Keeping pace with marine heatwaves

Abstract

Marine heatwaves (MHWs) are prolonged extreme oceanic warm water events. They can have devastating impacts on marine ecosystems — for example, causing mass coral bleaching and substantial declines in kelp forests and seagrass meadows — with implications for the provision of ecological goods and services. Effective adaptation and mitigation efforts by marine managers can benefit from improved MHW predictions, which at present are inadequate. In this Perspective, we explore MHW predictability on short-term, interannual to decadal, and centennial timescales, focusing on the physical processes that offer prediction. While there may be potential predictability of MHWs days to years in advance, accuracy will vary dramatically depending on the regions and drivers. Skilful MHW prediction has the potential to provide critical information and guidance for marine conservation, fisheries and aquaculture management. However, to develop effective prediction systems, better understanding is needed of the physical drivers, subsurface MHWs, and predictability limits.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Drivers and ecological impacts of major marine heatwave events.
Fig. 2: Trends in global marine heatwave occurrence.
Fig. 3: Marine heatwave drivers and impacts.
Fig. 4: Integrated approaches for monitoring marine heatwaves.
Fig. 5: Marine heatwave potential predictability and forecast timescales.

References

  1. 1.

    Mills, K. E. et al. Fisheries management in a changing climate: lessons from the 2012 ocean heat wave in the Northwest Atlantic. Oceanography 26, 191–195 (2013).

    Google Scholar 

  2. 2.

    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).

    Google Scholar 

  3. 3.

    Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312 (2019).

    Google Scholar 

  4. 4.

    Babcock, R. C. et al. Severe continental-scale impacts of climate change are happening now: Extreme climate events impact marine habitat forming communities along 45% of Australia’s coast. Front. Mar. Sci. 6, 411 (2019).

    Google Scholar 

  5. 5.

    Garrabou, J. et al. Mass mortality in Northwestern Mediterranean rocky benthic communities: effects of the 2003 heat wave. Glob. Change Biol. 15, 1090–1103 (2009).

    Google Scholar 

  6. 6.

    Benthuysen, J. A., Oliver, E. C. J., Chen, K. & Wernberg, T. Advances in understanding marine heatwaves and their impacts. Front. Mar. Sci. 7, 147 (2020).

    Google Scholar 

  7. 7.

    Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).

    Google Scholar 

  8. 8.

    Wernberg, T. Marine heatwave drives collapse of kelp forests in Western Australia. In Ecosystem Collapse and Climate Change. Ecological Studies (eds. Canadell, J. G. & Jackson, R. B.) (Springer-Nature, 2020).

  9. 9.

    Pearce, A. et al. The “Marine Heat Wave” Off Western Australia During the Summer of 2010/11. Fisheries Research Report No. 222 (40pp) (Department of Fisheries, Western Australia, 2011)

  10. 10.

    Olita, A. et al. Effects of the 2003 European heatwave on the Central Mediterranean Sea: surface fluxes and the dynamical response. Ocean Sci. 3, 273–289 (2007).

    Google Scholar 

  11. 11.

    Pearce, A. F. & Feng, M. The rise and fall of the ‘marine heat wave’ off Western Australia during the summer of 2010/2011. J. Mar. Syst. 111–112, 139–156 (2013).

    Google Scholar 

  12. 12.

    Chen, K., Gawarkiewicz, G. G., Lentz, S. J. & Bane, J. M. Diagnosing the warming of the Northeastern U.S. Coastal Ocean in 2012: A linkage between the atmospheric jet stream variability and ocean response. J. Geophys. Res. Oceans 119, 218–227 (2014).

    Google Scholar 

  13. 13.

    Oliver, E. C. J. et al. The unprecedented 2015/16 Tasman Sea marine heatwave. Nat. Commun. 8, 16101 (2017).

    Google Scholar 

  14. 14.

    Holbrook, N. J. et al. A global assessment of marine heatwaves and their drivers. Nat. Commun. 10, 2624 (2019).

    Google Scholar 

  15. 15.

    Di Lorenzo, E. & Mantua, N. Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nat. Clim. Change 6, 1042–1047 (2016).

    Google Scholar 

  16. 16.

    Jackson, J. M., Johnson, G. C., Dosser, H. V. & Ross, T. Warming from recent marine heatwave lingers in deep British Columbia fjord. Geophys. Res. Lett. 45, 9757–9764 (2018).

    Google Scholar 

  17. 17.

    Reed, D. et al. Extreme warming challenges sentinel status of kelp forests as indicators of climate change. Nat. Commun. 7, 13757 (2016).

    Google Scholar 

  18. 18.

    Jacox, M., Tommasi, D., Alexander, M., Hervieux, G. & Stock, C. Predicting the evolution of the 2014-16 California Current System marine heatwave from an ensemble of coupled global climate forecasts. Front. Mar. Sci. 6, 497 (2019).

    Google Scholar 

  19. 19.

    Lee, T. et al. Record warming in the South Pacific and western Antarctica associated with the strong central-Pacific El Niño in 2009–10. Geophys. Res. Lett. 37, L19704 (2010).

    Google Scholar 

  20. 20.

    Benthuysen, J. A., Oliver, E. C. J., Feng, M. & Marshall, A. G. Extreme marine warming across tropical Australia during austral summer 2015–2016. J. Geophys. Res. Oceans 123, 1301–1326 (2018).

    Google Scholar 

  21. 21.

    Eakin, C. M., Sweatman, H. P. A. & Brainard, R. E. The 2014–2017 global-scale coral bleaching event: insights and impacts. Coral Reefs 38, 539–545 (2019).

    Google Scholar 

  22. 22.

    Gurgel, C. F. D., Camacho, O., Minne, A. J. P., Wernberg, T. & Coleman, M. A. Marine heatwave drives cryptic loss of genetic diversity in underwater forests. Curr. Biol. 30, 1199–1206 (2020).

    Google Scholar 

  23. 23.

    Caputi, N. et al. Management adaptation of invertebrate fisheries to an extreme marine heat wave event at a global warming hot spot. Ecol. Evol. 6, 3583–3593 (2016).

    Google Scholar 

  24. 24.

    Caputi, N. et al. Factors affecting the recovery of invertebrate stocks from the 2011 Western Australian extreme marine heatwave. Front. Mar. Sci. 6, 484 (2019).

    Google Scholar 

  25. 25.

    Caputi, N. et al. Management Implications of Climate Change Effect on Fisheries in Western Australia, Part 2: Case Studies. Fisheries Research Report No. 261 (156pp) (Department of Fisheries, Western Australia, 2015).

  26. 26.

    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).

    Google Scholar 

  27. 27.

    Wernberg, T. et al. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Change 3, 78–82 (2013).

    Google Scholar 

  28. 28.

    Thomsen, M. S. et al. Local extinction of bull kelp (Durvillaea spp.) due to a marine heatwave. Front. Mar. Sci. 6, 84 (2019).

    Google Scholar 

  29. 29.

    Arafeh-Dalmau, N. et al. Extreme marine heatwaves alter kelp forest community near its equatorward distribution limit. Front. Mar. Sci. 6, 499 (2019).

    Google Scholar 

  30. 30.

    Arias-Ortiz, A. et al. A marine heatwave drives massive losses from the world’s largest seagrass carbon stocks. Nat. Clim. Change 8, 338–344 (2018).

    Google Scholar 

  31. 31.

    Zisserson, B. & Cook, A. Impact of bottom water temperature change on the southernmost snow crab fishery in the Atlantic Ocean. Fish. Res. 195, 12–18 (2017).

    Google Scholar 

  32. 32.

    Caputi, N., Jackson, G. & Pearce, A. The Marine Heat Wave Off Western Australia During the Summer of 2010/11 – 2 Years On. Fisheries Research Report No. 250 (40pp) (Department of Fisheries, Western Australia, 2014).

  33. 33.

    Cavole, L. M. et al. Biological Impacts of the 2013–2015 warm-water anomaly in the northeast Pacific: winners, losers, and the future. Oceanography 29, 273–285 (2016).

    Google Scholar 

  34. 34.

    Santora, J. A. et al. Habitat compression and ecosystem shifts as potential links between marine heatwave and record whale entanglements. Nat. Commun. 11, 536 (2020).

    Google Scholar 

  35. 35.

    Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1324 (2018).

    Google Scholar 

  36. 36.

    Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).

    Google Scholar 

  37. 37.

    Oliver, E. C. J. et al. Projected marine heatwaves in the 21st century and the potential for ecological impact. Front. Mar. Sci. 6, 734 (2019).

    Google Scholar 

  38. 38.

    Bond, N. A., Cronin, M. F., Freeland, H. & Mantua, N. Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophys. Res. Lett. 42, 3414–3420 (2015).

    Google Scholar 

  39. 39.

    Rodrigues, R. R., Taschetto, A. S., Sen Gupta, A. & Foltz, G. R. Common cause for severe droughts in South America and marine heatwaves in the South Atlantic. Nat. Geosci. 12, 620–626 (2019).

    Google Scholar 

  40. 40.

    Black, E., Blackburn, M., Harrison, R. G., Hoskins, B. J. & Methven, J. Factors contributing to the summer 2003 European heatwave. Weather 59, 217–223 (2004).

    Google Scholar 

  41. 41.

    Chen, K., Gawarkiewicz, G., Kwon, Y.-O. & Zhang, W. The role of atmospheric forcing versus ocean advection during the extreme warming of the Northeast U.S. continental shelf in 2012. J. Geophys. Res. Oceans 120, 4324–4339 (2015).

    Google Scholar 

  42. 42.

    Salinger, M. J. et al. The unprecedented coupled ocean-atmosphere summer heatwave in the New Zealand region 2017/18: Drivers, mechanisms and impacts. Environ. Res. Lett. 14, 044023 (2019).

    Google Scholar 

  43. 43.

    Perkins-Kirkpatrick, S. E. et al. The role of natural variability and anthropogenic climate change in the 2017/18 Tasman Sea marine heatwave. Bull. Am. Meteorol. Soc. 100, S105–S110 (2019).

    Google Scholar 

  44. 44.

    Sparnocchia, S., Schiano, M. E., Picco, P., Bozzano, R. & Cappelletti, A. The anomalous warming of summer 2003 in the surface layer of the Central Ligurian Sea (Western Mediterranean). Ann. Geophys. 24, 443–452 (2006).

    Google Scholar 

  45. 45.

    Swain, D. L. et al. The extraordinary California drought of 2013/2014: Character, context, and the role of climate change. Bull. Am. Meteorol. Soc. 95, S3–S7 (2014).

    Google Scholar 

  46. 46.

    Alexander, M. A., Deser, C. & Timlin, M. S. The reemergence of SST anomalies in the North Pacific Ocean. J. Clim. 12, 2419–2433 (1999).

    Google Scholar 

  47. 47.

    Benthuysen, J., Feng, M. & Zhong, L. Spatial patterns of warming off Western Australia during the 2011 Ningaloo Niño: Quantifying impacts of remote and local forcing. Cont. Shelf Res. 91, 232–246 (2014).

    Google Scholar 

  48. 48.

    Kataoka, T., Tozuka, T. & Yamagata, T. Generation and decay mechanisms of Ningaloo Niño/Niña. J. Geophys. Res. Oceans 122, 8913–8932 (2017).

    Google Scholar 

  49. 49.

    Behrens, E., Fernandez, D. & Sutton, P. Meridional oceanic heat transport influences marine heatwaves in the Tasman Sea on interannual to decadal timescales. Front. Mar. Sci. 6, 228 (2019).

    Google Scholar 

  50. 50.

    Scannell, H. A., Pershing, A. J., Alexander, M. A., Thomas, A. C. & Mills, K. E. Frequency of marine heatwaves in the North Atlantic and North Pacific since 1950. Geophys. Res. Lett. 43, 2069–2076 (2016).

    Google Scholar 

  51. 51.

    Hartmann, D. L. Pacific sea surface temperature and the winter of 2014. Geophys. Res. Lett. 42, 1894–1902 (2015).

    Google Scholar 

  52. 52.

    Marshall, A. G. & Hendon, H. H. Impacts of the MJO in the Indian Ocean and on the Western Australian coast. Clim. Dyn. 42, 579–595 (2014).

    Google Scholar 

  53. 53.

    Zhang, N., Feng, M., Hendon, H. H., Hobday, A. J. & Zinke, J. Opposite polarities of ENSO drive distinct patterns of coral bleaching potentials in the southeast Indian Ocean. Sci. Rep. 7, 2443 (2017).

    Google Scholar 

  54. 54.

    Kataoka, T., Tozuka, T., Behera, S. & Yamagata, T. On the Ningaloo Niño/Niña. Clim. Dyn. 43, 1463–1482 (2013).

    Google Scholar 

  55. 55.

    Holbrook, N. J., Goodwin, I. D., McGregor, S., Molina, E. & Power, S. B. ENSO to multi-decadal time scale changes in East Australian Current transports and Fort Denison sea level: Oceanic Rossby waves as the connecting mechanism. Deep Sea Res. Part II Top. Stud. Oceanogr. 58, 547–558 (2011).

    Google Scholar 

  56. 56.

    Li, Z., Holbrook, N. J., Zhang, X., Oliver, E. C. J. & Cougnon, E. A. Remote forcing of Tasman Sea marine heatwaves. J. Clim. 33, 5337–5354 (2020).

    Google Scholar 

  57. 57.

    Schaeffer, A. & Roughan, M. Subsurface intensification of marine heatwaves off southeastern Australia: The role of stratification and local winds. Geophys. Res. Lett. 44, 5025–5033 (2017).

    Google Scholar 

  58. 58.

    Elzahaby, Y. & Schaeffer, A. Observational Insight Into the subsurface anomalies of marine heatwaves. Front. Mar. Sci. 6, 745 (2019).

    Google Scholar 

  59. 59.

    Ridgway, K. R., Dunn, J. R. & Wilkin, J. L. Ocean interpolation by four-dimensional weighted least squares — Application to the waters around Australasia. J. Atmos. Ocean. Technol. 19, 1357–1375 (2002).

    Google Scholar 

  60. 60.

    Roemmich, D. & Gilson, J. The 2004–2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program. Prog. Oceanogr. 82, 81–100 (2009).

    Google Scholar 

  61. 61.

    Moltmann, T. The “coastal data paradox”. J. Ocean Technol. 13, 148–149 (2018).

    Google Scholar 

  62. 62.

    Oliver, E. C. J. et al. Marine heatwaves off eastern Tasmania: Trends, interannual variability, and predictability. Prog. Oceanogr. 161, 116–130 (2018).

    Google Scholar 

  63. 63.

    Darmaraki, S. et al. Future evolution of marine heatwaves in the Mediterranean Sea. Clim. Dyn. 53, 1371–1392 (2019).

    Google Scholar 

  64. 64.

    Schlegel, R. W., Oliver, E. C. J., Hobday, A. J. & Smit, A. J. Detecting marine heatwaves with sub-optimal data. Front. Mar. Sci. 6, 737 (2019).

    Google Scholar 

  65. 65.

    Salinger, J. et al. Decadal-scale forecasting of climate drivers for marine applications. Adv. Mar. Biol. 74, 1–68 (2016).

    Google Scholar 

  66. 66.

    Dunstan, P. K. et al. How can climate predictions improve sustainability of coastal fisheries in Pacific Small-Island Developing States? Mar. Policy 88, 295–302 (2018).

    Google Scholar 

  67. 67.

    Smith, G. & Spillman, C. New high-resolution sea surface temperature forecasts for coral reef management on the Great Barrier Reef. Coral Reefs 38, 1039–1056 (2019).

    Google Scholar 

  68. 68.

    White, C. J. et al. Potential applications of subseasonal-to-seasonal (S2S) predictions. Meteorol. Appl. 24, 315–325 (2017).

    Google Scholar 

  69. 69.

    Hobday, A. J., Spillman, C. M., Paige Eveson, J. & Hartog, J. R. Seasonal forecasting for decision support in marine fisheries and aquaculture. Fish. Oceanogr. 25, 45–56 (2016).

    Google Scholar 

  70. 70.

    Game, E. T., Watts, M. E., Wooldridge, S. & Possingham, H. P. Planning for persistence in marine reserves: a question of catastrophic importance. Ecol. Appl. 18, 670–680 (2008).

    Google Scholar 

  71. 71.

    Johnson, C. R., Chabot, R. H., Marzloff, M. P. & Wotherspoon, S. Knowing when (not) to attempt ecological restoration. Restor. Ecol. 25, 140–147 (2017).

    Google Scholar 

  72. 72.

    Tommasi, D. et al. Managing living marine resources in a dynamic environment: the role of seasonal to decadal climate forecasts. Prog. Oceanogr. 152, 15–49 (2017).

    Google Scholar 

  73. 73.

    Marshall, A. G., Hendon, H. H., Feng, M. & Schiller, A. Initiation and amplification of the Ningaloo Niño. Clim. Dyn. 45, 2367–2385 (2015).

    Google Scholar 

  74. 74.

    D’Andrea, F. et al. Northern Hemisphere atmospheric blocking as simulated by 15 atmospheric general circulation models in the period 1979–1988. Clim. Dyn. 14, 385–407 (1998).

    Google Scholar 

  75. 75.

    Scaife, A. A., Woollings, T., Knight, J., Martin, G. & Hinton, T. Atmospheric blocking and mean biases in climate models. J. Clim. 23, 6143–6152 (2010).

    Google Scholar 

  76. 76.

    Davini, P. & D’Andrea, F. Northern Hemisphere atmospheric blocking representation in global climate models: Twenty years of improvements? J. Clim. 29, 8823–8840 (2016).

    Google Scholar 

  77. 77.

    Kwon, Y. O., Camacho, A., Martinez, C. & Seo, H. North Atlantic winter eddy-driven jet and atmospheric blocking variability in the Community Earth System Model version 1 Large Ensemble simulations. Clim. Dyn. 51, 3275–3289 (2018).

    Google Scholar 

  78. 78.

    Pilo, G. S., Mata, M. M. & Azevedo, J. L. L. Eddy surface properties and propagation at Southern Hemisphere western boundary current systems. Ocean Sci. 11, 629–641 (2015).

    Google Scholar 

  79. 79.

    Oliver, E. C. J., Wotherspoon, S. J., Chamberlain, M. A. & Holbrook, N. J. Projected Tasman Sea extremes in sea surface temperature through the twenty-first century. J. Clim. 27, 1980–1998 (2014).

    Google Scholar 

  80. 80.

    Oliver, E. C. J., O’Kane, T. J. & Holbrook, N. J. Projected changes to Tasman Sea eddies in a future climate. J. Geophys. Res. Oceans 120, 7150–7165 (2015).

    Google Scholar 

  81. 81.

    Hu, Z-Z., Kumar, A., Jha, B., Zhu, J. & Huang, B. Persistence and predictions of the remarkable warm anomaly in the northeastern Pacific ocean during 2014–16. J. Clim. 30, 689–702 (2017).

    Google Scholar 

  82. 82.

    Spillman, C. M. Operational real-time seasonal forecasts for coral reef management. J. Oper. Oceanogr. 4, 13–22 (2011).

    Google Scholar 

  83. 83.

    Yang, Y. et al. A CFCC-LSTM model for sea surface temperature prediction. IEEE Geosci. Remote Sens. Lett. 15, 207–211 (2018).

    Google Scholar 

  84. 84.

    Hobday, A. J. et al. Ethical considerations and unanticipated consequences associated with ecological forecasting for marine resources. ICES J. Mar. Sci. 76, 1244–1256 (2019).

    Google Scholar 

  85. 85.

    Quinting, J. F. & Reeder, M. J. Southeastern Australian heat waves from a trajectory viewpoint. Mon. Wea. Rev. 145, 4109–4125 (2017).

    Google Scholar 

  86. 86.

    Quinting, J. F., Parker, T. J. & Reeder, M. J. Two synoptic routes to subtropical heat waves as illustrated in the Brisbane region of Australia. Geophys. Res. Lett. 45, 10,700–10,708 (2018).

    Google Scholar 

  87. 87.

    Doblin, M. A. & Van Sebille, E. Drift in ocean currents impacts intergenerational microbial exposure to temperature. Proc. Natl Acad. Sci. USA 113, 5700–5705 (2016).

    Google Scholar 

  88. 88.

    Zhang, X., Cornuelle, B. & Roemmich, D. Sensitivity of western boundary transport at the mean north equatorial current bifurcation latitude to wind forcing. J. Phys. Oceanogr. 42, 2056–2072 (2012).

    Google Scholar 

  89. 89.

    Pecl, G. T. et al. Autonomous adaptation to climate-driven change in marine biodiversity in a global marine hotspot. Ambio 48, 1498–1515 (2019).

    Google Scholar 

  90. 90.

    Serrao-Neumann, S. et al. Marine governance to avoid tipping points: can we adapt the adaptability envelope? Mar. Policy 65, 56–67 (2016).

    Google Scholar 

  91. 91.

    Hobday, A. J. et al. A framework for combining seasonal forecasts and climate projections to aid risk management for fisheries and aquaculture. Front. Mar. Sci. 5, 137 (2018).

    Google Scholar 

  92. 92.

    Wernberg, T. et al. Impacts of climate change in a global hotspot for temperate marine biodiversity and ocean warming. J. Exp. Mar. Biol. Ecol. 400, 7–16 (2011).

    Google Scholar 

  93. 93.

    Strain, E. M. A., Thomson, R. J., Micheli, F., Mancuso, F. P. & Airoldi, L. Identifying the interacting roles of stressors in driving the global loss of canopy-forming to mat-forming algae in marine ecosystems. Glob. Change Biol. 20, 3300–3312 (2014).

    Google Scholar 

  94. 94.

    Bates, A. E. et al. Resilience and signatures of tropicalization in protected reef fish communities. Nat. Clim. Change 4, 62–67 (2014).

    Google Scholar 

  95. 95.

    Connell, S. D. & Ghedini, G. Resisting regime-shifts: the stabilising effect of compensatory processes. Trends Ecol. Evol. 30, 513–515 (2015).

    Google Scholar 

  96. 96.

    Bruno, J. F., Côté, I. M. & Toth, L. T. Climate change, coral loss, and the curious case of the parrotfish paradigm: Why don’t marine protected areas improve reef resilience? Annu. Rev. Mar. Sci. 11, 307–334 (2019).

    Google Scholar 

  97. 97.

    Coleman, M. A. & Goold, H. D. Harnessing synthetic biology for kelp forest conservation1. J. Phycol. 55, 745–751 (2019).

    Google Scholar 

  98. 98.

    Vergés, A. et al. Tropicalisation of temperate reefs: Implications for ecosystem functions and management actions. Funct. Ecol. 33, 1000–1013 (2019).

    Google Scholar 

  99. 99.

    Wernberg, T., Krumhansl, K., Filbee-Dexter, K. & Pedersen, M. F. in World Seas: An Environmental Evaluation 2nd edn (ed. Sheppard, C.) 57–78 (Academic, 2019).

  100. 100.

    Filbee-Dexter, K. & Smajdor, A. Ethics of assisted evolution in marine conservation. Front. Mar. Sci. 6, 20 (2019).

    Google Scholar 

  101. 101.

    Hobday, A. J. et al. Categorizing and naming marine heatwaves. Oceanography 31, 162–173 (2018).

    Google Scholar 

  102. 102.

    Chandrapavan, A., Caputi, N. & Kangas, M. I. The decline and recovery of a crab population from an extreme marine heatwave and a changing climate. Front. Mar. Sci. 6, 510 (2019).

    Google Scholar 

  103. 103.

    Oliver, E. C. J. Mean warming not variability drives marine heatwave trends. Clim. Dyn. 53, 1653–1659 (2019).

    Google Scholar 

  104. 104.

    Jacox, M. G. Marine heatwaves in a changing climate. Nature 571, 485–487 (2019).

    Google Scholar 

  105. 105.

    Vinagre, C. et al. Upper thermal limits and warming safety margins of coastal marine species – Indicator baseline for future reference. Ecol. Indic. 102, 644–649 (2019).

    Google Scholar 

  106. 106.

    Nakamura, N. & Huang, C. S. Y. Atmospheric blocking as a traffic jam in the jet stream. Science 361, 42–47 (2018).

    Google Scholar 

  107. 107.

    Mann, M. E. et al. Projected changes in persistent extreme summer weather events: the role of quasi-resonant amplification. Sci. Adv. 4, eaat3272 (2018).

    Google Scholar 

  108. 108.

    Straub, S. C. et al. Resistance, extinction, and everything in between – the diverse responses of seaweeds to marine heatwaves. Front. Mar. Sci. 6, 763 (2019).

    Google Scholar 

  109. 109.

    Frölicher, T. L. & Laufkötter, C. Emerging risks from marine heat waves. Nat. Commun. 9, 650 (2018).

    Google Scholar 

  110. 110.

    Jacox, M. G. et al. Seasonal-to-interannual prediction of North American coastal marine ecosystems: Forecast methods, mechanisms of predictability, and priority developments. Prog. Oceanogr. 183, 102307 (2020).

    Google Scholar 

  111. 111.

    Feng, M., McPhaden, M. J., Xie, S. P. & Hafner, J. La Niña forces unprecedented Leeuwin Current warming in 2011. Sci. Rep. 3, 1227 (2013).

    Google Scholar 

  112. 112.

    Gammelsrød, T., Bartholomae, C. H., Boyer, D. C., Filipe, V. L. L. & O’Toole, M. J. Intrusion of warm surface water along the Angolan Namibian coast in February–March 1995: the 1995 Benguela Niño. S. Afr. J. Mar. Sci. 19, 41–56 (1998).

    Google Scholar 

  113. 113.

    Spencer, T., Teleki, K. A., Bradshaw, C. & Spalding, M. D. Coral bleaching in the southern Seychelles during the 1997–1998 Indian Ocean warm event. Mar. Pollut. Bull. 40, 569–586 (2000).

    Google Scholar 

  114. 114.

    McPhaden, M. J. Genesis and evolution of the 1997-98 El Niño. Science 283, 950–954 (1999).

    Google Scholar 

  115. 115.

    Vivekanandan, E., Hussain Ali, M., Jasper, B. & Rajagopalan, M. Thermal thresholds for coral bleaching in the Indian seas. J. Mar. Biol. Assoc. India 50, 209–214 (2008).

    Google Scholar 

  116. 116.

    Krishnan, P. et al. Elevated sea surface temperature during May 2010 induces mass bleaching of corals in the Andaman. Curr. Sci. 100, 111–117 (2011).

    Google Scholar 

  117. 117.

    Collins, M. et al. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) 589–655 (Intergovernmental Panel on Climate Change (IPCC), 2019).

  118. 118.

    Frölicher, T. L. in Predicting Future Oceans (eds Cisneros-Montemayor, A. M., Cheung, W. W. L. & Yoshitaka, O.) 53–60 (Elsevier, 2019).

  119. 119.

    Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. 108, 4407 (2003).

    Google Scholar 

  120. 120.

    Huang, B. et al. Extended reconstructed sea surface temperature, version 5 (ERSSTv5): upgrades, validations, and intercomparisons. J. Clim. 30, 8179–8205 (2017).

    Google Scholar 

  121. 121.

    Hirahara, S., Ishii, M. & Fukuda, Y. Centennial-scale sea surface temperature analysis and its uncertainty. J. Clim. 27, 57–75 (2014).

    Google Scholar 

  122. 122.

    Laloyaux, P., Balmaseda, M., Dee, D., Mogensen, K. & Janssen, P. A coupled data assimilation system for climate reanalysis. Q. J. R. Meteorol. Soc. 142, 65–78 (2016).

    Google Scholar 

  123. 123.

    Giese, B. S., Seidel, H. F., Compo, G. P. & Sardeshmukh, P. D. An ensemble of ocean reanalyses for 1815–2013 with sparse observational input. J. Geophys. Res. Oceans 121, 6891–6910 (2016).

    Google Scholar 

  124. 124.

    Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).

    Google Scholar 

  125. 125.

    Griffin, C., Beggs H. & Majewski, L. GHRSST compliant AVHRR SST products over the Australian region – Version 1, Technical Report, 151 pp (Bureau of Meteorology, Melbourne, Australia, 2017).

  126. 126.

    Wijffels, S. E. et al. A fine spatial-scale sea surface temperature atlas of the Australian regional seas (SSTAARS): Seasonal variability and trends around Australasia and New Zealand revisited. J. Mar. Syst. 187, 156–196 (2018).

    Google Scholar 

  127. 127.

    Oke, P. R. et al. Towards a dynamically balanced eddy-resolving ocean reanalysis: BRAN3. Ocean Model. 67, 52–70 (2013).

    Google Scholar 

  128. 128.

    Wessel, P. & Smith, W. H. F. A global self-consistent, hierarchical, high-resolution shoreline database. J. Geophys. Res. 101, 8741–8743 (1996).

    Google Scholar 

  129. 129.

    Perkins, S. E. & Alexander, L. V. On the measurement of heat waves. J. Clim. 26, 4500–4517 (2013).

    Google Scholar 

  130. 130.

    Pershing, A. J. et al. Challenges to natural and human communities from surprising ocean temperatures. Proc. Natl Acad. Sci. USA 116, 18378–18383 (2019).

    Google Scholar 

Download references

Acknowledgements

N.J.H. acknowledges support from the Australian Research Council (ARC) Centre of Excellence for Climate Extremes (grant CE170100023) and the Australian Government National Environmental Science Program (NESP) Earth Systems and Climate Change (ESCC) Hub (Project 5.8). D.A.S. was supported by the UK Research and Innovation (UKRI) Future Leaders Fellowships scheme (MR/S032827/1). T.W. also acknowledges support from the ARC for marine heatwave work (DP170100023). J.A.B. was supported through the NESP Tropical Water Quality (TWQ) Hub (Project 4.2). Sea-surface-temperature retrievals in Fig. 4 were produced by the Australian Bureau of Meteorology as a contribution to the Integrated Marine Observing System (IMOS), an initiative of the Australian Government being conducted as part of the National Collaborative Research Infrastructure Strategy (NCRIS) and the Super Science Initiative. The imagery data were acquired from the National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP) satellite by the National Oceanic and Atmospheric Administration (NOAA) and from the NOAA spacecraft by the Bureau of Meteorology, Australian Institute of Marine Science, Australian Commonwealth Scientific and Industrial Research Organisation, Geoscience Australia and Western Australian Satellite Technology and Applications Consortium. Australia’s IMOS is enabled by the NCRIS. It is operated by a consortium of institutions as an unincorporated joint venture, with the University of Tasmania as Lead Agent.

Author information

Affiliations

Authors

Contributions

N.J.H. led the overall conceptual design, led the activity and coordinated the writing. A.S.G. generated Figs 1, 3 and 5. E.C.J.O. generated Fig. 2. J.A.B. generated Fig. 4. A.J.H. led the conceptual design for Box 2 and Table 1. All authors discussed the concepts presented and contributed to the writing.

Corresponding author

Correspondence to Neil J. Holbrook.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Earth & Environment thanks Jennifer Jackson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Bluelink Ocean Forecasting: https://wp.csiro.au/bluelink/

Integrated Marine Observing System: http://imos.org.au/

Marine Heatwave Tracker: www.marineheatwaves.org/tracker.html

Marine heatwave website: www.marineheatwaves.org

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Holbrook, N.J., Sen Gupta, A., Oliver, E.C.J. et al. Keeping pace with marine heatwaves. Nat Rev Earth Environ 1, 482–493 (2020). https://doi.org/10.1038/s43017-020-0068-4

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing