Experimental elasticity of Earth’s deep mantle


Geophysical remote-sensing methods, particularly seismology, provide an incredibly detailed view of the structure and composition of Earth’s mantle. The seismic velocity structure of the deep mantle can be used, in theory, to constrain its temperature, mineralogy and composition. However, inversion of the mantle velocity structure relies on quantitative knowledge of the elastic properties of Earth’s mantle minerals. Knowledge of the elastic properties of mantle minerals is primarily derived from experimental in situ measurements of sound-wave velocities at high pressure and temperature. In this Technical Review, we highlight the major methodologies that are used to constrain the elastic properties of deep-mantle minerals and discuss their advantages, limitations and future potential. We focus on light-scattering techniques in the diamond-anvil-cell and ultrasonic methods in large-volume presses, which have provided the majority of elasticity data on deep-mantle minerals to date and will likely continue to do so in the foreseeable future. We summarize the current state of knowledge with respect to the elastic properties of typical minerals in the mantle transition zone and lower mantle, where substantial advances have recently been made, and highlight major gaps in the published data.

Key points

  • Seismology provides an incredibly detailed view of the structure of the Earth’s deep mantle.

  • We do not currently have enough constraints on the elastic properties of deep-mantle minerals to fully interpret the seismic data.

  • Brillouin spectroscopy and ultrasonic interferometry are the most used methods for measuring the elastic properties of mantle minerals.

  • Simultaneously high-pressure and high-temperature measurements remain challenging, but might be possible owing to recent analytical advances.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Interpretive cartoon of seismic structures in the Earth’s mantle.
Fig. 2: Mineralogy of the transition zone and lower mantle.
Fig. 3: Illustration of high-pressure elasticity experiments.
Fig. 4: Conditions covered by published light-scattering and ultrasonic experiments.


  1. 1.

    Romanowicz, B. Using seismic waves to image Earth’s internal structure. Nature 451, 266–268 (2008).

    Google Scholar 

  2. 2.

    Dziewonski, A. M. & Romanowicz, B. A. in Treatise on Geophysics 2nd edn (ed. Schubert, G.) 1–28 (Elsevier, 2015).

  3. 3.

    French, S. W. & Romanowicz, B. Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots. Nature 525, 95–99 (2015).

    Google Scholar 

  4. 4.

    Hosseini, K. et al. Global mantle structure from multifrequency tomography using P, PP and P-diffracted waves. Geophys. J. Int. 220, 96–141 (2020).

    Google Scholar 

  5. 5.

    Waszek, L., Schmerr, N. C. & Ballmer, M. D. Global observations of reflectors in the mid-mantle with implications for mantle structure and dynamics. Nat. Commun. 9, 385 (2018).

    Google Scholar 

  6. 6.

    Garnero, E. J., McNamara, A. K. & Shim, S.-H. Continent-sized anomalous zones with low seismic velocity at the base of Earth’s mantle. Nat. Geosci. 9, 481–489 (2016).

    Google Scholar 

  7. 7.

    Ritsema, J., van Heijst, H. J. & Woodhouse, J. H. Global transition zone tomography. J. Geophys. Res. Solid Earth 109, B02302 (2004).

    Google Scholar 

  8. 8.

    Kaneshima, S. Seismic scatterers in the mid-lower mantle. Phys. Earth Planet. Inter. 257, 105–114 (2016).

    Google Scholar 

  9. 9.

    Birch, F. Elasticity and constitution of the Earth’s interior. J. Geophys. Res. 57, 227–286 (1952).

    Google Scholar 

  10. 10.

    Zhang, J. S. & Bass, J. D. Sound velocities of olivine at high pressures and temperatures and the composition of Earth’s upper mantle. Geophys. Res. Lett. 43, 9611–9618 (2016).

    Google Scholar 

  11. 11.

    Brown, J. M. & Shankland, T. J. Thermodynamic parameters in the Earth as determined from seismic profiles. Geophys. J. Int. 66, 579–596 (1981).

    Google Scholar 

  12. 12.

    Kurnosov, A., Marquardt, H., Frost, D. J., Ballaran, T. B. & Ziberna, L. Evidence for a Fe3+-rich pyrolitic lower mantle from (Al,Fe)-bearing bridgmanite elasticity data. Nature 543, 543–546 (2017).

    Google Scholar 

  13. 13.

    Murakami, M., Ohishi, Y., Hirao, N. & Hirose, K. A perovskitic lower mantle inferred from high-pressure, high-temperature sound velocity data. Nature 485, 90–94 (2012).

    Google Scholar 

  14. 14.

    Gréaux, S. et al. Sound velocity of CaSiO3 perovskite suggests the presence of basaltic crust in the Earth’s lower mantle. Nature 565, 218–221 (2019).

    Google Scholar 

  15. 15.

    Crowhurst, J. C., Brown, J. M., Goncharov, A. F. & Jacobsen, S. D. Elasticity of (Mg,Fe)O through the spin transition of iron in the lower mantle. Science 319, 451–453 (2008).

    Google Scholar 

  16. 16.

    Fu, S. et al. Single-crystal elasticity of (Al,Fe)-bearing bridgmanite and seismic shear wave radial anisotropy at the topmost lower mantle. Earth Planet. Sci. Lett. 518, 116–126 (2019).

    Google Scholar 

  17. 17.

    Marquardt, H. et al. Elastic softening of (Mg0.8Fe0.2)O ferropericlase across the iron spin crossover measured at seismic frequencies. Geophys. Res. Lett. 45, 6862–6868 (2018).

    Google Scholar 

  18. 18.

    Thomson, A. R. et al. Seismic velocities of CaSiO3 perovskite can explain LLSVPs in Earth’s lower mantle. Nature 572, 643–647 (2019).

    Google Scholar 

  19. 19.

    Antonangeli, D. et al. Spin crossover in ferropericlase at high pressure: a seismologically transparent transition? Science 331, 64–67 (2011).

    Google Scholar 

  20. 20.

    Schulze, K. et al. Seismically invisible water in Earth’s transition zone? Earth Planet. Sci. Lett. 498, 9–16 (2018).

    Google Scholar 

  21. 21.

    Higo, Y., Inoue, T., Irifune, T., Funakoshi, K.-I. & Li, B. Elastic wave velocities of (Mg0.91Fe0.09)2SiO4 ringwoodite under P–T conditions of the mantle transition region. Phys. Earth Planet. Inter. 166, 167–174 (2008).

    Google Scholar 

  22. 22.

    Fu, S. et al. Abnormal elasticity of Fe-bearing bridgmanite in the Earth’s lower mantle. Geophys. Res. Lett. 45, 4725–4732 (2018).

    Google Scholar 

  23. 23.

    Marquardt, H., Speziale, S., Reichmann, H. J., Frost, D. J. & Schilling, F. R. Single-crystal elasticity of (Mg0.9Fe0.1)O to 81 GPa. Earth Planet. Sci. Lett. 287, 345–352 (2009).

    Google Scholar 

  24. 24.

    Marquardt, H. et al. Elastic shear anisotropy of ferropericlase in Earth’s lower mantle. Science 324, 224–226 (2009).

    Google Scholar 

  25. 25.

    Badro, J. et al. Iron partitioning in Earth’s mantle: toward a deep lower mantle discontinuity. Science 300, 789–791 (2003).

    Google Scholar 

  26. 26.

    Wu, Z. & Wentzcovitch, R. M. Spin crossover in ferropericlase and velocity heterogeneities in the lower mantle. Proc. Natl Acad. Sci.USA 111, 10468–10472 (2014).

    Google Scholar 

  27. 27.

    Wu, Z. Velocity structure and composition of the lower mantle with spin crossover in ferropericlase. J. Geophys. Res. Solid Earth 121, 2304–2314 (2016).

    Google Scholar 

  28. 28.

    Stixrude, L. & Lithgow-Bertelloni, C. Thermodynamics of mantle minerals - I. Physical properties. Geophys. J. Int. 162, 610–632 (2005).

    Google Scholar 

  29. 29.

    Birch, F. The effect of pressure upon the elastic parameters of isotropic solids, according to Murnaghan’s theory of finite strain. J. Appl. Phys. 9, 279–288 (1938).

    Google Scholar 

  30. 30.

    Karki, B. B., Stixrude, L. & Wentzcovitch, R. M. High-pressure elastic properties of major materials of Earth’s mantle from first principles. Rev. Geophys. 39, 507–534 (2001).

    Google Scholar 

  31. 31.

    Bass, J. D. in Treatise on Geophysics Vol. 2 (ed. Schubert, G.) 269–291 (Elsevier, 2007).

  32. 32.

    Angel, R. J., Jackson, J. M., Reichmann, H. J. & Speziale, S. Elasticity measurements on minerals: a review. Eur. J. Mineral. 21, 525–550 (2009).

    Google Scholar 

  33. 33.

    Isaak, D. G., Anderson, O. L. & Goto, T. Measured elastic moduli of single-crystal MgO up to 1800 K. Phys. Chem. Miner. 16, 704–713 (1989).

    Google Scholar 

  34. 34.

    Isaak, D. G. et al. The temperature dependence of the elasticity of Fe-bearing wadsleyite. Phys. Earth Planet. Inter. 182, 107–112 (2010).

    Google Scholar 

  35. 35.

    Loong, C.-K. Inelastic scattering and applications. Rev. Mineral. Geochem. 63, 233–254 (2006).

    Google Scholar 

  36. 36.

    Fiquet, G. et al. Application of inelastic X-ray scattering to the measurements of acoustic wave velocities in geophysical materials at very high pressure. Phys. Earth Planet. Inter. 143–144, 5–18 (2004).

    Google Scholar 

  37. 37.

    Burkel, E. Phonon spectroscopy by inelastic x-ray scattering. Rep. Prog. Phys. 63, 171–232 (2000).

    Google Scholar 

  38. 38.

    Sturhahn, W. Nuclear resonant spectroscopy. J. Phys. Condens. Matter 16, S497–S530 (2004).

    Google Scholar 

  39. 39.

    Wicks, J. K., Jackson, J. M. & Sturhahn, W. Very low sound velocities in iron-rich (Mg,Fe)O: Implications for the core-mantle boundary region. Geophys. Res. Lett. 37, L15304 (2010).

    Google Scholar 

  40. 40.

    Wicks, J. K., Jackson, J. M., Sturhahn, W. & Zhang, D. Sound velocity and density of magnesiowüstites: implications for ultralow-velocity zone topography. Geophys. Res. Lett. 44, 2148–2158 (2017).

    Google Scholar 

  41. 41.

    Finkelstein, G. J. et al. Strongly anisotropic magnesiowüstite in Earth’s lower mantle. J. Geophys. Res. 123, 4740–4750 (2018).

    Google Scholar 

  42. 42.

    Lin, J.-F. et al. Sound velocities of ferropericlase in the Earth’s lower mantle. Geophys. Res. Lett. 33, L22304 (2006).

    Google Scholar 

  43. 43.

    Mao, W. L. et al. Iron-rich post-perovskite and the origin of ultralow-velocity zones. Science 312, 564–565 (2006).

    Google Scholar 

  44. 44.

    McCammon, C. et al. Sound velocities of bridgmanite from density of states determined by nuclear inelastic scattering and first-principles calculations. Prog. Earth Planet. Sci. 3, 10 (2016).

    Google Scholar 

  45. 45.

    Jacobsen, S. D. et al. Structure and elasticity of single-crystal (Mg,Fe)O and a new method of generating shear waves for gigahertz ultrasonic interferometry. J. Geophys. Res. Solid Earth 107, 2037 (2002).

    Google Scholar 

  46. 46.

    Jacobsen, S. D., Spetzler, H., Reichmann, H. J. & Smyth, J. R. Shear waves in the diamond-anvil cell reveal pressure-induced instability in (Mg,Fe)O. Proc. Natl Acad. Sci. USA 101, 5867–5871 (2004).

    Google Scholar 

  47. 47.

    Jacobsen, S. D. et al. Gigahertz ultrasonic interferometry at high P and T: new tools for obtaining a thermodynamic equation of state. J. Phys. Condens. Matter 14, 11525–11530 (2002).

    Google Scholar 

  48. 48.

    Li, B. & Liebermann, R. C. Study of the Earth’s interior using measurements of sound velocities in minerals by ultrasonic interferometry. Phys. Earth Planet. Inter. 233, 135–153 (2014).

    Google Scholar 

  49. 49.

    Decremps, F. et al. Sound velocity of iron up to 152 GPa by picosecond acoustics in diamond anvil cell. Geophys. Res. Lett. 41, 1459–1464 (2014).

    Google Scholar 

  50. 50.

    Edmund, E. et al. Picosecond acoustics technique to measure the sound velocities of Fe-Si alloys and Si single-crystals at high pressure. Minerals 10, 214 (2020).

    Google Scholar 

  51. 51.

    Whitfield, C. H., Brody, E. M. & Bassett, W. A. Elastic moduli of NaCl by Brillouin scattering at high pressure in a diamond anvil cell. Rev. Sci. Instrum. 47, 942–947 (1976).

    Google Scholar 

  52. 52.

    Sinogeikin, S. V. & Bass, J. D. Single-crystal elasticity of pyrope and MgO to 20 GPa by Brillouin scattering in the diamond cell. Phys. Earth Planet. Inter. 120, 43–62 (2000).

    Google Scholar 

  53. 53.

    Speziale, S., Marquardt, H. & Duffy, T. S. Brillouin scattering and its application in geosciences. Rev. Mineral. Geochem. 78, 543–603 (2014).

    Google Scholar 

  54. 54.

    Speziale, S. & Duffy, T. S. Single-crystal elastic constants of fluorite (CaF2) to 9.3 GPa. Phys. Chem. Miner. 29, 465–472 (2002).

    Google Scholar 

  55. 55.

    Kurnosov, A., Marquardt, H., Frost, D. J., Ballaran, T. B. & Ziberna, L. Kurnosov et al. reply. Nature 564, E27–E31 (2018).

    Google Scholar 

  56. 56.

    Lin, J.-F., Mao, Z., Yang, J. & Fu, S. Elasticity of lower-mantle bridgmanite. Nature 564, E18–E26 (2018).

    Google Scholar 

  57. 57.

    Yang, J., Tong, X., Lin, J.-F., Okuchi, T. & Tomioka, N. Elasticity of ferropericlase across the spin crossover in the Earth’s lower mantle. Sci. Rep. 5, 17188 (2015).

    Google Scholar 

  58. 58.

    Buchen, J. et al. High-pressure single-crystal elasticity of wadsleyite and the seismic signature of water in the shallow transition zone. Earth Planet. Sci. Lett. 498, 77–87 (2018).

    Google Scholar 

  59. 59.

    Mao, Z. et al. Elasticity of single-crystal olivine at high pressures and temperatures. Earth Planet. Sci. Lett. 426, 204–215 (2015).

    Google Scholar 

  60. 60.

    Schulze, K., Buchen, J., Marquardt, K. & Marquardt, H. Multi-sample loading technique for comparative physical property measurements in the diamond-anvil cell. High Press. Res. 37, 159–169 (2017).

    Google Scholar 

  61. 61.

    Murakami, M., Sinogeikin, S. V., Litasov, K., Ohtani, E. & Bass, J. D. Single-crystal elasticity of iron-bearing majorite to 26 GPa: implications for seismic velocity structure of the mantle transition zone. Earth Planet. Sci. Lett. 274, 339–345 (2008).

    Google Scholar 

  62. 62.

    Pamato, M. G. et al. Single crystal elasticity of majoritic garnets: Stagnant slabs and thermal anomalies at the base of the transition zone. Earth Planet. Sci. Lett. 451, 114–124 (2016).

    Google Scholar 

  63. 63.

    Sanchez-Valle, C., Wang, J. & Rohrbach, A. Effect of calcium on the elasticity of majoritic garnets and the seismic gradients in the mantle transition zone. Phys. Earth Planet. Inter. 293, 106272 (2019).

    Google Scholar 

  64. 64.

    Sinogeikin, S. V., Bass, J. D. & Katsura, T. Single-crystal elasticity of gamma-(Mg0.91Fe0.09)2SiO4 to high pressures and to high temperatures. Geophys. Res. Lett. 28, 4335–4338 (2001).

    Google Scholar 

  65. 65.

    Wang, J., Sinogeikin, S., Inoue, T. & Bass, J. D. Elastic properties of hydrous ringwoodite at high-pressure conditions. Geophys. Res. Lett. 33, L14308 (2006).

    Google Scholar 

  66. 66.

    Jackson, J. M. et al. Single-crystal elasticity and sound velocities of (Mg0.94Fe0.06)O ferropericlase to 20 GPa. J. Geophys. Res. 111, B09203 (2006).

    Google Scholar 

  67. 67.

    Wang, J., Bass, J. D. & Kastura, T. Elastic properties of iron-bearing wadsleyite to 17.7 GPa: Implications for mantle mineral models. Phys. Earth Planet. Inter. 228, 92–96 (2014).

    Google Scholar 

  68. 68.

    Mao, Z. et al. Effect of hydration on the single-crystal elasticity of Fe-bearing wadsleyite to 12 GPa. Am. Mineral. 96, 1606–1612 (2011).

    Google Scholar 

  69. 69.

    Mao, Z. et al. Elasticity of hydrous wadsleyite to 12 GPa: implications for Earth’s transition zone. Geophys. Res. Lett. 35, L21305 (2008).

    Google Scholar 

  70. 70.

    Zha, C.-s. et al. Single-crystal elasticity of beta-Mg2SiO4 to the pressure of the 410 km seismic discontinuity in the Earth’s mantle. Earth Planet. Sci. Lett. 147, E9–E15 (1997).

    Google Scholar 

  71. 71.

    Mao, Z. et al. Sound velocities of hydrous ringwoodite to 16 GPa and 673 K. Earth Planet. Sci. Lett. 331–332, 112–119 (2012).

    Google Scholar 

  72. 72.

    Yang, J. et al. Elasticity of ferropericlase and seismic heterogeneity in the Earth’s lower mantle. J. Geophys. Res. Solid Earth 121, 8488–8500 (2016).

    Google Scholar 

  73. 73.

    Fan, D. et al. Elasticity of single-crystal periclase at high pressure and temperature: the effect of iron on the elasticity and seismic parameters of ferropericlase in the lower mantle. Am. Mineral. 104, 262–275 (2019).

    Google Scholar 

  74. 74.

    Zhang, J. S., Bass, J. D. & Zhu, G. Single-crystal Brillouin spectroscopy with CO2 laser heating and variable q. Rev. Sci. Instrum. 86, 063905 (2015).

    Google Scholar 

  75. 75.

    Kurnosov, A., Marquardt, H., Dubrovinsky, L. & Potapkin, V. A waveguide-based flexible CO2-laser heating system for diamond-anvil cell applications. C. R. Geosci. 351, 280–285 (2019).

    Google Scholar 

  76. 76.

    Sinogeikin, S. V., Lakshtanov, D. L., Nicholas, J. D. & Bass, J. D. Sound velocity measurements on laser-heated MgO and Al2O3. Phys. Earth Planet. Inter. 143–144, 575–586 (2004).

    Google Scholar 

  77. 77.

    Sinogeikin, S. V., Lakshtanov, D. L., Nicholas, J. D., Jackson, J. M. & Bass, J. D. High temperature elasticity measurements on oxides by Brillouin spectroscopy with resistive and IR laser heating. J. Eur. Ceram. Soc. 25, 1313–1324 (2005).

    Google Scholar 

  78. 78.

    Kriesel, J. M et al. Hollow core fiber optics for mid-wave and long-wave infrared spectroscopy Proc. SPIE https://doi.org/10.1117/12.882840 (2011)

  79. 79.

    Marquardt, H. et al. Elastic properties of MgO nanocrystals and grain boundaries at high pressures by Brillouin scattering. Phys. Rev. B 84, 064131 (2011).

    Google Scholar 

  80. 80.

    Marquardt, H., Speziale, S., Jahn, S., Ganschow, S. & Schilling, F. R. Single-crystal elastic properties of (Y,Yb)3Al5O12. J. Appl. Phys. 106, 093519–093515 (2009).

    Google Scholar 

  81. 81.

    Buchen, J. et al. Equation of state of polycrystalline stishovite across the tetragonal-orthorhombic phase transition. J. Geophys. Res. 123, 7347–7360 (2018).

    Google Scholar 

  82. 82.

    Sinogeikin, S. V., Zhang, J. & Bass, J. D. Elasticity of single crystal and polycrystalline MgSiO3 perovskite by Brillouin spectroscopy. Geophys. Res. Lett. 31, L06620 (2004).

    Google Scholar 

  83. 83.

    Murakami, M. et al. Sound velocity of MgSiO3 post-perovskite phase; a constraint on the D′′ discontinuity. Earth Planet. Sci. Lett. 259, 18–23 (2007).

    Google Scholar 

  84. 84.

    Jackson, J. M., Zhang, J., Shu, J., Sinogeikin, S. V. & Bass, J. D. High-pressure sound velocities and elasticity of aluminous MgSiO3 perovskite to 45 GPa: Implications for lateral heterogeneity in Earth’s lower mantle. Geophys. Res. Lett. 32, L21305 (2005).

    Google Scholar 

  85. 85.

    Murakami, M., Sinogeikin, S. V., Hellwig, H., Bass, J. D. & Li, J. Sound velocity of MgSiO3 perovskite to Mbar pressure. Earth Planet. Sci. Lett. 256, 47–54 (2007).

    Google Scholar 

  86. 86.

    Sinogeikin, S. V. & Bass, J. D. Elasticity of majorite and a majorite-pyrope solid solution to high pressure: implications for the transition zone. Geophys. Res. Lett. 29, 1017 (2002).

    Google Scholar 

  87. 87.

    Asahara, Y. et al. Acoustic velocity measurements for stishovite across the post-stishovite phase transition under deviatoric stress: implications for the seismic features of subducting slabs in the mid-mantle. Am. Mineral. 98, 2053–2062 (2013).

    Google Scholar 

  88. 88.

    Kudo, Y. et al. Sound velocity measurements of CaSiO3 perovskite to 133 GPa and implications for lowermost mantle seismic anomalies. Earth Planet. Sci. Lett. 349–350, 1–7 (2012).

    Google Scholar 

  89. 89.

    Abramson, E. H., Brown, J. M. & Slutsky, L. J. Applications of impulsive stimulated scattering in the earth and planetary sciences. Annu. Rev. Phys. Chem. 50, 279–313 (1999).

    Google Scholar 

  90. 90.

    Li, B. & Liebermann, R. C. High-pressure geoscience special feature: indoor seismology by probing the Earth’s interior by using sound velocity measurements at high pressures and temperatures. Proc. Natl Acad. Sci. USA 104, 9145–9150 (2007).

    Google Scholar 

  91. 91.

    Chantel, J., Frost, D. J., McCammon, C. A., Jing, Z. & Wang, Y. Acoustic velocities of pure and iron-bearing magnesium silicate perovskite measured to 25 GPa and 1200 K. Geophys. Res. Lett. 39, L19307 (2012).

    Google Scholar 

  92. 92.

    Li, B., Kung, J. & Liebermann, R. C. Modern techniques in measuring elasticity of Earth materials at high pressure and high temperature using ultrasonic interferometry in conjunction with synchrotron X-radiation in multi-anvil apparatus. Phys. Earth Planet. Inter. 143, 559–574 (2004).

    Google Scholar 

  93. 93.

    Whitaker, M. L., Baldwin, K. J. & Huebsch, W. R. DIASCoPE: Directly integrated acoustic system combined with pressure experiments - a new method for fast acoustic velocity measurements at high pressure. Rev. Sci. Instrum. 88, 034901 (2017).

    Google Scholar 

  94. 94.

    Chen, G., Liebermann, R. C. & Weidner, D. J. Elasticity of single-crystal MgO to 8 gigapascals and 1600 Kelvin. Science 280, 1913–1916 (1998).

    Google Scholar 

  95. 95.

    Jacobsen, S. D., Smyth, J. R., Spetzler, H., Holl, C. M. & Frost, D. J. Sound velocities and elastic constants of iron-bearing hydrous ringwoodite. Phys. Earth Planet. Inter. 143-144, 47–56 (2004).

    Google Scholar 

  96. 96.

    Cook, R. K. Variation of Elastic constants and static strains with hydrostatic pressure: a method for calculation from ultrasonic measurements. J. Acoust. Soc. Am. 29, 445–449 (1957).

    Google Scholar 

  97. 97.

    Kunimoto, T., Irifune, T., Tange, Y. & Wada, K. Pressure generation to 50 GPa in Kawai-type multianvil apparatus using newly developed tungsten carbide anvils. High Press. Res. 36, 97–104 (2016).

    Google Scholar 

  98. 98.

    Yamazaki, D. et al. High-pressure generation in the Kawai-type multianvil apparatus equipped with tungsten-carbide anvils and sintered-diamond anvils, and X-ray observation on CaSnO3 and (Mg,Fe)SiO3. C. R. Geosci. 351, 253–259 (2019).

    Google Scholar 

  99. 99.

    Higo, Y., Irifune, T. & Funakoshi, K. I. Simultaneous high-pressure high-temperature elastic velocity measurement system up to 27 GPa and 1873 K using ultrasonic and synchrotron X-ray techniques. Rev. Sci. Instrum. 89, 014501 (2018).

    Google Scholar 

  100. 100.

    Jing, Z., Yu, T., Xu, M., Chantel, J. & Wang, Y. High-pressure sound velocity measurements of liquids using in situ ultrasonic techniques in a multianvil apparatus. Minerals 10, 126 (2020).

    Google Scholar 

  101. 101.

    Pennicard, D. et al. LAMBDA 2M GaAs — A multi-megapixel hard X-ray detector for synchrotrons. J. Instrum. 13, C01026 (2018).

    Google Scholar 

  102. 102.

    Jenei, Z. et al. New dynamic diamond anvil cells for tera-pascal per second fast compression x-ray diffraction experiments. Rev. Sci. Instrum. 90, 065114 (2019).

    Google Scholar 

  103. 103.

    Mendez, A. S. J. et al. A resistively-heated dynamic diamond anvil cell (RHdDAC) for fast compression x-ray diffraction experiments at high temperatures. Rev. Sci. Instrum. https://doi.org/10.1063/1065.0007557 (2020).

    Article  Google Scholar 

  104. 104.

    Sinogeikin, S. et al. Brillouin spectrometer interfaced with synchrotron radiation for simultaneous x-ray density and acoustic velocity measurements. Rev. Sci. Instrum. 77, 103905–103911 (2006).

    Google Scholar 

  105. 105.

    Murakami, M., Asahara, Y., Ohishi, Y., Hirao, N. & Hirose, K. Development of in situ Brillouin spectroscopy at high pressure and high temperature with synchrotron radiation and infrared laser heating system: application to the Earth’s deep interior. Phys. Earth Planet. Inter. 174, 282–291 (2009).

    Google Scholar 

  106. 106.

    Trots, D. M. et al. The Sm:YAG primary fluorescence pressure scale. J. Geophys. Res. Solid Earth 118, 5805–5813 (2013).

    Google Scholar 

  107. 107.

    Matsui, M., Higo, Y., Okamoto, Y., Irifune, T. & Funakoshi, K.-I. Simultaneous sound velocity and density measurements of NaCl at high temperatures and pressures: application as a primary pressure standard. Am. Mineral. 97, 1670–1675 (2012).

    Google Scholar 

  108. 108.

    Gréaux, S. et al. Sound velocities of aluminum-bearing stishovite in the mantle transition zone. Geophys. Res. Lett. 43, 4239–4246 (2016).

    Google Scholar 

  109. 109.

    Irifune, T. et al. Sound velocities of majorite garnet and the composition of the mantle transition region. Nature 451, 814–817 (2008).

    Google Scholar 

  110. 110.

    Liu, W., Kung, J., Li, B. S., Nishiyama, N. & Wang, Y. B. Elasticity of (Mg0.87Fe0.13)2SiO4 wadsleyite to 12 GPa and 1073 K. Phys. Earth Planet. Inter. 174, 98–104 (2009).

    Google Scholar 

  111. 111.

    Isshiki, M. et al. Stability of magnesite and its high-pressure form in the lowermost mantle. Nature 427, 60–63 (2004).

    Google Scholar 

  112. 112.

    Nishi, M. et al. Stability of hydrous silicate at high pressures and water transport to the deep lower mantle. Nat. Geosci. 7, 224–227 (2014).

    Google Scholar 

  113. 113.

    Fu, S. et al. Melting behavior of the lower-mantle ferropericlase across the spin crossover: Implication for the ultra-low velocity zones at the lowermost mantle. Earth Planet. Sci. Lett. 503, 1–9 (2018).

    Google Scholar 

  114. 114.

    Li, X. et al. Elasticity of single-crystal superhydrous phase B at simultaneous high pressure-temperature conditions. Geophys. Res. Lett. 43, 8458–8465 (2016).

    Google Scholar 

  115. 115.

    Liu, L.-g, Okamoto, K., Yang, Y.-j, Chen, C.-c & Lin, C.-C. Elasticity of single-crystal phase D (a dense hydrous magnesium silicate) by Brillouin spectroscopy. Solid State Commun. 132, 517–520 (2004).

    Google Scholar 

  116. 116.

    Rosa, A. D., Sanchez-Valle, C. & Ghosh, S. Elasticity of phase D and implication for the degree of hydration of deep subducted slabs. Geophys. Res. Lett. 39, L06304 (2012).

    Google Scholar 

  117. 117.

    Satta, N. et al. Single-crystal elasticity of iron-bearing phase E and seismic detection of water in Earth’s upper mantle. Am. Mineral. 104, 1526–1529 (2019).

    Google Scholar 

  118. 118.

    Koelemeijer, P., Ritsema, J., Deuss, A. & van Heijst, H.-J. SP12RTS: a degree-12 model of shear- and compressional-wave velocity for Earth’s mantle. Geophys. J. Int. 204, 1024–1039 (2016).

    Google Scholar 

  119. 119.

    Borgeaud, A. F. E., Kawai, K. & Geller, R. J. Three-dimensional S velocity structure of the mantle transition zone beneath Central America and the Gulf of Mexico inferred using waveform inversion. J. Geophys. Res. Solid Earth 124, 9664–9681 (2019).

    Google Scholar 

  120. 120.

    Deschamps, F., Konishi, K., Fuji, N. & Cobden, L. Radial thermo-chemical structure beneath Western and Northern Pacific from seismic waveform inversion. Earth Planet. Sci. Lett. 520, 153–163 (2019).

    Google Scholar 

  121. 121.

    Zhang, B. L., Ni, S. D. & Chen, Y. L. Seismic attenuation in the lower mantle beneath Northeast China constrained from short-period reflected core phases at short epicentral distances. Earth Planet. Phys. 3, 537–546 (2019).

    Google Scholar 

  122. 122.

    Liu, C. & Grand, S. P. Seismic attenuation in the African LLSVP estimated from PcS phases. Earth Planet. Sci. Lett. 489, 8–16 (2018).

    Google Scholar 

  123. 123.

    Hwang, Y. K. & Ritsema, J. Radial Qμ structure of the lower mantle from teleseismic body-wave spectra. Earth Planet. Sci. Lett. 303, 369–375 (2011).

    Google Scholar 

  124. 124.

    Li, L. & Weidner, D. J. Effect of phase transitions on compressional-wave velocities in the Earth’s mantle. Nature 454, 984–986 (2008).

    Google Scholar 

  125. 125.

    Faul, U. & Jackson, I. Transient creep and strain energy dissipation: an experimental perspective. Annu. Rev. Earth Planet. Sci. 43, 541–569 (2015).

    Google Scholar 

  126. 126.

    Immoor, J. et al. Evidence for {100}<011> slip in ferropericlase in Earth’s lower mantle from high-pressure/high-temperature experiments. Earth Planet. Sci. Lett. 489, 251–257 (2018).

    Google Scholar 

  127. 127.

    Immoor, J. et al. An improved setup for radial diffraction experiments at high pressures and high temperatures in a resistive graphite-heated diamond anvil cell. Rev. Sci. Instrum. 91, 045121 (2020).

    Google Scholar 

  128. 128.

    Banerdt, W. B. et al. Initial results from the InSight mission on Mars. Nat. Geosci. 13, 183–189 (2020).

    Google Scholar 

  129. 129.

    Dziewonski, A. M. & Anderson, D. L. Preliminary reference Earth model. Phys. Earth Planet. Inter. 25, 297–356 (1981).

    Google Scholar 

  130. 130.

    Kennett, B. L. N., Engdahl, E. R. & Buland, R. Constraints on seismic velocities in the Earth from traveltimes. Geophys. J. Int. 122, 108–124 (1995).

    Google Scholar 

  131. 131.

    Sinogeikin, S. V., Bass, J. D. & Katsura, T. Single-crystal elasticity of ringwoodite to high pressures and high temperatures: implications for 520 km seismic discontinuity. Phys. Earth Planet. Inter. 136, 41–66 (2003).

    Google Scholar 

  132. 132.

    Sinogeikin, S. V. & Bass, J. D. Single-crystal elasticity of MgO at high pressure. Phys. Rev. B 59, R14141 (1999).

    Google Scholar 

  133. 133.

    Zha, C.-s, Mao, H.-k & Hemley, R. J. Elasticity of MgO and a primary pressure scale to 55 GPa. Proc. Natl Acad. Sci.USA 97, 13494–13499 (2000).

    Google Scholar 

  134. 134.

    Jiang, F., Gwanmesia, G. D., Dyuzheva, T. I. & Duffy, T. S. Elasticity of stishovite and acoustic mode softening under high pressure by Brillouin scattering. Phys. Earth Planet. Inter. 172, 235–240 (2009).

    Google Scholar 

  135. 135.

    Wu, Y. et al. Elasticity of single-crystal NAL phase at high pressure: a potential source of the seismic anisotropy in the lower mantle. J. Geophys. Res. Solid Earth 121, 5696–5707 (2016).

    Google Scholar 

  136. 136.

    Jacobsen, S. D. & Smyth, J. R. in Earth’s Deep Water Cycle Vol. 168 (eds Jacobsen, S. D. & Van Der Lee, S.) 131–145 (Wiley, 2006).

  137. 137.

    Li, B. & Liebermann, R. C. Sound velocities of wadsleyite β-(Mg0.88Fe0.12)2SiO4 to 10 GPa. Am. Mineral. 85, 292–295 (2000).

    Google Scholar 

  138. 138.

    Li, B., Liebermann, R. C. & Weidner, D. J. Elastic moduli of wadsleyite (beta-Mg2SiO4) to 7 gigapascals and 873 Kelvin. Science 281, 675–677 (1998).

    Google Scholar 

  139. 139.

    Liu, W., Kung, J., Li, B., Nishiyama, N. & Wang, Y. Elasticity of (Mg0.87Fe0.13)2SiO4 wadsleyite to 12 GPa and 1073 K. Phys. Earth Planet. Inter. 174, 98–104 (2009).

    Google Scholar 

  140. 140.

    Higo, Y., Inoue, T., Li, B., Irifune, T. & Liebermann, R. C. The effect of iron on the elastic properties of ringwoodite at high pressure. Phys. Earth Planet. Inter. 159, 276–285 (2006).

    Google Scholar 

  141. 141.

    Gwanmesia, G. D., Wang, L., Triplett, R. & Liebermann, R. C. Pressure and temperature dependence of the elasticity of pyrope–majorite [Py60Mj40 and Py50Mj50] garnets solid solution measured by ultrasonic interferometry technique. Phys. Earth Planet. Inter. 174, 105–112 (2009).

    Google Scholar 

  142. 142.

    Liu, J., Chen, G., Gwanmesia, G. D. & Liebermann, R. C. Elastic wave velocities of pyrope–majorite garnets (Py62Mj38 and Py50Mj50) to 9 GPa. Phys. Earth Planet. Inter. 120, 153–163 (2000).

    Google Scholar 

  143. 143.

    Li, B. & Zhang, J. Pressure and temperature dependence of elastic wave velocity of MgSiO3 perovskite and the composition of the lower mantle. Phys. Earth Planet. Inter. 151, 143–154 (2005).

    Google Scholar 

  144. 144.

    Sinelnikov, Y. D., Chen, G., Neuville, D. R., Vaughan, M. T. & Liebermann, R. C. Ultrasonic shear wave velocities of MgSiO3 perovskite at 8 GPa and 800 K and lower mantle composition. Science 281, 677–679 (1998).

    Google Scholar 

  145. 145.

    Kung, J., Li, B., Weidner, D. J., Zhang, J. & Liebermann, R. C. Elasticity of (Mg0.83Fe0.17)O ferropericlase at high pressure: ultrasonic measurements in conjunction with X-radiation techniques. Earth Planet. Sci. Lett. 203, 557–566 (2002).

    Google Scholar 

  146. 146.

    Zhou, C., Gréaux, S., Nishiyama, N., Irifune, T. & Higo, Y. Sound velocities measurement on MgSiO3 akimotoite at high pressures and high temperatures with simultaneous in situ X-ray diffraction and ultrasonic study. Phys. Earth Planet. Inter. 228, 97–105 (2014).

    Google Scholar 

  147. 147.

    Koelemeijer, P., Schuberth, B. S. A., Davies, D. R., Deuss, A. & Ritsema, J. Constraints on the presence of post-perovskite in Earth’s lowermost mantle from tomographic-geodynamic model comparisons. Earth Planet. Sci. Lett. 494, 226–238 (2018).

    Google Scholar 

  148. 148.

    Wu, Y. et al. Spin transition of ferric iron in the NAL phase: Implications for the seismic heterogeneities of subducted slabs in the lower mantle. Earth Planet. Sci. Lett. 434, 91–100 (2016).

    Google Scholar 

  149. 149.

    Vinnik, L. P., Oreshin, S. I., Speziale, S. & Weber, M. Mid-mantle layering from SKS receiver functions. Geophys. Res. Lett. 37, L24302 (2010).

    Google Scholar 

  150. 150.

    Jenkins, J., Deuss, A. & Cottaar, S. Converted phases from sharp 1000 km depth mid-mantle heterogeneity beneath Western Europe. Earth Planet. Sci. Lett. 459, 196–207 (2017).

    Google Scholar 

  151. 151.

    Lakshtanov, D. L. et al. The post-stishovite phase transition in hydrous alumina-bearing SiO2 in the lower mantle of the earth. Proc. Natl Acad. Sci. USA 104, 13588–13590 (2007).

    Google Scholar 

  152. 152.

    Komabayashi, T., Hirose, K., Sata, N., Ohishi, Y. & Dubrovinsky, L. S. Phase transition in CaSiO3 perovskite. Earth Planet. Sci. Lett. 260, 564–569 (2007).

    Google Scholar 

  153. 153.

    Kurashina, T., Hirose, K., Ono, S., Sata, N. & Ohishi, Y. Phase transition in Al-bearing CaSiO3 perovskite: implications for seismic discontinuities in the lower mantle. Phys. Earth Planet. Inter. 145, 67–74 (2004).

    Google Scholar 

  154. 154.

    Wu, Z. & Wentzcovitch, R. M. Composition versus temperature induced velocity heterogeneities in a pyrolitic lower mantle. Earth Planet. Sci. Lett. 457, 359–365 (2017).

    Google Scholar 

  155. 155.

    Cammarano, F., Marquardt, H., Speziale, S. & Tackley, P. J. Role of iron-spin transition in ferropericlase on seismic interpretation: a broad thermochemical transition in the mid mantle? Geophys. Res. Lett. 37, L03308 (2010).

    Google Scholar 

  156. 156.

    Catalli, K. et al. Effects of the Fe3+ spin transition on the properties of aluminous perovskite—New insights for lower-mantle seismic heterogeneities. Earth Planet. Sci. Lett. 310, 293–302 (2011).

    Google Scholar 

  157. 157.

    Shim, S.-H. et al. Stability of ferrous-iron-rich bridgmanite under reducing midmantle conditions. Proc. Natl Acad. Sci. USA 114, 6468–6473 (2017).

    Google Scholar 

  158. 158.

    Glazyrin, K. et al. Magnesium silicate perovskite and effect of iron oxidation state on its bulk sound velocity at the conditions of the lower mantle. Earth Planet. Sci. Lett. 393, 182–186 (2014).

    Google Scholar 

  159. 159.

    Fujino, K. et al. Spin transition of ferric iron in Al-bearing Mg–perovskite up to 200 GPa and its implication for the lower mantle. Earth Planet. Sci. Lett. 317–318, 407–412 (2012).

    Google Scholar 

  160. 160.

    Iitaka, T., Hirose, K., Kawamura, K. & Murakami, M. The elasticity of the MgSiO3 post-perovskite phase in the Earth’s lowermost mantle. Nature 430, 442–445 (2004).

    Google Scholar 

  161. 161.

    Miyagi, L., Kanitpanyacharoen, W., Kaercher, P., Lee, K. K. M. & Wenk, H.-R. Slip systems in MgSiO3 post-perovskite: implications for D′′ anisotropy. Science 329, 1639–1641 (2010).

    Google Scholar 

  162. 162.

    Harte, B. Diamond formation in the deep mantle: the record of mineral inclusions and their distribution in relation to mantle dehydration zones. Mineral. Mag. 74, 189–215 (2010).

    Google Scholar 

  163. 163.

    Irifune, T. & Tsuchiya, T. in Treatise on Geophysics 2nd edn (ed. Schubert, G.) 33–60 (Elsevier, 2015).

  164. 164.

    Liu, Z. et al. Elastic wave velocity of polycrystalline Mj80Py20 garnet to 21 GPa and 2,000 K. Phys. Chem. Miner. 42, 213–222 (2015).

    Google Scholar 

  165. 165.

    Nye, J. F. Physical Properties of Crystals (Clarendon, 1985).

  166. 166.

    Hill, R. The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. Lond. A 65, 349–354 (1952).

    Google Scholar 

  167. 167.

    Watt, J. P., Davies, G. F. & O’Connell, R. J. The elastic properties of composite materials. Rev. Geophys. 14, 541–563 (1976).

    Google Scholar 

Download references


A.R.T. acknowledges the support of NERC grant NE/P017657/1.

Author information




H.M. and A.R.T. discussed the initial draft and wrote the article together.

Corresponding author

Correspondence to Hauke Marquardt.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Earth & Environment thanks J. Chantel, Z. Wu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marquardt, H., Thomson, A.R. Experimental elasticity of Earth’s deep mantle. Nat Rev Earth Environ 1, 455–469 (2020). https://doi.org/10.1038/s43017-020-0077-3

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing