    Strader, S. M. Spatiotemporal changes in conterminous US wildfire exposure from 1940 to 2010. Nat. Hazards 92, 543–565 (2018).

    Google Scholar 

  161. 161.

    Balch, J. K. et al. Human-started wildfires expand the fire niche across the United States. Proc. Natl Acad. Sci. USA 114, 2946–2951 (2017).

    Google Scholar 

  162. 162.

    Fischer, A. P. et al. Wildfire risk as a socioecological pathology. Front. Ecol. Environ. 14, 276–284 (2016).

    Google Scholar 

  163. 163.

    Borchers Arriagada, N. et al. Unprecedented smoke‐related health burden associated with the 2019–20 bushfires in eastern Australia. Med. J. Aust. (2020).

    Article  Google Scholar 

  164. 164.

    Fischer, A. P. et al. Wildfire risk as a socioecological pathology. Front. Ecol. Environ. 14, 276–284 (2016).

    Google Scholar 

  165. 165.

    Smith, A. M. et al. The science of firescapes: achieving fire-resilient communities. Bioscience 66, 130–146 (2016).

    Google Scholar 

  166. 166.

    McWethy, D. B. et al. Rethinking resilience to wildfire. Nat. Sustain. 2, 797–804 (2019).

    Google Scholar 

  167. 167.

    Curran, T., Perry, G., Wyse, S. & Alam, M. Managing fire and biodiversity in the wildland-urban interface: A role for green firebreaks. Fire 1, 3 (2018).

    Google Scholar 

  168. 168.

    Bowman, D. M. J. S. & Stoof, C. Diversity helps fight wildfires. Nature 571, 478 (2019).

    Google Scholar 

  169. 169.

    Cui, X. et al. Green firebreaks as a management tool for wildfires: Lessons from China. J. Environ. Manag. 233, 329–336 (2019).

    Google Scholar 

  170. 170.

    Kolden, C. A. & Henson, C. A socio-ecological approach to mitigating wildfire vulnerability in the wildland urban interface: a case study from the 2017 Thomas fire. Fire 2, 9 (2019).

    Google Scholar 

  171. 171.

    Eriksen, C. Gender and Wildfire: Landscapes of Uncertainty (Routledge, 2013).

  172. 172.

    Huffman, M. R. Making a world of difference in fire and climate change. Fire Ecol. 10, 90–101 (2014).

    Google Scholar 

  173. 173.

    Pratt, M. et al. The implications of megatrends in information and communication technology and transportation for changes in global physical activity. Lancet 380, 282–293 (2012).

    Google Scholar 

  174. 174.

    Johnston, F. et al. Using smartphone technology to reduce health impacts from atmospheric environmental hazards. Environ. Res. Lett. 13, 044019 (2018).

    Google Scholar 

  175. 175.

    Lovreglio, R., Kuligowski, E., Gwynne, S. & Strahan, K. A modelling framework for householder decision-making for wildfire emergencies. Int. J. Disaster Risk Reduct. 41, 101274 (2019).

    Google Scholar 

  176. 176.

    Kulemeka, O. A review of wildland fire smartphone applications: a classification study from Australia, USA, Canada and South Africa. Int. J. Emerg. Serv. 4, 258–270 (2015).

    Google Scholar 

  177. 177.

    Rappold, A. et al. Smoke Sense initiative leverages citizen science to address the growing wildfire‐related public health problem. GeoHealth 3, 443–457 (2019).

    Google Scholar 

  178. 178.

    Maryam, H., Shah, M. A., Javaid, Q. & Kamran, M. A survey on smartphones systems for emergency management (SPSEM). Int. J. Adv. Comput. Sci. Appl. 7, 301–311 (2016).

    Google Scholar 

  179. 179.

    Vardoulakis, S., Jalaludin, B. B., Morgan, G. G., Hanigan, I. C. & Johnston, F. H. Bushfire smoke: urgent need for a national health protection strategy. Med. J. Aust. 212, 349–353.e1 (2020).

    Google Scholar 

  180. 180.

    Lipsett-Moore, G. J., Wolff, N. H. & Game, E. T. Emissions mitigation opportunities for savanna countries from early dry season fire management. Nat. Commun. 9, 2247 (2018).

    Google Scholar 

  181. 181.

    Russell-Smith, J. et al. Deriving multiple benefits from carbon market-based savanna fire management: An Australian example. PLoS ONE 10, e0143426 (2015).

    Google Scholar 

  182. 182.

    Russell-Smith, J. et al. Managing fire regimes in north Australian savannas: applying Aboriginal approaches to contemporary global problems. Front. Ecol. Environ. 11, e55–e63 (2013).

    Google Scholar 

  183. 183.

    Andersen, A. N., Woinarski, J. C. Z. & Parr, C. L. Savanna burning for biodiversity: Fire management for faunal conservation in Australian tropical savannas. Austral Ecol. 37, 658–667 (2012).

    Google Scholar 

  184. 184.

    Bowman, D. M., MacDermott, H. J., Nichols, S. C. & Murphy, B. P. A grass–fire cycle eliminates an obligate-seeding tree in a tropical savanna. Ecol. Evol. 4, 4185–4194 (2014).

    Google Scholar 

  185. 185.

    Murphy, B. P., Russell‐Smith, J. & Prior, L. D. Frequent fires reduce tree growth in northern Australian savannas: implications for tree demography and carbon sequestration. Glob. Change Biol. 16, 331–343 (2010).

    Google Scholar 

  186. 186.

    Petty, A. M., deKoninck, V. & Orlove, B. Cleaning, protecting, or abating? Making indigenous fire management “work” in northern Australia. J. Ethnobiol. 35, 140–163 (2015).

    Google Scholar 

  187. 187.

    de Oliveira Andrade, R. Alarming surge in Amazon fires prompts global outcry. Nature (23 Aug 2019).

  188. 188.

    Kasischke, E. S., Christensen, N. Jr & Stocks, B. J. Fire, global warming, and the carbon balance of boreal forests. Ecol. Appl. 5, 437–451 (1995).

    Google Scholar 

  189. 189.

    Bradshaw, C. J. & Warkentin, I. G. Global estimates of boreal forest carbon stocks and flux. Glob. Planet. Change 128, 24–30 (2015).

    Google Scholar 

  190. 190.

    Dieleman, C. M. et al. Wildfire combustion and carbon stocks in the southern Canadian boreal forest: Implications for a warming world. Glob. Change Biol. (2020).

    Article  Google Scholar 

  191. 191.

    Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).

    Google Scholar 

  192. 192.

    Bastin, J.-F. et al. Response to comments on “The global tree restoration potential”. Science 366, eaay8108 (2019).

    Google Scholar 

  193. 193.

    Lewis, S. L., Wheeler, C. E., Mitchard, E. T. A. & Koch, A. Restoring natural forests is the best way to remove atmospheric carbon. Nature 568, 25–28 (2019).

    Google Scholar 

  194. 194.

    Veldman, J. W. et al. Comment on “The global tree restoration potential”. Science 366, eaay7976 (2019).

    Google Scholar 

  195. 195.

    Friedlingstein, P., Allen, M., Canadell, J. G., Peters, G. P. & Seneviratne, S. I. Comment on “The global tree restoration potential”. Science 366, eaay8060 (2019).

    Google Scholar 

  196. 196.

    Lewis, S. L., Mitchard, E. T., Prentice, C., Maslin, M. & Poulter, B. Comment on “The global tree restoration potential”. Science 366, eaaz0388 (2019).

    Google Scholar 

  197. 197.

    Grainger, A., Iverson, L. R., Marland, G. H. & Prasad, A. Comment on “The global tree restoration potential”. Science 366, eaay8334 (2019).

    Google Scholar 

  198. 198.

    Luedeling, E. et al. Forest restoration: Overlooked constraints. Science 366, 315 (2019).

    Google Scholar 

  199. 199.

    Lindenmayer, D. B., Hobbs, R. J., Likens, G. E., Krebs, C. J. & Banks, S. C. Newly discovered landscape traps produce regime shifts in wet forests. Proc. Natl Acad. Sci. USA 108, 15887–15891 (2011).

    Google Scholar 

  200. 200.

    Anderegg, W. R. et al. Climate-driven risks to the climate mitigation potential of forests. Science 368, eaaz7005 (2020).

    Google Scholar 

  201. 201.

    Nerini, F. F. et al. Connecting climate action with other sustainable development goals. Nat. Sustain. 2, 674–680 (2019).

    Google Scholar 

  202. 202.

    Castree, N. Speaking for the ‘people disciplines’: Global change science and its human dimensions. Anthropocene Rev. 4, 160–182 (2017).

    Google Scholar 

  203. 203.

    Stenzel, J. E. et al. Fixing a snag in carbon emissions estimates from wildfires. Glob. Change Biol. 25, 3985–3994 (2019).

    Google Scholar 

  204. 204.

    Andela, N. et al. The global fire atlas of individual fire size, duration, speed and direction. Earth Syst. Sci. Data 11, 529–552 (2019).

    Google Scholar 

  205. 205.

    Meng, R. et al. Using high spatial resolution satellite imagery to map forest burn severity across spatial scales in a Pine Barrens ecosystem. Remote Sens. Environ. 191, 95–109 (2017).

    Google Scholar 

  206. 206.

    Filkov, A., Duff, T. & Penman, T. Improving fire behaviour data obtained from wildfires. Forests 9, 81 (2018).

    Google Scholar 

  207. 207.

    White, I. et al. The vulnerability of water supply catchments to bushfires: impacts of the January 2003 wildfires on the Australian capital territory. Australas. J. Water Resour. 10, 179–194 (2006).

    Google Scholar 

  208. 208.

    Kliskey, A. et al. Planning for Idaho’s waterscapes: A review of historical drivers and outlook for the next 50 years. Environ. Sci. Policy 94, 191–201 (2019).

    Google Scholar 

  209. 209.

    Stocks, B. & Martell, D. L. Forest fire management expenditures in Canada: 1970–2013. Forestry Chron. 92, 298–306 (2016).

    Google Scholar 

  210. 210.

    Burton, C., Betts, R., Jones, C. & Williams, K. Will fire danger be reduced by using solar radiation management to limit global warming to 1.5 C compared to 2.0 C? Geophys. Res. Lett. 45, 3644–3652 (2018).

    Google Scholar 

  211. 211.

    Bedia, J. et al. Global patterns in the sensitivity of burned area to fire-weather: Implications for climate change. Agric. For. Meteorol. 214, 369–379 (2015).

    Google Scholar 

  212. 212.

    Liu, Y., Stanturf, J. & Goodrick, S. Trends in global wildfire potential in a changing climate. For. Ecol. Manag. 259, 685–697 (2010).

    Google Scholar 

  213. 213.

    Huang, Y., Wu, S. & Kaplan, J. O. Sensitivity of global wildfire occurrences to various factors in the context of global change. Atmos. Environ. 121, 86–92 (2015).

    Google Scholar 

  214. 214.

    de Groot, W. J., Flannigan, M. D. & Cantin, A. S. Climate change impacts on future boreal fire regimes. For. Ecol. Manag. 294, 35–44 (2013).

    Google Scholar 

  215. 215.

    Fonseca, M. G. et al. Effects of climate and land‐use change scenarios on fire probability during the 21st century in the Brazilian Amazon. Glob. Change Biol. 25, 2931–2946 (2019).

    Google Scholar 

  216. 216.

    Le Page, Y. et al. Synergy between land use and climate change increases future fire risk in Amazon forests. Earth Syst. Dynam. 8, 1237–1246 (2017).

    Google Scholar 

  217. 217.

    Dowdy, A. J. et al. Future changes in extreme weather and pyroconvection risk factors for Australian wildfires. Sci. Rep. 9, 10073 (2019).

    Google Scholar 

  218. 218.

    Fox-Hughes, P., Harris, R., Lee, G., Grose, M. & Bindoff, N. Future fire danger climatology for Tasmania, Australia, using a dynamically downscaled regional climate model. Int. J. Wildland Fire 23, 309–321 (2014).

    Google Scholar 

  219. 219.

    Syphard, A. D. et al. The relative influence of climate and housing development on current and projected future fire patterns and structure loss across three California landscapes. Global Environ. Change 56, 41–55 (2019).

    Google Scholar 

  220. 220.

    Yoon, J.-H. et al. Extreme fire season in California: a glimpse into the future? Bull. Am. Meteorol. Soc. 96, S5–S9 (2015).

    Google Scholar 

  221. 221.

    Wang, X. et al. Projected changes in daily fire spread across Canada over the next century. Environ. Res. Lett. 12, 025005 (2017).

    Google Scholar 

  222. 222.

    Young, A. M., Higuera, P. E., Duffy, P. A. & Hu, F. S. Climatic thresholds shape northern high‐latitude fire regimes and imply vulnerability to future climate change. Ecography 40, 606–617 (2017).

    Google Scholar 

  223. 223.

    Jones, M. W. et al. Climate change increases the risk of wildfires. ScienceBrief (2020).

  224. 224.

    Vitolo, C., Di Giuseppe, F., Krzeminski, B. & San-Miguel-Ayanz, J. A 1980–2018 global fire danger re-analysis dataset for the Canadian Fire Weather Indices. Sci. Data 6, 190032 (2019).

    Google Scholar 

  225. 225.

    DiMiceli, C. et al. MOD44B v006. MODIS/Terra Vegetation Continuous Fields Yearly L3 Global 250 m SIN Grid (NASA EOSDIS Land Processes DAAC, 2015).

  226. 226.

    Littell, J. S., McKenzie, D., Peterson, D. L. & Westerling, A. L. Climate and wildfire area burned in western US ecoprovinces, 1916–2003. Ecol. Appl. 19, 1003–1021 (2009).

    Google Scholar 

  227. 227.

    Eidenshink, J. et al. A project for monitoring trends in burn severity. Fire Ecol. 3, 3–21 (2007).

    Google Scholar 

  228. 228.

    Turco, M. et al. Climate drivers of the 2017 devastating fires in Portugal. Sci. Rep. 9, 13886 (2019).

    Google Scholar 

  229. 229.

    Bowman, D. M., Murphy, B. P., Neyland, D. L., Williamson, G. J. & Prior, L. D. Abrupt fire regime change may cause landscape‐wide loss of mature obligate seeder forests. Glob. Change Biol. 20, 1008–1015 (2014).

    Google Scholar 

Download references


The authors thank Grant Williamson, University of Tasmania, for assistance with the Tasmanian area burned data and Rick McRae, ACT Emergency Services Agency, for the NSW pyrocumulonimbus data.

Author information




D.M.J.S.B. coordinated the project, led the writing and contributed to the design of the graphics. C.A.K. led the design of the graphics and contributed to the writing. J.T.A. led the climate analyses and contributed to the graphic design and writing. F.H.J. contributed to the project development, graphic design and writing. G.R.v.d.W. led the analysis of carbon emissions and contributed to the graphic design and writing. M.F. contributed to the project development, graphic design and writing.

Corresponding author

Correspondence to David M. J. S. Bowman.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Earth & Environment thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Canadian National Fire Database:

Global Fire Atlas:

Global Fire Emissions Database:

MODIS Burned Area Product:


National Interagency Fire Center:



Non-fossilized organic matter, including living and dead phytomass, organic soils, and animal remains and excrement.


Intense convective thunderstorms that develop above highly energetic wildfires, which can reach the stratosphere and create localized weather, including rain, hail, lightning and pyro-tornadoes.

Fire regimes

Characteristic syndrome of landscape fire with respect to behaviour, frequency, seasonality, geographic scale and pattern, with predictable biological responses and environmental effects.


The process of plant recovery following fire damage, either from seeds stored in the soil or vegetatively from specialized tissues located in roots, stems and branches.


Sufficient energy to initiate combustion of plant biomass, and can be natural, such as from lightning, or directly set by humans either deliberately, accidentally or indirectly.

Extreme vegetation-fire events

Extreme fire events are characterized by some combination of the following: anomalous fire behaviour, involving extremely high energy releases, very rapid rate of spread, very large flame heights; massive emission of smoke and greenhouse gas pollution; prolonged duration of fires, enormous geographical scale of burned areas, or both; fires causing unusually adverse biological, atmospheric or geomorphological effects.


The geologically novel planetary state resulting from human activities, although the start date of the state is debated.


The holistic study of fire on Earth achieved by combining and synthesizing knowledge and methods from the sciences and humanities.


Analysis of growth rings in the trunks of suitable tree species can enable reconstruction of past environmental conditions, resolved to annual or seasonal scales.

Fire intensity

The amount of energy released per unit time from a fire front.

Fire severity

A measure of the biological impact of fires, routinely assessed by the degree of canopy or understory defoliation and foliage consumption.


A process where climate change can lead to sustained regional drying with concomitant changes in vegetation, fire regimes and geomorphological processes.

Climate refugia

A landscape setting with an atypical climate where species poorly adapted to ambient environmental conditions are able to persist, for example, a cloudy mountain top.

Fire refugia

A landscape setting that limits the egress of fires, enabling species poorly adapted to ambient fire regimes to persist, such as a deep ravine.

Wildland–urban interface

The intermix of urban areas with flammable vegetation that is the locus of the most deadly and economically destructive wildfires.

Biomass smoke

A dynamic mixture of gases and aerosols, made up of organic and inorganic chemical species, emitted during the combustion of biomass.


Extreme fire behaviours can result in intense localized convection that spawns a violently rotating column of burning gases and debris.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bowman, D.M.J.S., Kolden, C.A., Abatzoglou, J.T. et al. Vegetation fires in the Anthropocene. Nat Rev Earth Environ 1, 500–515 (2020).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing