Life and death of slow-moving landslides

Abstract

In the most destructive and catastrophic landslide events, rocks, soil and fluids can travel at speeds approaching several tens of metres per second. However, many landslides, commonly referred to as slow-moving landslides, creep at rates ranging from millimetres to several metres per year and can persist for years to decades. Although slow-moving landslides rarely claim lives, they can cause major damage to infrastructure and sometimes fail catastrophically, transitioning into fast-moving landslides that can result in thousands of casualties. In addition, slow-moving landslides are highly erosive features that control the landscape morphology in many mountainous regions (such as the California Coast Ranges or the Apennines). The persistent and long-term motion of slow-moving landslides provides an exceptional opportunity to investigate landslide processes and mechanisms. In this Review, we examine the environmental conditions (such as geology, climate and tectonics) of slow-moving-landslide-prone regions, analyse the forcings (for example, precipitation and groundwater, earthquakes, river erosion, anthropogenic forcings and external material supply) that drive their motion and investigate the subsequent implications of the different forcings on landslide dynamics. We then discuss circumstances in which slow-moving landslides can accelerate rapidly, move large distances or even fail catastrophically. Finally, we provide new perspectives and challenges for future landslide research.

Key points

  • Slow-moving landslides occur all around the world in mechanically weak rock and soil.

  • The persistent and long-term motion of slow-moving landslides provides an exceptional opportunity to investigate landslide processes and mechanisms.

  • The landslide velocity is modulated by external forcings (such as precipitation, earthquakes, material supply and anthropogenic activity).

  • Slow-moving landslides can sometimes accelerate rapidly and fail catastrophically.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The location of some of the best studied slow-moving landslides.
Fig. 2: Key characteristics of the compiled landslide database.
Fig. 3: Schematic demonstrating the possible forcings of landslides.
Fig. 4: Possible forcings for driving landslide acceleration.
Fig. 5: Schematics of landslide displacement and their associated mechanisms during the transition from slow to fast motion.
Fig. 6: Velocity map of ground motion over 3 years before the collapse of the Maoxian landslide, China.

References

  1. 1.

    Froude, M. J. & Petley, D. Global fatal landslide occurrence from 2004 to 2016. Nat. Hazards Earth Syst. Sci. 18, 2161–2181 (2018).

    Google Scholar 

  2. 2.

    Temple, P. H. & Rapp, A. Landslides in the Mgeta area, Western Uluguru mountains, Tanzania: Geomorphological effects of sudden heavy rainfall. Geogr. Ann. Ser. A Phys. Geogr. 54, 157–193 (1972).

    Google Scholar 

  3. 3.

    Keefer, D. K. Landslides caused by earthquakes. Geol. Soc. Am. Bull. 95, 406–421 (1984).

    Google Scholar 

  4. 4.

    Palmer, J. Creeping earth could hold secret to deadly landslides. Nature 548, 384–386 (2017).

    Google Scholar 

  5. 5.

    Mansour, M. F., Morgenstern, N. R. & Martin, C. D. Expected damage from displacement of slow-moving slides. Landslides 8, 117–131 (2011).

    Google Scholar 

  6. 6.

    Reid, M. E. et al. in Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment Vol. 1 (eds Rickenmann, D. & Chen, C.-L.) 155–166 (Millpress, 2003).

  7. 7.

    Booth, A. M. et al. Transient reactivation of a deep-seated landslide by undrained loading captured with repeat airborne and terrestrial lidar. Geophys. Res. Lett. 45, 4841–4850 (2018).

    Google Scholar 

  8. 8.

    Hendron, A. J. Jr & Patton, F. D. The Vaiont Slide, a geotechnical analysis based on how geologic observations of the failure surface. Technical Report GL-85-5 (U.S. Army Corps of Engineers, 1985).

  9. 9.

    Intrieri, E. et al. The Maoxian landslide as seen from space: detecting precursors of failure with Sentinel-1 data. Landslides 15, 123–133 (2018).

    Google Scholar 

  10. 10.

    Handwerger, A. L., Huang, M.-H., Fielding, E. J., Booth, A. M. & Bürgmann, R. A shift from drought to extreme rainfall drives a stable landslide to catastrophic failure. Sci. Rep. 9, 1569 (2019).

    Google Scholar 

  11. 11.

    Federico, A. et al. Prediction of time to slope failure: a general framework. Environ. Earth Sci. 66, 245–256 (2012).

    Google Scholar 

  12. 12.

    Carlà, T. et al. Perspectives on the prediction of catastrophic slope failures from satellite InSAR. Sci. Rep. 9, 14137 (2019).

    Google Scholar 

  13. 13.

    Lacroix, P., Bièvre, G., Pathier, E., Kniess, U. & Jongmans, D. Use of Sentinel-2 images for the detection of precursory motions before landslide failures. Remote. Sens. Environ. 215, 507–516 (2018).

    Google Scholar 

  14. 14.

    Desrues, M., Lacroix, P. & Brenguier, O. Satellite pre-failure detection and in situ monitoring of the landslide of the Tunnel du Chambon, French Alps. Geosciences 9, 313 (2019).

    Google Scholar 

  15. 15.

    Wang, F. et al. Movement of the Shuping landslide in the first four years after the initial impoundment of the Three Gorges Dam Reservoir, China. Landslides 5, 321–329 (2008).

    Google Scholar 

  16. 16.

    Dille, A. et al. Causes and triggers of deep-seated hillslope instability in the tropics–Insights from a 60-year record of Ikoma landslide (DR Congo). Geomorphology 345, 106835 (2019).

    Google Scholar 

  17. 17.

    Nappo, N., Peduto, D., Mavrouli, O., van Westen, C. J. & Gullà, G. Slow-moving landslides interacting with the road network: analysis of damage using ancillary data, in situ surveys and multi-source monitoring data. Eng. Geol. 260, 105244 (2019).

    Google Scholar 

  18. 18.

    Lacroix, P., Dehecq, A. & Taipe, E. Irrigation-triggered landslides in a Peruvian desert caused by modern intensive farming. Nat. Geosci. 13, 56–60 (2020).

    Google Scholar 

  19. 19.

    Wu, S. et al. Zonation of the landslide hazards in the forereservoir region of the Three Gorges Project on the Yangtze River. Eng. Geol. 59, 51–58 (2001).

    Google Scholar 

  20. 20.

    Mackey, B. H. & Roering, J. J. Sediment yield, spatial characteristics, and the long-term evolution of active earthflows determined from airborne lidar and historical aerial photographs, Eel River, California. Bulletin 123, 1560–1576 (2011).

    Google Scholar 

  21. 21.

    Simoni, A., Ponza, A., Picotti, V., Berti, M. & Dinelli, E. Earthflow sediment production and Holocene sediment record in a large Apennine catchment. Geomorphology 188, 42–53 (2013).

    Google Scholar 

  22. 22.

    Coe, J. A., McKenna, J. P., Godt, J. W. & Baum, R. L. Basal-topographic control of stationary ponds on a continuously moving landslide. Earth Surf. Process. Landf. 34, 264–279 (2009).

    Google Scholar 

  23. 23.

    Bontemps, N., Lacroix, P., Larose, E., Jara, J. & Taipe, E. Rain and small earthquakes maintain a slow-moving landslide in a persistent critical state. Nat. Commun. 11, 780 (2020).

    Google Scholar 

  24. 24.

    Nereson, A. L. & Finnegan, N. J. Drivers of earthflow motion revealed by an 80 yr record of displacement from Oak Ridge earthflow, Diablo Range, California, USA. Bulletin 131, 389–402 (2018).

    Google Scholar 

  25. 25.

    Iverson, R. M. & Major, J. J. Rainfall, ground-water flow, and seasonal movement at Minor Creek landslide, northwestern California: physical interpretation of empirical relations. Geol. Soc. Am. Bull. 99, 579–594 (1987).

    Google Scholar 

  26. 26.

    Krzeminska, D., Bogaard, T., Malet, J.-P. & Van Beek, L. A model of hydrological and mechanical feedbacks of preferential fissure flow in a slow-moving landslide. Hydrol. Earth Syst. Sci. 17, 947–959 (2013).

    Google Scholar 

  27. 27.

    Hungr, O., Leroueil, S. & Picarelli, L. The Varnes classification of landslide types, an update. Landslides 11, 167–194 (2013).

    Google Scholar 

  28. 28.

    Galloway, W. The landslide in the Rhymney valley. Nature 73, 425–426 (1906).

    Google Scholar 

  29. 29.

    Miller, W. J. The landslide at Point Firmin, California. Sci. Monthly 32, 464–469 (1931).

    Google Scholar 

  30. 30.

    Benson, W. N. Landslides and their relation to engineering in the Dunedin district, New Zealand. Econ. Geol. 41, 328–347 (1946).

    Google Scholar 

  31. 31.

    Crandell, D. R. Movement of the Slumgullion earthflow near Lake City, Colorado. Short Papers in the Geologic and Hydrologic Sciences B136–B139 (1961).

  32. 32.

    Schulz, W. H., McKenna, J. P., Kibler, J. D. & Biavati, G. Relations between hydrology and velocity of a continuously moving landslide — evidence of pore-pressure feedback regulating landslide motion? Landslides 6, 181–190 (2009).

    Google Scholar 

  33. 33.

    Schulz, W. H., Kean, J. W. & Wang, G. Landslide movement in southwest Colorado triggered by atmospheric tides. Nat. Geosci. 2, 863–866 (2009).

    Google Scholar 

  34. 34.

    Schulz, W. H. et al. Landslide kinematics and their potential controls from hourly to decadal timescales: Insights from integrating ground-based InSAR measurements with structural maps and long-term monitoring data. Geomorphology 285, 121–136 (2017).

    Google Scholar 

  35. 35.

    Schulz, W. H., Smith, J. B., Wang, G., Jiang, Y. & Roering, J. J. Clayey landslide initiation and acceleration strongly modulated by soil swelling. Geophys. Res. Lett. 45, 1888–1896 (2018).

    Google Scholar 

  36. 36.

    Helmstetter, A. & Garambois, S. Seismic monitoring of Séchilienne rockslide (French Alps): Analysis of seismic signals and their correlation with rainfalls. J. Geophys. Res. Earth Surf. 115, F03016 (2010).

    Google Scholar 

  37. 37.

    Mainsant, G. et al. Ambient seismic noise monitoring of a clay landslide: Toward failure prediction. J. Geophys. Res. Earth Surf. 117, F01030 (2012).

    Google Scholar 

  38. 38.

    Travelletti, J., Sailhac, P., Malet, J.-P., Grandjean, G. & Ponton, J. Hydrological response of weathered clay-shale slopes: Water infiltration monitoring with time-lapse electrical resistivity tomography. Hydrol. Process. 26, 2106–2119 (2012).

    Google Scholar 

  39. 39.

    Provost, F., Hibert, C. & Malet, J.-P. Automatic classification of endogenous landslide seismicity using the Random Forest supervised classifier. Geophys. Res. Lett. 44, 113–120 (2017).

    Google Scholar 

  40. 40.

    Delacourt, C., Allemand, P., Casson, B. & Vadon, H. Velocity field of the “La Clapière” landslide measured by the correlation of aerial and QuickBird satellite images. Geophys. Res. Lett. 31, L15619 (2004).

    Google Scholar 

  41. 41.

    Hilley, G. E., Bürgmann, R., Ferretti, A., Novali, F. & Rocca, F. Dynamics of slow-moving landslides from permanent scatterer analysis. Science 304, 1952–1955 (2004).

    Google Scholar 

  42. 42.

    Booth, A. M., Lamb, M. P., Avouac, J.-P. & Delacourt, C. Landslide velocity, thickness, and rheology from remote sensing: La Clapière landslide, France. Geophys. Res. Lett. 40, 4299–4304 (2013).

    Google Scholar 

  43. 43.

    Lacroix, P., Berthier, E. & Maquerhua, E. T. Earthquake-driven acceleration of slow-moving landslides in the Colca valley, Peru, detected from Pléiades images. Remote. Sens. Environ. 165, 148–158 (2015).

    Google Scholar 

  44. 44.

    Lacroix, P., Araujo, G., Hollingsworth, J. & Taipe, E. Self entrainment motion of a slow-moving landslide inferred from Landsat-8 time-series. J. Geophys. Res. Earth Surf. 124, 1201–1216 (2019).

    Google Scholar 

  45. 45.

    Bennett, G. L. et al. Historic drought puts the brakes on earthflows in Northern California. Geophys. Res. Lett. 43, 5725–5731 (2016).

    Google Scholar 

  46. 46.

    Stumpf, A., Malet, J.-P. & Delacourt, C. Correlation of satellite image time-series for the detection and monitoring of slow-moving landslides. Remote. Sens. Environ. 189, 40–55 (2017).

    Google Scholar 

  47. 47.

    Handwerger, A. L. et al. Widespread initiation, reactivation, and acceleration of landslides in the northern California Coast Ranges due to extreme rainfall. J. Geophys. Res. Earth Surf. 124, 1782–1797 (2019).

    Google Scholar 

  48. 48.

    Hutchinson, J. & Bhandari, R. Undrained loading, a fundamental mechanism of mudflows and other mass movements. Geotechnique 21, 353–358 (1971).

    Google Scholar 

  49. 49.

    Van Asch, T. W. J., Malet, J.-P. & Bogaard, T. A. The effect of groundwater fluctuations on the velocity pattern of slow-moving landslides. Nat. Hazards Earth Syst. Sci. 9, 739–749 (2009).

    Google Scholar 

  50. 50.

    Lacroix, P., Perfettini, H., Taipe, E. & Guillier, B. Coseismic and postseismic motion of a landslide: Observations, modeling, and analogy with tectonic faults. Geophys. Res. Lett. 41, 6676–6680 (2014).

    Google Scholar 

  51. 51.

    Handwerger, A. L., Rempel, A. W., Skarbek, R. M., Roering, J. J. & Hilley, G. E. Rate-weakening friction characterizes both slow sliding and catastrophic failure of landslides. Proc. Natl Acad. Sci. USA 113, 10281–10286 (2016).

    Google Scholar 

  52. 52.

    RESIF/OMIV. French multidisciplinary observatory of versant instabilities. RESIF - Réseau Sismologique et géodésique Français (RESIF/OMIV, 2006).

  53. 53.

    Colombo, A., Lanteri, L., Ramasco, M. & Troisi, C. Systematic GIS-based landslide inventory as the first step for effective landslide-hazard management. Landslides 2, 291–301 (2005).

    Google Scholar 

  54. 54.

    Jaboyedoff, M. et al. in Landslides Processes — from Geomorphologic Mapping to Dynamic Modeling (eds Malet, J. P., Remaître, A. & Bogaard, T.) 131–137 (CERG Editions, 2009).

  55. 55.

    Malet, J.-P., Maquaire, O., Locat, J. & Remaître, A. Assessing debris flow hazards associated with slow moving landslides: methodology and numerical analyses. Landslides 1, 83–90 (2004).

    Google Scholar 

  56. 56.

    Corsini, A., Pasuto, A., Soldati, M. & Zannoni, A. Field monitoring of the Corvara landslide (Dolomites, Italy) and its relevance for hazard assessment. Geomorphology 66, 149–165 (2005).

    Google Scholar 

  57. 57.

    Bièvre, G. et al. Paleotopographic control of landslides in lacustrine deposits (Trièves plateau, French western Alps). Geomorphology 125, 214–224 (2011).

    Google Scholar 

  58. 58.

    Lebourg, T., Binet, S., Tric, E., Jomard, H. & El Bedoui, S. Geophysical survey to estimate the 3D sliding surface and the 4D evolution of the water pressure on part of a deep seated landslide. Terra Nova 17, 399–406 (2005).

    Google Scholar 

  59. 59.

    Strozzi, T. et al. Combined observations of rock mass movements using satellite SAR interferometry, differential GPS, airborne digital photogrammetry, and airborne photography interpretation. J. Geophys. Res. Earth Surf. 115, F01014 (2010).

    Google Scholar 

  60. 60.

    Meric, O. et al. Application of geophysical methods for the investigation of the large gravitational mass movement of Séchilienne, France. Can. Geotech. J. 42, 1105–1115 (2005).

    Google Scholar 

  61. 61.

    Corominas, J., Moya, J., Ledesma, A., Lloret, A. & Gili, J. A. Prediction of ground displacements and velocities from groundwater level changes at the Vallcebre landslide (Eastern Pyrenees, Spain). Landslides 2, 83–96 (2005).

    Google Scholar 

  62. 62.

    Mantovani, F., Pasuto, A., Silvano, S. & Zannoni, A. Collecting data to define future hazard scenarios of the Tessina landslide. Int. J. Appl. Earth Obs. Geoinf. 2, 33–40 (2000).

    Google Scholar 

  63. 63.

    Merriam, R. Portuguese bend landslide, Palos Verdes Hills, California. J. Geol. 68, 140–153 (1960).

    Google Scholar 

  64. 64.

    Scheingross, J. S. et al. Fault-zone controls on the spatial distribution of slow-moving landslides. Bulletin 125, 473–489 (2013).

    Google Scholar 

  65. 65.

    Roering, J. J. et al. Beyond the angle of repose: A review and synthesis of landslide processes in response to rapid uplift, Eel River, Northern California. Geomorphology 236, 109–131 (2015).

    Google Scholar 

  66. 66.

    Nereson, A. L., Davila Olivera, S. & Finnegan, N. J. Field and remote-sensing evidence for hydro-mechanical isolation of a long-lived earthflow in central California. Geophys. Res. Lett. 45, 9672–9680 (2018).

    Google Scholar 

  67. 67.

    Schulz, W. H. & Wang, G. Residual shear strength variability as a primary control on movement of landslides reactivated by earthquake-induced ground motion: Implications for coastal Oregon, U.S. J. Geophys. Res. Earth Surf. 119, 1617–1635 (2014).

    Google Scholar 

  68. 68.

    Coe, J. A. et al. Seasonal movement of the Slumgullion landslide determined from Global Positioning System surveys and field instrumentation, July 1998–March 2002. Eng. Geol. 68, 67–101 (2003).

    Google Scholar 

  69. 69.

    Zhang, X., Phillips, C. & Pearce, A. Surface movement in an earthflow complex, Raukumara Peninsula, New Zealand. Geomorphology 4, 261–272 (1991).

    Google Scholar 

  70. 70.

    Massey, C., Petley, D., McSaveney, M. & Archibald, G. Basal sliding and plastic deformation of a slow, reactivated landslide in New Zealand. Eng. Geol. 208, 11–28 (2016).

    Google Scholar 

  71. 71.

    Macfarlane, D. F. Observations and predictions of the behaviour of large, slow-moving landslides in schist, Clyde Dam reservoir, New Zealand. Eng. Geol. 109, 5–15 (2009).

    Google Scholar 

  72. 72.

    Furuya, G., Sassa, K., Hiura, H. & Fukuoka, H. Mechanism of creep movement caused by landslide activity and underground erosion in crystalline schist, Shikoku Island, southwestern Japan. Eng. Geol. 53, 311–325 (1999).

    Google Scholar 

  73. 73.

    Peyret, M. et al. Monitoring of the large slow Kahrod landslide in Alborz mountain range (Iran) by GPS and SAR interferometry. Eng. Geol. 100, 131–141 (2008).

    Google Scholar 

  74. 74.

    Iverson, R. M. A constitutive equation for mass-movement behavior. J. Geol. 93, 143–160 (1985).

    Google Scholar 

  75. 75.

    Malet, J.-P. & Maquaire, O. in Proceedings of 1st International Conference on Fast Slope Movements (eds Malet, J.-P., Maquaire, O. & Picarelli, L.) 333–340 (Patron Editore, 2003).

  76. 76.

    Agliardi, F., Scuderi, M. M., Fusi, N. & Collettini, C. Slow-to-fast transition of giant creeping rockslides modulated by undrained loading in basal shear zones. Nat. Commun. 11, 1352 (2020).

    Google Scholar 

  77. 77.

    Glueer, F., Loew, S., Manconi, A. & Aaron, J. From toppling to sliding: progressive evolution of the Moosfluh Landslide, Switzerland. J. Geophys. Res. Earth Surf. 124, 2899–2919 (2020).

    Google Scholar 

  78. 78.

    El Bedoui, S., Guglielmi, Y., Lebourg, T. & Pérez, J.-L. Deep-seated failure propagation in a fractured rock slope over 10,000 years: the La Clapiere slope, the south-eastern French Alps. Geomorphology 105, 232–238 (2009).

    Google Scholar 

  79. 79.

    Le Roux, O. et al. CRE dating on the head scarp of a major landslide (Séchilienne, French Alps), age constraints on Holocene kinematics. Earth Planet. Sci. Lett. 280, 236–245 (2009).

    Google Scholar 

  80. 80.

    Guerriero, L. et al. Kinematic segmentation and velocity in earth flows: a consequence of complex basal-slip surfaces. Procedia Earth Planet. Sci. 16, 146–155 (2016).

    Google Scholar 

  81. 81.

    Zerathe, S. et al. Morphology, structure and kinematics of a rainfall controlled slow-moving Andean landslide, Peru. Earth Surf. Process. Landf. 41, 1477–1493 (2016).

    Google Scholar 

  82. 82.

    Bontemps, N., Lacroix, P. & Doin, M. Inversion of deformation fields time-series from optical images, and application to the long term kinematics of slow-moving landslides in Peru. Remote. Sens. Environ. 210, 144–158 (2018).

    Google Scholar 

  83. 83.

    Van Genuchten, P. M. & De Rijke, H. On pore water pressure variations causing slide velocities and accelerations observed in a seasonally active landslide. Earth Surf. Process. Landf. 14, 577–586 (1989).

    Google Scholar 

  84. 84.

    Handwerger, A. L., Roering, J. J. & Schmidt, D. A. Controls on the seasonal deformation of slow-moving landslides. Earth Planet. Sci. Lett. 377, 239–247 (2013).

    Google Scholar 

  85. 85.

    Malet, J.-P., Maquaire, O. & Calais, E. The use of Global Positioning System techniques for the continuous monitoring of landslides: application to the Super-Sauze earthflow (Alpes-de-Haute-Provence, France). Geomorphology 43, 33–54 (2002).

    Google Scholar 

  86. 86.

    Li, X., Zhao, C., Hölter, R., Datcheva, M. & Alimardani Lavasan, A. Modelling of a large landslide problem under water level fluctuation — model calibration and verification. Geosciences 9, 89 (2019).

    Google Scholar 

  87. 87.

    Iverson, R. M. Landslide triggering by rain infiltration. Water Resour. Res. 36, 1897–1910 (2000).

    Google Scholar 

  88. 88.

    Aleotti, P. A warning system for rainfall-induced shallow failures. Eng. Geol. 73, 247–265 (2004).

    Google Scholar 

  89. 89.

    Matsuura, S., Asano, S. & Okamoto, T. Relationship between rain and/or meltwater, pore-water pressure and displacement of a reactivated landslide. Eng. Geol. 101, 49–59 (2008).

    Google Scholar 

  90. 90.

    Bayer, B., Simoni, A., Mulas, M., Corsini, A. & Schmidt, D. Deformation responses of slow moving landslides to seasonal rainfall in the Northern Apennines, measured by InSAR. Geomorphology 308, 293–306 (2018).

    Google Scholar 

  91. 91.

    Osawa, H. et al. Seasonal transition of hydrological processes in a slow-moving landslide in a snowy region. Hydrol. Process. 32, 2695–2707 (2018).

    Google Scholar 

  92. 92.

    Zhou, C., Yin, K., Cao, Y. & Ahmed, B. Application of time series analysis and PSO–SVM model in predicting the Bazimen landslide in the Three Gorges Reservoir, china. Eng. Geol. 204, 108–120 (2016).

    Google Scholar 

  93. 93.

    Zhang, X., Phillips, C. & Marden, M. A comparison of earthflow movement mechanisms on forested and grassed slopes, Raukumara Peninsula, North Island, New Zealand. Geomorphology 6, 175–187 (1993).

    Google Scholar 

  94. 94.

    Terzaghi, K. Theoretical Soil Mechanics (Wiley, 1943).

  95. 95.

    Keefer, D. K. & Johnson, A. M. Earth flows; morphology, mobilization, and movement. Professional Paper 1264 (U.S. Government Publishing Office, 1983).

  96. 96.

    Picarelli, L., Urciuoli, G., Ramondini, M. & Comegna, L. Main features of mudslides in tectonised highly fissured clay shales. Landslides 2, 15–30 (2005).

    Google Scholar 

  97. 97.

    Fiolleau, S. et al. Seismic characterization of a clay-block rupture in Harmalière landslide, French Western Alps. Geophys. J. Int. 221, 1777–1788 (2020).

    Google Scholar 

  98. 98.

    Lu, N. & Godt, J. Infinite slope stability under steady unsaturated seepage conditions. Water Resour. Res. 44, W11404 (2008).

    Google Scholar 

  99. 99.

    Lu, N. & Godt, J. W. Hillslope Hydrology and Stability (Cambridge Univ. Press, 2013).

  100. 100.

    Iverson, R. M. et al. Acute sensitivity of landslide rates to initial soil porosity. Science 290, 513–516 (2000).

    Google Scholar 

  101. 101.

    Van Asch, T. W. J., Hendriks, M. R., Hessel, R. & Rappange, F. E. Hydrological triggering conditions of landslides in varved clays in the French Alps. Eng. Geol. 42, 239–251 (1996).

    Google Scholar 

  102. 102.

    Van Asch, T. J. W., Buma, J. & Van Beek, L. P. H. A view on some hydrological triggering systems in landslides. Geomorphology 30, 25–32 (1999).

    Google Scholar 

  103. 103.

    Hu, X. et al. Mobility, thickness, and hydraulic diffusivity of the slow-moving Monroe landslide in California revealed by L-band satellite radar interferometry. J. Geophys. Res. Solid. Earth 124, 7504–7518 (2019).

    Google Scholar 

  104. 104.

    Bièvre, G., Jongmans, D., Winiarski, T. & Zumbo, V. Application of geophysical measurements for assessing the role of fissures in water infiltration within a clay landslide (Trièves area, French Alps). Hydrol. Process. 26, 2128–2142 (2012).

    Google Scholar 

  105. 105.

    Krzeminska, D. M., Bogaard, T. A., van Asch, T. W. J. & van Beek, L. P. H. A conceptual model of the hydrological influence of fissures on landslide activity. Hydrol. Earth Syst. Sci. 16, 1561–1576 (2012).

    Google Scholar 

  106. 106.

    Bièvre, G. et al. Influence of environmental parameters on the seismic velocity changes in a clayey mudflow (Pont-Bourquin Landslide, Switzerland). Eng. Geol. 245, 248–257 (2018).

    Google Scholar 

  107. 107.

    Helmstetter, A. et al. Slider block friction model for landslides: Application to Vaiont and La Clapiere landslides. J. Geophys. Res. Solid Earth 109, B02409 (2004).

    Google Scholar 

  108. 108.

    Du, J., Yin, K. & Lacasse, S. Displacement prediction in colluvial landslides, Three Gorges Reservoir, China. Landslides 10, 203–218 (2013).

    Google Scholar 

  109. 109.

    Miao, H., Wang, G., Yin, K., Kamai, T. & Li, Y. Mechanism of the slow-moving landslides in Jurassic red-strata in the Three Gorges Reservoir, China. Eng. Geol. 171, 59–69 (2014).

    Google Scholar 

  110. 110.

    Tofani, V., Dapporto, S., Vannocci, P. & Casagli, N. Infiltration, seepage and slope instability mechanisms during the 20–21 November 2000 rainstorm in Tuscany, central Italy. Nat. Hazards Earth Syst. Sci. 6, 1025–1033 (2006).

    Google Scholar 

  111. 111.

    Keqiang, H., Xiangran, L., Xueqing, Y. & Dong, G. The landslides in the Three Gorges Reservoir Region, China and the effects of water storage and rain on their stability. Environ. Geol. 55, 55–63 (2008).

    Google Scholar 

  112. 112.

    Hu, X., Lu, Z., Pierson, T. C., Kramer, R. & George, D. L. Combining InSAR and GPS to determine transient movement and thickness of a seasonally active low-gradient translational landslide. Geophys. Res. Lett. 45, 1453–1462 (2018).

    Google Scholar 

  113. 113.

    Bièvre, G., Joseph, A. & Bertrand, C. Preferential water infiltration path in a slow-moving clayey earthslide evidenced by cross-correlation of hydrometeorological time series (Charlaix landslide, French Western Alps). Geofluids 2018, 9593267 (2018). Special issue “The Role and Impact of Geofluids in Geohazards”.

    Google Scholar 

  114. 114.

    Keefer, D. K. et al. Real-time landslide warning during heavy rainfall. Science 238, 921–925 (1987).

    Google Scholar 

  115. 115.

    Krøgli, I. K. et al. The Norwegian forecasting and warning service for rainfall- and snowmelt-induced landslides. Nat. Hazards Earth Syst. Sci. 18, 1427–1450 (2018).

    Google Scholar 

  116. 116.

    Berti, M. & Simoni, A. Observation and analysis of near-surface pore-pressure measurements in clay-shales slopes. Hydrol. Process. 26, 2187–2205 (2012).

    Google Scholar 

  117. 117.

    Preuth, T., Glade, T. & Demoulin, A. Stability analysis of a human-influenced landslide in eastern Belgium. Geomorphology 120, 38–47 (2010).

    Google Scholar 

  118. 118.

    Calabro, M. D., Schmidt, D. A. & Roering, J. J. An examination of seasonal deformation at the Portuguese Bend landslide, southern California, using radar interferometry. J. Geophys. Res. Earth Surf. 115, F02020 (2010).

    Google Scholar 

  119. 119.

    Helle, T. E., Nordal, S., Aagaard, P. & Lied, O. K. Long-term effect of potassium chloride treatment on improving the soil behavior of highly sensitive clay — Ulvensplitten, Norway. Can. Geotech. J. 53, 410–422 (2016).

    Google Scholar 

  120. 120.

    Helle, T. E., Aagaard, P. & Nordal, S. In situ improvement of highly sensitive clays by potassium chloride migration. J. Geotech. Geoenviron. Eng. 143, 04017074 (2018).

    Google Scholar 

  121. 121.

    Bardou, E., Bowen, P., Boivin, P. & Banfill, P. Impact of small amounts of swelling clays on the physical properties of debris-flow-like granular materials. Implications for the study of alpine debris flow. Earth Surf. Process. Landf. 32, 698–710 (2007).

    Google Scholar 

  122. 122.

    Torrance, J. K. in Landslides: Types, Mechanisms and Modeling Ch. 8 (eds Clague, J. J. & Stead, D.) 83–94 (Cambridge Univ. Press, 2012).

  123. 123.

    Tika, T. E., Vaughan, P. & Lemos, L. Fast shearing of pre-existing shear zones in soil. Geotechnique 46, 197–233 (1996).

    Google Scholar 

  124. 124.

    Scaringi, G., Hu, W., Xu, Q. & Huang, R. Shear-rate-dependent behavior of clayey bimaterial interfaces at landslide stress levels. Geophys. Res. Lett. 45, 766–777 (2018).

    Google Scholar 

  125. 125.

    Molinari, A. & Perfettini, H. Fundamental aspects of a new micromechanical model of rate and state friction. J. Mech. Phys. Solids 124, 63–82 (2019).

    Google Scholar 

  126. 126.

    Brodsky, E. E., Roeloffs, E., Woodcock, D., Gall, I. & Manga, M. A mechanism for sustained groundwater pressure changes induced by distant earthquakes. J. Geophys. Res. Solid Earth 108, 2390 (2003).

    Google Scholar 

  127. 127.

    Wang, C.-y & Chia, Y. Mechanism of water level changes during earthquakes: Near field versus intermediate field. Geophys. Res. Lett. 35, L12402 (2008).

    Google Scholar 

  128. 128.

    Sassa, K., Fukuoka, H., Scarascia-Mugnozza, G. & Evans, S. Earthquake-induced-landslides: distribution, motion and mechanisms. Soils Found. 36, 53–64 (1996).

    Google Scholar 

  129. 129.

    Wang, F., Sassa, K. & Wang, G. Mechanism of a long-runout landslide triggered by the August 1998 heavy rainfall in Fukushima Prefecture, Japan. Eng. Geol. 63, 169–185 (2002).

    Google Scholar 

  130. 130.

    Glueer, F., Loew, S. & Manconi, A. Paraglacial history and structure of the Moosfluh Landslide (1850–2016), Switzerland. Geomorphology 355, 106677 (2020).

    Google Scholar 

  131. 131.

    Carrière, S. et al. Rheological properties of clayey soils originating from flow-like landslides. Landslides 15, 1615–1630 (2018).

    Google Scholar 

  132. 132.

    Newmark, N. M. Effects of earthquakes on dams and embankments. Geotechnique 15, 139–159 (1965).

    Google Scholar 

  133. 133.

    Marc, O., Hovius, N., Meunier, P., Uchida, T. & Hayashi, S. Transient changes of landslide rates after earthquakes. Geology 43, 883–886 (2015).

    Google Scholar 

  134. 134.

    Durand, V. et al. On the link between external forcings and slope instabilities in the Piton de la Fournaise Summit Crater, Reunion Island. J. Geophys. Res. Earth Surf. 123, 2422–2442 (2018).

    Google Scholar 

  135. 135.

    Bovis, M. J. & Jones, P. Holocene history of earthflow mass movements in south-central British Columbia: the influence of hydroclimatic changes. Can. J. Earth Sci. 29, 1746–1755 (1992).

    Google Scholar 

  136. 136.

    Rutter, E. & Green, S. Quantifying creep behaviour of clay-bearing rocks below the critical stress state for rapid failure: Mam Tor landslide, Derbyshire, England. J. Geol. Soc. 168, 359–372 (2011).

    Google Scholar 

  137. 137.

    Riva, F., Agliardi, F., Amitrano, D. & Crosta, G. B. Damage-based time-dependent modeling of paraglacial to postglacial progressive failure of large rock slopes. J. Geophys. Res. Earth Surf. 123, 124–141 (2018).

    Google Scholar 

  138. 138.

    Moore, P. L. & Iverson, N. R. Slow episodic shear of granular materials regulated by dilatant strengthening. Geology 30, 843–846 (2002).

    Google Scholar 

  139. 139.

    Gabet, E. J. & Mudd, S. M. The mobilization of debris flows from shallow landslides. Geomorphology 74, 207–218 (2006).

    Google Scholar 

  140. 140.

    Iverson, R. M. Regulation of landslide motion by dilatancy and pore pressure feedback. J. Geophys. Res. Earth Surf. 110, F02015 (2005).

    Google Scholar 

  141. 141.

    Iverson, R. M. & George, D. L. Modelling landslide liquefaction, mobility bifurcation and the dynamics of the 2014 Oso disaster. Géotechnique 66, 175–187 (2016).

    Google Scholar 

  142. 142.

    Khaldoun, A. et al. Quick clay and landslides of clayey soils. Phys. Rev. Lett. 103, 188301 (2009).

    Google Scholar 

  143. 143.

    Voight, B. A method for prediction of volcanic eruptions. Nature 332, 125–130 (1988).

    Google Scholar 

  144. 144.

    Lacroix, P. & Amitrano, D. Long-term dynamics of rockslides and damage propagation inferred from mechanical modeling. J. Geophys. Res. Earth Surf. 118, 2292–2307 (2013).

    Google Scholar 

  145. 145.

    Viesca, R. C. & Rice, J. R. Nucleation of slip-weakening rupture instability in landslides by localized increase of pore pressure. J. Geophys. Res. Solid. Earth 117, B03104 (2012).

    Google Scholar 

  146. 146.

    Schaeffer, D. G. & Iverson, R. M. Steady and intermittent slipping in a model of landslide motion regulated by pore-pressure feedback. SIAM J. Appl. Math. 69, 769–786 (2008).

    Google Scholar 

  147. 147.

    Collins, B. D. & Reid, M. E. Enhanced landslide mobility by basal liquefaction: The 2014 State Route 530 (Oso), Washington, landslide. GSA Bulletin 132, 451–476 (2020).

    Google Scholar 

  148. 148.

    Chau, K. T. Onset of natural terrain landslides modelled by linear stability analysis of creeping slopes with a two-state variable friction law. Int. J. Numer. Anal. Methods Geomech. 23, 1835–1855 (1999).

    Google Scholar 

  149. 149.

    Dieterich, J. H. Modeling of rock friction: 1. Experimental results and constitutive equations. J. Geophys. Res. Solid Earth 84, 2161–2168 (1979).

    Google Scholar 

  150. 150.

    Rice, J. R. & Ruina, A. L. Stability of steady frictional slipping. J. Appl. Mech. 50, 343–349 (1983).

    Google Scholar 

  151. 151.

    Wang, G., Suemine, A. & Schulz, W. H. Shear-rate-dependent strength control on the dynamics of rainfall-triggered landslides, Tokushima Prefecture, Japan. Earth Surf. Process. Landf. 35, 407–416 (2010).

    Google Scholar 

  152. 152.

    Segall, P. & Rice, J. R. Dilatancy, compaction, and slip instability of a fluid-infiltrated fault. J. Geophys. Res. Solid Earth 100, 22155–22171 (1995).

    Google Scholar 

  153. 153.

    Samuelson, J., Elsworth, D. & Marone, C. Shear-induced dilatancy of fluid-saturated faults: experiment and theory. J. Geophys. Res. Solid Earth 114, B12404 (2009).

    Google Scholar 

  154. 154.

    Segall, P., Rubin, A. M., Bradley, A. M. & Rice, J. R. Dilatant strengthening as a mechanism for slow slip events. J. Geophys. Res. Solid. Earth 115, B12305 (2010).

    Google Scholar 

  155. 155.

    Fukuzono, T. A method to predict the time of slope failure caused by rainfall using the inverse number of velocity of surface displacement. Landslides 22, 8–13_1 (1985).

    Google Scholar 

  156. 156.

    Amitrano, D., Grasso, J. R. & Senfaute, G. Seismic precursory patterns before a cliff collapse and critical point phenomena. Geophys. Res. Lett. 32, L08314 (2005).

    Google Scholar 

  157. 157.

    Kilburn, C. R. & Petley, D. N. Forecasting giant, catastrophic slope collapse: lessons from Vajont, Northern Italy. Geomorphology 54, 21–32 (2003).

    Google Scholar 

  158. 158.

    Crosta, G. & Agliardi, F. Failure forecast for large rock slides by surface displacement measurements. Can. Geotech. J. 40, 176–191 (2003).

    Google Scholar 

  159. 159.

    Rose, N. D. & Hungr, O. Forecasting potential slope failure in open pit mines–contingency planning and remediation. Int. J. Rock. Mech. Min. Sci. 44, 308–320 (2007).

    Google Scholar 

  160. 160.

    Segalini, A., Valletta, A. & Carri, A. Landslide time-of-failure forecast and alert threshold assessment: a generalized criterion. Eng. Geol. 245, 72–80 (2018).

    Google Scholar 

  161. 161.

    Poli, P. Creep and slip: Seismic precursors to the Nuugaatsiaq landslide (Greenland). Geophys. Res. Lett. 44, 8832–8836 (2017).

    Google Scholar 

  162. 162.

    Bell, A. F. Predictability of landslide timing from quasi-periodic precursory earthquakes. Geophys. Res. Lett. 45, 1860–1869 (2018).

    Google Scholar 

  163. 163.

    Fan, X. et al. Failure mechanism and kinematics of the deadly June 24th 2017 Xinmo landslide, Maoxian, Sichuan, China. Landslides 14, 2129–2146 (2017).

    Google Scholar 

  164. 164.

    Skarbek, R. M., Rempel, A. W. & Schmidt, D. A. Geologic heterogeneity can produce aseismic slip transients. Geophys. Res. Lett. 39, L21306 (2012).

    Google Scholar 

  165. 165.

    Bell, A. F., Naylor, M., Heap, M. J. & Main, I. G. Forecasting volcanic eruptions and other material failure phenomena: an evaluation of the failure forecast method. Geophys. Res. Lett. 38, L15304 (2011).

    Google Scholar 

  166. 166.

    Lipovsky, B. P. & Dunham, E. M. Slow-slip events on the Whillans Ice Plain, Antarctica, described using rate-and-state friction as an ice stream sliding law. J. Geophys. Res. Earth Surf. 122, 973–1003 (2017).

    Google Scholar 

  167. 167.

    Minchew, B. M. & Meyer, C. R. Dilation of subglacial sediment governs incipient surge motion in glaciers with deformable beds. Proc. R. Soc. A Math. Phys. Eng. Sci. 476, 20200033 (2020).

    Google Scholar 

  168. 168.

    Gomberg, J., Bodin, P., Savage, W. & Jackson, M. E. Landslide faults and tectonic faults, analogs?: The Slumgullion earthflow, Colorado. Geology 23, 41–44 (1995).

    Google Scholar 

  169. 169.

    Dmitrieva, K., Hotovec-Ellis, A. J., Prejean, S. & Dunham, E. M. Frictional-faulting model for harmonic tremor before redoubt volcano eruptions. Nat. Geosci. 6, 652–656 (2013).

    Google Scholar 

  170. 170.

    Le Breton, M. et al. Passive radio-frequency identification ranging, a dense and weather-robust technique for landslide displacement monitoring. Eng. Geol. 250, 1–10 (2019).

    Google Scholar 

  171. 171.

    Madson, A., Fielding, E., Sheng, Y. & Cavanaugh, K. High-resolution spaceborne, airborne and in situ landslide kinematic measurements of the Slumgullion landslide in Southwest Colorado. Remote. Sens. 11, 265 (2019).

    Google Scholar 

  172. 172.

    Thomas, A. M., Spica, Z., Bodmer, M., Schulz, W. H. & Roering, J. J. Using a dense seismic array to determine structure and site effects of the two towers earthflow in northern California. Seismol. Res. Lett. 91, 913–920 (2020).

    Google Scholar 

  173. 173.

    Truffert, C. et al. Large 3D resistivity and IP measurement of the Séchilienne landslide using the FullWaver system. Proc. EAGE-HAGI 1st Asia Pacfic Meeting on Near Surface Geoscience and Engineering 2018, 1–4 (2018).

    Google Scholar 

  174. 174.

    Loke, M., Chambers, J., Rucker, D., Kuras, O. & Wilkinson, P. Recent developments in the direct-current geoelectrical imaging method. J. Appl. Geophys. 95, 135–156 (2013).

    Google Scholar 

  175. 175.

    Perrone, A., Lapenna, V. & Piscitelli, S. Electrical resistivity tomography technique for landslide investigation: A review. Earth Sci. Rev. 135, 65–82 (2014).

    Google Scholar 

  176. 176.

    Uhlemann, S. et al. Four-dimensional imaging of moisture dynamics during landslide reactivation. J. Geophys. Res. Earth Surf. 122, 398–418 (2017).

    Google Scholar 

  177. 177.

    Uhlemann, S. et al. Assessment of ground-based monitoring techniques applied to landslide investigations. Geomorphology 253, 438–451 (2016).

    Google Scholar 

  178. 178.

    Whiteley, J. S., Chambers, J. E., Uhlemann, S., Wilkinson, P. B. & Kendall, J. M. Geophysical monitoring of moisture-induced landslides: a review. Rev. Geophys. 57, 106–145 (2019).

    Google Scholar 

  179. 179.

    Gariano, S. L. & Guzzetti, F. Landslides in a changing climate. Earth Sci. Rev. 162, 227–252 (2016).

    Google Scholar 

  180. 180.

    Carlà, T., Farina, P., Intrieri, E., Ketizmen, H. & Casagli, N. Integration of ground-based radar and satellite InSAR data for the analysis of an unexpected slope failure in an open-pit mine. Eng. Geol. 235, 39–52 (2018).

    Google Scholar 

  181. 181.

    Dong, J. et al. Measuring precursory movements of the recent Xinmo landslide in Mao County, China with Sentinel-1 and ALOS-2 PALSAR-2 datasets. Landslides 15, 135–144 (2018).

    Google Scholar 

  182. 182.

    Roberts, N. J. et al. Changes in ground deformation prior to and following a large urban landslide in La Paz, Bolivia, revealed by advanced InSAR. Nat. Hazards Earth Syst. Sci. 19, 679–696 (2019).

    Google Scholar 

  183. 183.

    Walter, T. R. et al. Complex hazard cascade culminating in the Anak Krakatau sector collapse. Nat. Commun. 10, 4339 (2019).

    Google Scholar 

  184. 184.

    Crosta, G. B. & Agliardi, F. How to obtain alert velocity thresholds for large rockslides. Phys. Chem. Earth Parts A/B/C 27, 1557–1565 (2002).

    Google Scholar 

  185. 185.

    Bennett, G. L., Miller, S. R., Roering, J. J. & Schmidt, D. A. Landslides, threshold slopes, and the survival of relict terrain in the wake of the Mendocino Triple junction. Geology 44, 363–366 (2016).

    Google Scholar 

  186. 186.

    Handwerger, A. L., Roering, J. J., Schmidt, D. A. & Rempel, A. W. Kinematics of earthflows in the Northern California Coast Ranges using satellite interferometry. Geomorphology 246, 321–333 (2015).

    Google Scholar 

  187. 187.

    Dini, B., Manconi, A. & Loew, S. Investigation of slope instabilities in NW Bhutan as derived from systematic DInSAR analyses. Eng. Geol. 259, 105111 (2019).

    Google Scholar 

  188. 188.

    Strozzi, T. et al. Satellite SAR interferometry for the improved assessment of the state of activity of landslides: A case study from the Cordilleras of Peru. Remote. Sens. Environ. 217, 111–125 (2018).

    Google Scholar 

  189. 189.

    Pham, M. Q., Lacroix, P. & Doin, M. P. Sparsity optimization method for slow-moving landslides detection in satellite image time-series. IEEE Trans. Geosci. Remote Sens. 57, 2133–2144 (2018).

    Google Scholar 

  190. 190.

    Roering, J. J., Stimely, L. L., Mackey, B. H. & Schmidt, D. A. Using DInSAR, airborne LiDAR, and archival air photos to quantify landsliding and sediment transport. Geophys. Res. Lett. 36, L19402 (2009).

    Google Scholar 

  191. 191.

    Kelsey, H. M. Earthflows in Franciscan melange, Van Duzen River basin, California. Geology 6, 361–364 (1978).

    Google Scholar 

  192. 192.

    Finnegan, N. J. et al. River channel width controls blocking by slow-moving landslides in California’s Franciscan mélange. Earth Surf. Dyn. 7, 879–894 (2019).

    Google Scholar 

  193. 193.

    Delbridge, B. G., Bürgmann, R., Fielding, E., Hensley, S. & Schulz, W. H. Three-dimensional surface deformation derived from airborne interferometric UAVSAR: application to the Slumgullion Landslide. J. Geophys. Res. Solid Earth 121, 3951–3977 (2016).

    Google Scholar 

  194. 194.

    Stumpf, A., Malet, J. P., Allemand, P. & Ulrich, P. Surface reconstruction and landslide displacement measurements with Pléiades satellite images. ISPRS J. Photogramm. Remote Sens. 95, 1–12 (2014).

    Google Scholar 

  195. 195.

    Schlögel, R. et al. Multi-temporal X-band radar interferometry using corner reflectors: Application and validation at the Corvara Landslide (Dolomites, Italy). Remote Sens. 9, 739 (2017).

    Google Scholar 

  196. 196.

    Chambers, J. et al. Three-dimensional geophysical anatomy of an active landslide in Lias Group mudrocks, Cleveland Basin, UK. Geomorphology 125, 472–484 (2011).

    Google Scholar 

  197. 197.

    Petley, D., Mantovani, F., Bulmer, M. & Zannoni, A. The use of surface monitoring data for the interpretation of landslide movement patterns. Geomorphology 66, 133–147 (2005).

    Google Scholar 

  198. 198.

    Massey, C. I., Petley, D. N. & McSaveney, M. Patterns of movement in reactivated landslides. Eng. Geol. 159, 1–19 (2013).

    Google Scholar 

  199. 199.

    Baum, R. L., Messerich, J. & Fleming, R. W. Surface deformation as a guide to kinematics and three-dimensional shape of slow-moving, clay-rich landslides, Honolulu, Hawaii. Environ. Eng. Geosci. 4, 283–306 (1998).

    Google Scholar 

  200. 200.

    O’Brien, G. A., Cox, S. C. & Townend, J. Spatially and temporally systematic hydrologic changes within large geoengineered landslides, Cromwell Gorge, New Zealand, induced by multiple regional earthquakes. J. Geophys. Res. Solid Earth 121, 8750–8773 (2016).

    Google Scholar 

  201. 201.

    Casson, B., Delacourt, C., Baratoux, D. & Allemand, P. Seventeen years of the “La Clapiere” landslide evolution analysed from ortho-rectified aerial photographs. Eng. Geol. 68, 123–139 (2003).

    Google Scholar 

  202. 202.

    Warrick, J. A., Ritchie, A. C., Schmidt, K. M., Reid, M. E. & Logan, J. Characterizing the catastrophic 2017 Mud Creek landslide, California, using repeat structure-from-motion (SfM) photogrammetry. Landslides 16, 1201–1219 (2019).

    Google Scholar 

  203. 203.

    Sassa, K. The movement and the mechanism of a crystalline schist landslide “Zentoku” in Japan. Proc. Interpraevent 1980 1, 85–106 (1980).

    Google Scholar 

  204. 204.

    Oppikofer, T., Jaboyedoff, M., Blikra, L., Derron, M.-H. & Metzger, R. Characterization and monitoring of the Åknes rockslide using terrestrial laser scanning. Nat. Hazards Earth Syst. Sci. 9, 1003–1019 (2009).

    Google Scholar 

  205. 205.

    Grøneng, G., Christiansen, H. H., Nilsen, B. & Blikra, L. H. Meteorological effects on seasonal displacements of the Åknes rockslide, western Norway. Landslides 8, 1–15 (2011).

    Google Scholar 

  206. 206.

    Ganerød, G. V. et al. Geological model of the Åknes rockslide, western Norway. Eng. Geol. 102, 1–18 (2008).

    Google Scholar 

  207. 207.

    Kos, A. et al. Contemporary glacier retreat triggers a rapid landslide response, Great Aletsch Glacier, Switzerland. Geophys. Res. Lett. 43, 12,466–12,474 (2016).

    Google Scholar 

  208. 208.

    Cappa, F., Guglielmi, Y., Viseur, S. & Garambois, S. Deep fluids can facilitate rupture of slow-moving giant landslides as a result of stress transfer and frictional weakening. Geophys. Res. Lett. 41, 61–66 (2014).

    Google Scholar 

  209. 209.

    Lacroix, P. & Helmstetter, A. Location of seismic signals associated with microearthquakes and rockfalls on the Séchilienne landslide, French Alps. Bull. Seismol. Soc. Am. 101, 341–353 (2011).

    Google Scholar 

  210. 210.

    Marone, C. Laboratory-derived friction laws and their application to seismic faulting. Annu. Rev. Earth Planet Sci. 26, 643–696 (1998).

    Google Scholar 

Download references

Acknowledgements

Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). P.L. and G.B. are part of LabEx OSUG@2020 (ANR10 LABX56).

Author information

Affiliations

Authors

Contributions

All authors contributed to all aspects of the article.

Corresponding author

Correspondence to Pascal Lacroix.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Earth & Environment thanks E. Intrieri, X. Hu and F. Zhang for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

USGS-USA: https://www.usgs.gov/natural-hazards/landslide-hazards/monitoring

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lacroix, P., Handwerger, A.L. & Bièvre, G. Life and death of slow-moving landslides. Nat Rev Earth Environ 1, 404–419 (2020). https://doi.org/10.1038/s43017-020-0072-8

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing