Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Metal contamination and bioremediation of agricultural soils for food safety and sustainability

Abstract

Agricultural soil is a non-renewable natural resource that requires careful stewardship in order to achieve the United Nations’ Sustainable Development Goals. However, industrial and agricultural activity is often detrimental to soil health and can distribute heavy metal(loid)s into the soil environment, with harmful effects on human and ecosystem health. In this Review, we examine processes that can lead to the contamination of agricultural land with heavy metal(loid)s, which range from mine tailings runoff entering local irrigation channels to the atmospheric deposition of incinerator and coal-fired power-plant emissions. We discuss the relationship between heavy metal(loid) biogeochemical transformations in the soil and their bioavailability. We then review two biological solutions for remediation of contaminated agricultural land, plant-based remediation and microbial bioremediation, which offer cost-effective and sustainable alternatives to traditional physical or chemical remediation technologies. Finally, we discuss how integrating these innovative technologies with profitable and sustainable land use could lead to green and sustainable remediation strategies, and conclude by identifying research challenges and future directions for the biological remediation of agricultural soils.

Key points

  • Agricultural soil is a non-renewable natural resource that requires careful stewardship in order to achieve the United Nations’ Sustainable Development Goals.

  • Global agricultural soil pollution by heavy metal(loid)s represents one of the biggest challenges to sustainable development, particularly in developing countries.

  • Bioremediation, including phytoremediation and microbially mediated bioremediation, is a promising nature-based solution for treating heavy metal(loid) contamination.

  • It is imperative that the international community realizes the seriousness of the heavy metal(loid)s contamination in soils, takes actions to prevent further pollution and instigates the remediation of contaminated sites with environmentally friendly techniques.

  • Policymakers should foster a bioremediation-enabling environment through policy instruments and increased field-based research funding.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The impact of soil pollution on SDGs.
Fig. 2: Sources of heavy metal(loid)s pollution in agricultural soil.
Fig. 3: Spatial distribution of heavy metal(loid)s.
Fig. 4: Phytoremediation.
Fig. 5: Microbial bioremediation.

Similar content being viewed by others

References

  1. Montgomery, D. R. Soil erosion and agricultural sustainability. Proc. Natl Acad. Sci. USA 104, 13268–13272 (2007). Provides evidence from 201 different field studies globally that the soil-erosion rates in no-till agriculture is similar to soil-production rates and can be considered as a sustainable agricultural practice.

    Google Scholar 

  2. Cassidy, E. S., West, P. C., Gerber, J. S. & Foley, J. A. Redefining agricultural yields: from tonnes to people nourished per hectare. Environ. Res. Lett. 8, 034015 (2013).

    Google Scholar 

  3. Jansson, J. K. & Hofmockel, K. S. Soil microbiomes and climate change. Nat. Rev. Microbiol. 18, 35–46 (2020).

    Google Scholar 

  4. Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).

    Google Scholar 

  5. Borrelli, P. et al. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 8, 2013 (2017).

    Google Scholar 

  6. Pérez, A. P. & Eugenio, N. R. Status of local soil contamination in Europe (European Commission, 2018).

  7. Zhao, F. J., Ma, Y., Zhu, Y. G., Tang, Z. & McGrath, S. P. Soil contamination in China: current status and mitigation strategies. Environ. Sci. Technol. 49, 750–759 (2015).

    Google Scholar 

  8. Le Quéré, C. et al. Global carbon budget 2018. Earth Syst. Sci. Data 10, 2141–2194 (2018).

    Google Scholar 

  9. Kopittke, P. M., Menzies, N. W., Wang, P., McKenna, B. A. & Lombi, E. Soil and the intensification of agriculture for global food security. Environ. Int. 132, 105078 (2019).

    Google Scholar 

  10. Türkdoğan, M. K., Kilicel, F., Kara, K., Tuncer, I. & Uygan, I. Heavy metals in soil, vegetables and fruits in the endemic upper gastrointestinal cancer region of Turkey. Environ. Toxicol. Pharmacol. 13, 175–179 (2003).

    Google Scholar 

  11. O’Connor, D., Hou, D., Ok, Y. S. & Lanphear, B. P. The effects of iniquitous lead exposure on health. Nat. Sustain. 3, 77–79 (2020). A comprehensive comment on human-health impacts of lead exposure, which deserves global attention to reduce its concentrations in consumer products and soil environment.

    Google Scholar 

  12. Rodríguez Eugenio, N., McLaughlin, M. & Pennock, D. Soil pollution: a hidden reality (FAO, 2018).

  13. Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011). Found that the global crop demand of 2050 could be achieved by attaining high yields on existing croplands of underyielding nations.

    Google Scholar 

  14. Ministry of Environmental Protection. China national soil contamination survey report (CWR, 2014).

  15. Hou, D. & Li, F. Complexities surrounding China’s soil action plan. Land Degrad. Dev. 28, 2315–2320 (2017).

    Google Scholar 

  16. Hu, Y., Cheng, H. & Tao, S. The challenges and solutions for cadmium-contaminated rice in China: a critical review. Environ. Int. 92–93, 515–532 (2016).

    Google Scholar 

  17. Antoniadis, V. et al. A critical prospective analysis of the potential toxicity of trace element regulation limits in soils worldwide: Are they protective concerning health risk assessment? - a review. Environ. Int. 127, 819–847 (2019).

    Google Scholar 

  18. United Nations Environment Assembly of the United Nations Environment Programme. Managing soil pollution to achieve sustainable development (UNEP, 2018).

  19. Food and Agriculture Organization of the United Nations. The state of food security and nutrition in the world (FAO, 2019).

  20. Järup, L. Hazards of heavy metal contamination. Br. Med. Bull. 68, 167–182 (2003). Outlines the serious human-health impacts of heavy metal(loid)s exposure.

    Google Scholar 

  21. British Geological Survey. World mineral statistics data. BGS https://www.bgs.ac.uk/mineralsuk/statistics/home.html (2019).

  22. Dominish, E., Teske, S. & Florin, N. Responsible minerals sourcing for renewable energy (UTS, 2019).

  23. Mulligan, C. N., Yong, R. N. & Gibbs, B. F. Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng. Geol. 60, 193–207 (2001).

    Google Scholar 

  24. Rogich, D. G. & Matos, G. R. The global flows of metals and minerals (USGS, 2008).

  25. Yin, W. J., Yang, J. H., Kang, J., Yan, Y. & Wei, S. H. Halide perovskite materials for solar cells: a theoretical review. J. Mater. Chem. A 3, 8926–8942 (2015).

    Google Scholar 

  26. Li, B., Zheng, M., Xue, H. & Pang, H. High performance electrochemical capacitor materials focusing on nickel based materials. Inorg. Chem. Front. 3, 175–202 (2016).

    Google Scholar 

  27. Tóth, G., Hermann, T., Da Silva, M. R. & Montanarella, L. Heavy metals in agricultural soils of the European Union with implications for food safety. Environ. Int. 88, 299–309 (2016). Provides evidence that only 6.24% of European agricultural lands needs local assessment and remediation action to reduce the heavy metal(loid)s contaminations.

    Google Scholar 

  28. Boussen, S., Soubrand, M., Bril, H., Ouerfelli, K. & Abdeljaouad, S. Transfer of lead, zinc and cadmium from mine tailings to wheat (Triticum aestivum) in carbonated Mediterranean (Northern Tunisia) soils. Geoderma 192, 227–236 (2013).

    Google Scholar 

  29. Navarro, M. C. et al. Abandoned mine sites as a source of contamination by heavy metals: a case study in a semi-arid zone. J. Geochem. Explor. 96, 183–193 (2008).

    Google Scholar 

  30. Atafar, Z. et al. Effect of fertilizer application on soil heavy metal concentration. Environ. Monit. Assess. 160, 83–89 (2010).

    Google Scholar 

  31. Srivastava, S. K., Tyagi, R. & Pant, N. Adsorption of heavy metal ions on carbonaceous material developed from the waste slurry generated in local fertilizer plants. Water Res. 23, 1161–1165 (1989).

    Google Scholar 

  32. Walter, I., Martínez, F. & Cala, V. Heavy metal speciation and phytotoxic effects of three representative sewage sludges for agricultural uses. Environ. Pollut. 139, 507–514 (2006).

    Google Scholar 

  33. Chaoua, S., Boussaa, S., El Gharmali, A. & Boumezzough, A. Impact of irrigation with wastewater on accumulation of heavy metals in soil and crops in the region of Marrakech in Morocco. J. Saudi Soc. Agric. Sci. 18, 429–436 (2019).

    Google Scholar 

  34. Balkhair, K. S. & Ashraf, M. A. Field accumulation risks of heavy metals in soil and vegetable crop irrigated with sewage water in western region of Saudi Arabia. Saudi J. Biol. Sci. 23, S32–S44 (2016).

    Google Scholar 

  35. Bi, X. et al. Environmental contamination of heavy metals from zinc smelting areas in Hezhang County, western Guizhou, China. Environ. Int. 32, 883–890 (2006).

    Google Scholar 

  36. Noli, F. & Tsamos, P. Concentration of heavy metals and trace elements in soils, waters and vegetables and assessment of health risk in the vicinity of a lignite-fired power plant. Sci. Total Environ. 563–564, 377–385 (2016).

    Google Scholar 

  37. Zhang, F. et al. Influence of traffic activity on heavy metal concentrations of roadside farmland soil in mountainous areas. Int. J. Environ. Res. Public Health 9, 1715–1731 (2012).

    Google Scholar 

  38. Ogunkunle, C. O. & Fatoba, P. O. Pollution loads and the ecological risk assessment of soil heavy metals around a mega cement factory in southwest Nigeria. Pol. J. Environ. Stud. 22, 487–493 (2013).

    Google Scholar 

  39. Luo, C. et al. Heavy metal contamination in soils and vegetables near an e-waste processing site, south China. J. Hazard. Mater. 186, 481–490 (2011).

    Google Scholar 

  40. Hou, D., O’Connor, D., Nathanail, P., Tian, L. & Ma, Y. Integrated GIS and multivariate statistical analysis for regional scale assessment of heavy metal soil contamination: a critical review. Environ. Pollut. 231, 1188–1200 (2017).

    Google Scholar 

  41. Motamen Salehi, F., Khaemba, D. N., Morina, A. & Neville, A. Corrosive–abrasive wear induced by soot in boundary lubrication regime. Tribol. Lett. 63, 19 (2016).

    Google Scholar 

  42. Lu, A. et al. Multivariate and geostatistical analyses of the spatial distribution and origin of heavy metals in the agricultural soils in Shunyi, Beijing, China. Sci. Total Environ. 425, 66–74 (2012).

    Google Scholar 

  43. Nziguheba, G. & Smolders, E. Inputs of trace elements in agricultural soils via phosphate fertilizers in European countries. Sci. Total Environ. 390, 53–57 (2008).

    Google Scholar 

  44. Wang, X. et al. Evolving wastewater infrastructure paradigm to enhance harmony with nature. Sci. Adv. 4, eaaq0210 (2018).

    Google Scholar 

  45. Khan, S., Cao, Q., Zheng, Y. M., Huang, Y. Z. & Zhu, Y. G. Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environ. Pollut. 152, 686–692 (2008).

    Google Scholar 

  46. Nicholson, F. A., Smith, S. R., Alloway, B. J., Carlton-Smith, C. & Chambers, B. J. An inventory of heavy metals inputs to agricultural soils in England and Wales. Sci. Total Environ. 311, 205–219 (2003).

    Google Scholar 

  47. Clemens, S. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88, 1707–1719 (2006).

    Google Scholar 

  48. Marrugo-Negrete, J., Pinedo-Hernández, J. & Díez, S. Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia. Environ. Res. 154, 380–388 (2017).

    Google Scholar 

  49. Micó, C., Recatalá, L., Peris, M. & Sánchez, J. Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis. Chemosphere 65, 863–872 (2006).

    Google Scholar 

  50. Facchinelli, A., Sacchi, E. & Mallen, L. Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environ. Pollut. 114, 313–324 (2001).

    Google Scholar 

  51. Shan, Y. et al. Identification of sources of heavy metals in agricultural soils using multivariate analysis and GIS. J. Soils Sediments 13, 720–729 (2013).

    Google Scholar 

  52. Li, X., Lee, S., Wong, S., Shi, W. & Thornton, I. The study of metal contamination in urban soils of Hong Kong using a GIS-based approach. Environ. Pollut. 129, 113–124 (2004).

    Google Scholar 

  53. Zhou, J., Feng, K., Pei, Z., Meng, F. & Sun, J. Multivariate analysis combined with GIS to source identification of heavy metals in soils around an abandoned industrial area, Eastern China. Ecotoxicology 25, 380–388 (2016).

    Google Scholar 

  54. Barbieri, M., Sappa, G. & Nigro, A. Soil pollution: anthropogenic versus geogenic contributions over large areas of the Lazio region. J. Geochem. Explor. 195, 78–86 (2018).

    Google Scholar 

  55. Palumbo, B. et al. Influence of inheritance and pedogenesis on heavy metal distribution in soils of Sicily, Italy. Geoderma 95, 247–266 (2000).

    Google Scholar 

  56. Cao, X., Ma, L. Q., Chen, M., Hardison, D. W. & Harris, W. G. Lead transformation and distribution in the soils of shooting ranges in Florida, USA. Sci. Total Environ. 307, 179–189 (2003).

    Google Scholar 

  57. Knechtenhofer, L. A., Xifra, I. O., Scheinost, A. C., Flühler, H. & Kretzschmar, R. Fate of heavy metals in a strongly acidic shooting-range soil: small-scale metal distribution and its relation to preferential water flow. J. Plant Nutr. Soil Sci. 166, 84–92 (2003).

    Google Scholar 

  58. Fang, W., Wei, Y. & Liu, J. Comparative characterization of sewage sludge compost and soil: heavy metal leaching characteristics. J. Hazard. Mater. 310, 1–10 (2016).

    Google Scholar 

  59. Düring, R. A., Hoß, T. & Gäth, S. Sorption and bioavailability of heavy metals in long-term differently tilled soils amended with organic wastes. Sci. Total Environ. 313, 227–234 (2003).

    Google Scholar 

  60. Angelova, V., Ivanova, R., Delibaltova, V. & Ivanov, K. Bio-accumulation and distribution of heavy metals in fibre crops (flax, cotton and hemp). Ind. Crop. Prod. 19, 197–205 (2004).

    Google Scholar 

  61. Greinert, A. The heterogeneity of urban soils in the light of their properties. J. Soils Sediments 15, 1725–1737 (2015).

    Google Scholar 

  62. Fisher-Power, L. M., Cheng, T. & Rastghalam, Z. S. Cu and Zn adsorption to a heterogeneous natural sediment: Influence of leached cations and natural organic matter. Chemosphere 144, 1973–1979 (2016).

    Google Scholar 

  63. Zhang, Y. et al. Lead contamination in Chinese surface soils: source identification, spatial-temporal distribution and associated health risks. Crit. Rev. Environ. Sci. Technol. 49, 1386–1423 (2019). The soil lead pollution in China is more severe, with hotspots due to anthropogenic activities.

    Google Scholar 

  64. Dimitrijević, M. D., Nujkić, M. M., Alagić, S., Milić, S. M. & Tošić, S. B. Heavy metal contamination of topsoil and parts of peach-tree growing at different distances from a smelting complex. Int. J. Environ. Sci. Technol. 13, 615–630 (2016).

    Google Scholar 

  65. Alsbou, E. M. E. & Al-Khashman, O. A. Heavy metal concentrations in roadside soil and street dust from Petra region, Jordan. Environ. Monit. Assess. 190, 48 (2017).

    Google Scholar 

  66. Romic, M. & Romic, D. Heavy metals distribution in agricultural topsoils in urban area. Environ. Geol. 43, 795–805 (2003).

    Google Scholar 

  67. Jin, Y. et al. Assessment of sources of heavy metals in soil and dust at children’s playgrounds in Beijing using GIS and multivariate statistical analysis. Environ. Int. 124, 320–328 (2019).

    Google Scholar 

  68. Li, C., Li, F., Wu, Z. & Cheng, J. Effects of landscape heterogeneity on the elevated trace metal concentrations in agricultural soils at multiple scales in the Pearl River Delta, South China. Environ. Pollut. 206, 264–274 (2015).

    Google Scholar 

  69. Rodríguez Martín, J. A., Arias, M. L. & Grau Corbí, J. M. Heavy metals contents in agricultural topsoils in the Ebro basin (Spain). Application of the multivariate geoestatistical methods to study spatial variations. Environ. Pollut. 144, 1001–1012 (2006).

    Google Scholar 

  70. Feng, X. & Qiu, G. Mercury pollution in Guizhou, Southwestern China — an overview. Sci. Total Environ. 400, 227–237 (2008).

    Google Scholar 

  71. Zhao, H., Xia, B., Fan, C., Zhao, P. & Shen, S. Human health risk from soil heavy metal contamination under different land uses near Dabaoshan Mine, Southern China. Sci. Total Environ. 417–418, 45–54 (2012).

    Google Scholar 

  72. Gusev, A. et al. Assessment of transboundary pollution by toxic substances: heavy metals and POPs (EMEP, 2019).

  73. Chen, H., Teng, Y., Lu, S., Wang, Y. & Wang, J. Contamination features and health risk of soil heavy metals in China. Sci. Total Environ. 512–513, 143–153 (2015).

    Google Scholar 

  74. Li, W. et al. The identification of ‘hotspots’ of heavy metal pollution in soil–rice systems at a regional scale in eastern China. Sci. Total Environ. 472, 407–420 (2014).

    Google Scholar 

  75. Wang, X. et al. Climate and vegetation as primary drivers for global mercury storage in surface soil. Environ. Sci. Technol. 53, 10665–10675 (2019).

    Google Scholar 

  76. Caporale, A. G. & Violante, A. Chemical processes affecting the mobility of heavy metals and metalloids in soil environments. Curr. Pollut. Rep. 2, 15–27 (2016).

    Google Scholar 

  77. Antoniadis, V., Golia, E. E., Shaheen, S. M. & Rinklebe, J. Bioavailability and health risk assessment of potentially toxic elements in Thriasio Plain, near Athens, Greece. Environ. Geochem. Health 39, 319–330 (2017).

    Google Scholar 

  78. O’Connor, D. et al. Mercury speciation, transformation, and transportation in soils, atmospheric flux, and implications for risk management: a critical review. Environ. Int. 126, 747–761 (2019).

    Google Scholar 

  79. Kim, R. Y. et al. Bioavailability of heavy metals in soils: definitions and practical implementation — a critical review. Environ. Geochem. Health 37, 1041–1061 (2015).

    Google Scholar 

  80. Okoro, H. K., Fatoki, O. S., Adekola, F. A., Ximba, B. J. & Snyman, R. G. A review of sequential extraction procedures for heavy metals speciation in soil and sediments. Open Access. Sci. Rep. 1, 1–9 (2012).

    Google Scholar 

  81. Hettiarachchi, G. M. & Pierzynski, G. M. Soil lead bioavailability and in situ remediation of lead-contaminated soils: a review. Environ. Prog. 23, 78–93 (2004).

    Google Scholar 

  82. Shahid, M., Dumat, C., Khalid, S., Niazi, N. K. & Antunes, P. M. C. in Reviews of Environmental Contamination and Toxicology (eds Gunther, F. A. & de Voogt, P.) 73–137 (Springer, 2016).

  83. Vromman, D., Martínez, J. P., Kumar, M., Šlejkovec, Z. & Lutts, S. Comparative effects of arsenite (As(III)) and arsenate (As(V)) on whole plants and cell lines of the arsenic-resistant halophyte plant species Atriplex atacamensis. Environ. Sci. Pollut. Res. 25, 34473–34486 (2018).

    Google Scholar 

  84. Rieuwerts, J. S., Thornton, I., Farago, M. E. & Ashmore, M. R. Factors influencing metal bioavailability in soils: preliminary investigations for the development of a critical loads approach for metals. Chem. Speciat. Bioavailab. 10, 61–75 (1998).

    Google Scholar 

  85. Antoniadis, V. et al. Trace elements in the soil–plant interface: phytoavailability, translocation, and phytoremediation–a review. Earth-Sci. Rev. 171, 621–645 (2017).

    Google Scholar 

  86. Wang, X. & Tang, C. The role of rhizosphere pH in regulating the rhizosphere priming effect and implications for the availability of soil-derived nitrogen to plants. Ann. Bot. 121, 143–151 (2018).

    Google Scholar 

  87. Tao, H., Pan, W. L., Carter, P. & Wang, K. Addition of lignin to lime materials for expedited pH increase and improved vertical mobility of lime in no-till soils. Soil Use Manag. 35, 314–322 (2019).

    Google Scholar 

  88. Jing, F. et al. Biochar effects on soil chemical properties and mobilization of cadmium (Cd) and lead (Pb) in paddy soil. Soil Use Manag. 36, 320–327 (2020).

    Google Scholar 

  89. Aijun, Y., Changle, Q., Shusen, M. & Reardon, E. J. Effects of humus on the environmental activity of mineral-bound Hg: Influence on Hg volatility. Appl. Geochem. 21, 446–454 (2006).

    Google Scholar 

  90. Beckers, F. & Rinklebe, J. Cycling of mercury in the environment: Sources, fate, and human health implications: a review. Crit. Rev. Environ. Sci. Technol. 47, 693–794 (2017).

    Google Scholar 

  91. Wallschläger, D., Desai, M. V. M., Spengler, M. & Wilken, R.-D. Mercury speciation in floodplain soils and sediments along a contaminated river transect. J. Environ. Qual. 27, 1034 (1998).

    Google Scholar 

  92. Shaheen, S. M. & Rinklebe, J. Geochemical fractions of chromium, copper, and zinc and their vertical distribution in floodplain soil profiles along the Central Elbe River, Germany. Geoderma 228–229, 142–159 (2014).

    Google Scholar 

  93. Park, J. H. et al. Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils. J. Hazard. Mater. 185, 549–574 (2011).

    Google Scholar 

  94. Chibuike, G. U. & Obiora, S. C. Heavy metal polluted soils: effect on plants and bioremediation methods. Appl. Environ. Soil Sci. 2014, 752708 (2014).

    Google Scholar 

  95. Congeevaram, S., Dhanarani, S., Park, J., Dexilin, M. & Thamaraiselvi, K. Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates. J. Hazard. Mater. 146, 270–277 (2007).

    Google Scholar 

  96. Dary, M., Chamber-Pérez, M. A., Palomares, A. J. & Pajuelo, E. “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J. Hazard. Mater. 177, 323–330 (2010).

    Google Scholar 

  97. Sarma, H. Metal hyperaccumulation in plants: a review focusing on phytoremediation technology. J. Environ. Sci. Technol. 4, 118–138 (2011).

    Google Scholar 

  98. Hou, D. et al. A sustainability assessment framework for agricultural land remediation in China. Land Degrad. Dev. 29, 1005–1018 (2018).

    Google Scholar 

  99. Hou, D. Sustainable Remediation of Contaminated Soil and Groundwater: Materials, Processes, and Assessment (Butterworth-Heinemann, 2019).

  100. Song, Y. et al. Nature based solutions for contaminated land remediation and brownfield redevelopment in cities: a review. Sci. Total Environ. 663, 568–579 (2019).

    Google Scholar 

  101. Hou, D. & Al-Tabbaa, A. Sustainability: a new imperative in contaminated land remediation. Environ. Sci. Policy 39, 25–34 (2014).

    Google Scholar 

  102. Visoottiviseth, P., Francesconi, K. & Sridokchan, W. The potential of Thai indigenous plant species for the phytoremediation of arsenic contaminated land. Environ. Pollut. 118, 453–461 (2002).

    Google Scholar 

  103. Zhao, F. J., Lombi, E. & McGrath, S. P. Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant Soil 249, 37–43 (2003).

    Google Scholar 

  104. Angassa, K., Leta, S., Mulat, W., Kloos, H. & Meers, E. Evaluation of pilot-scale constructed wetlands with Phragmites karka for phytoremediation of municipal wastewater and biomass production in Ethiopia. Environ. Process. 6, 65–84 (2019).

    Google Scholar 

  105. Wang, L. et al. Field trials of phytomining and phytoremediation: A critical review of influencing factors and effects of additives. Crit. Rev. Environ. Sci. Technol. https://doi.org/10.1080/10643389.2019.1705724 (2019). Suggests that phytomining and phytoremediation are nature-based solutions for soil pollution, but there are several limitations that have to be addressed.

    Article  Google Scholar 

  106. Keller, C., Ludwig, C., Davoli, F. & Wochele, J. Thermal treatment of metal-enriched biomass produced from heavy metal phytoextraction. Environ. Sci. Technol. 39, 3359–3367 (2005). Found that the biochar production is a sound technique to increase recovery of Cd and Zn from plant biomass.

    Google Scholar 

  107. Chalot, M., Blaudez, D., Rogaume, Y., Provent, A.-S. & Pascual, C. Fate of trace elements during the combustion of phytoremediation wood. Environ. Sci. Technol. 46, 13361–13369 (2012).

    Google Scholar 

  108. Schreurs, E., Voets, T. & Thewys, T. GIS-based assessment of the biomass potential from phytoremediation of contaminated agricultural land in the Campine region in Belgium. Biomass Bioenergy 35, 4469–4480 (2011).

    Google Scholar 

  109. Schröder, P. et al. Intensify production, transform biomass to energy and novel goods and protect soils in Europe — a vision how to mobilize marginal lands. Sci. Total Environ. 616–617, 1101–1123 (2018).

    Google Scholar 

  110. Andersson-Sköld, Y., Hagelqvist, A., Crutu, G. & Blom, S. Bioenergy grown on contaminated land – a sustainable bioenergy contributor? Biofuels 5, 487–498 (2014).

    Google Scholar 

  111. Huang, H. et al. Effect of pyrolysis temperature on chemical form, behavior and environmental risk of Zn, Pb and Cd in biochar produced from phytoremediation residue. Bioresour. Technol. 249, 487–493 (2018).

    Google Scholar 

  112. Murtaza, G., Javed, W., Hussain, A., Qadir, M. & Aslam, M. Soil-applied zinc and copper suppress cadmium uptake and improve the performance of cereals and legumes. Int. J. Phytoremediat. 19, 199–206 (2017).

    Google Scholar 

  113. Ahmad, P. et al. Alleviation of cadmium toxicity in Brassica juncea L. (Czern. & Coss.) by calcium application involves various physiological and biochemical strategies. PLoS One 10, e0114571 (2015).

    Google Scholar 

  114. Meharg, A. A. & Macnair, M. R. Suppression of the high affinity phosphate uptake system: a mechanism of arsenate tolerance in Holcus lanatus L. J. Exp. Bot. 43, 519–524 (1992).

    Google Scholar 

  115. Shahid, M. et al. Foliar heavy metal uptake, toxicity and detoxification in plants: a comparison of foliar and root metal uptake. J. Hazard. Mater. 325, 36–58 (2017).

    Google Scholar 

  116. Che-Castaldo, J. P. & Inouye, D. W. Interspecific competition between a non-native metal-hyperaccumulating plant (Noccaea caerulescens, Brassicaceae) and a native congener across a soil-metal gradient. Aust. J. Bot. 63, 141 (2015).

    Google Scholar 

  117. Moreno, F. N., Anderson, C. W. N., Stewart, R. B. & Robinson, B. H. Phytoremediation of mercury-contaminated mine tailings by induced plant-mercury accumulation. Environ. Pract. 6, 165–175 (2004).

    Google Scholar 

  118. Zhang, L., Rylott, E. L., Bruce, N. C. & Strand, S. E. Genetic modification of western wheatgrass (Pascopyrum smithii) for the phytoremediation of RDX and TNT. Planta 249, 1007–1015 (2019).

    Google Scholar 

  119. Guidi Nissim, W. & Labrecque, M. Planting microcuttings: an innovative method for establishing a willow vegetation cover. Ecol. Eng. 91, 472–476 (2016).

    Google Scholar 

  120. Bhuiyan, M. S. I., Raman, A. & Hodgkins, D. S. Plants in remediating salinity-affected agricultural landscapes. Proc. Indian Natl Sci. Acad. 83, 51–66 (2017).

    Google Scholar 

  121. Cohen, C. K., Fox, T. C., Garvin, D. F. & Kochian, L. V. The role of iron-deficiency stress responses in stimulating heavy-metal transport in plants. Plant Physiol. 116, 1063–72 (1998). Provides evidence that plant accumulation of heavy metal(loid)s can be improved under iron deficiency in soil.

    Google Scholar 

  122. Luo, J., He, W., Xing, X., Wu, J. & Sophie Gu, X. W. The variation of metal fractions and potential environmental risk in phytoremediating multiple metal polluted soils using Noccaea caerulescens assisted by LED lights. Chemosphere 227, 462–469 (2019).

    Google Scholar 

  123. Fu, Y. et al. Interaction effects of light intensity and nitrogen concentration on growth, photosynthetic characteristics and quality of lettuce (Lactuca sativa L. Var. youmaicai). Sci. Hortic. 214, 51–57 (2017).

    Google Scholar 

  124. Niazi, N. K. et al. Phosphate-assisted phytoremediation of arsenic by Brassica napus and Brassica juncea: Morphological and physiological response. Int. J. Phytoremediat. 19, 670–678 (2017).

    Google Scholar 

  125. Iqbal, M., Puschenreiter, M., Oburger, E., Santner, J. & Wenzel, W. W. Sulfur-aided phytoextraction of Cd and Zn by Salix smithiana combined with in situ metal immobilization by gravel sludge and red mud. Environ. Pollut. 170, 222–231 (2012).

    Google Scholar 

  126. Cameselle, C. & Gouveia, S. Phytoremediation of mixed contaminated soil enhanced with electric current. J. Hazard. Mater. 361, 95–102 (2019).

    Google Scholar 

  127. Rehman, K., Imran, A., Amin, I. & Afzal, M. Inoculation with bacteria in floating treatment wetlands positively modulates the phytoremediation of oil field wastewater. J. Hazard. Mater. 349, 242–251 (2018).

    Google Scholar 

  128. Wang, X. et al. Transgenic tobacco plants expressing a P1B-ATPase gene from Populus tomentosa Carr. (PtoHMA5) demonstrate improved cadmium transport. Int. J. Biol. Macromol. 113, 655–661 (2018).

    Google Scholar 

  129. Ma, L. Q. et al. A fern that hyperaccumulates arsenic. Nature 409, 579 (2001). Found that fern Pteris vittata (brake fern) is highly efficient in phytoremediation of arsenic in contaminated soils.

    Google Scholar 

  130. Rascio, N. & Navari-Izzo, F. Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Sci. 180, 169–181 (2011).

    Google Scholar 

  131. Li, Z., Wu, L., Luo, Y. & Christie, P. Changes in metal mobility assessed by EDTA kinetic extraction in three polluted soils after repeated phytoremediation using a cadmium/zinc hyperaccumulator. Chemosphere 194, 432–440 (2018).

    Google Scholar 

  132. Tőzsér, D. et al. Phytoextraction with Salix viminalis in a moderately to strongly contaminated area. Environ. Sci. Pollut. Res. 25, 3275–3290 (2018).

    Google Scholar 

  133. Chandra, R. & Kang, H. Mixed heavy metal stress on photosynthesis, transpiration rate, and chlorophyll content in poplar hybrids. For. Sci. Technol. 12, 55–61 (2016).

    Google Scholar 

  134. Luo, J., Qi, S., Gu, X. W. S., Wang, J. & Xie, X. Evaluation of the phytoremediation effect and environmental risk in remediation processes under different cultivation systems. J. Clean. Prod. 119, 25–31 (2016).

    Google Scholar 

  135. Hu, R. et al. Intercropping with hyperaccumulator plants decreases the cadmium accumulation in grape seedlings. Acta Agric. Scand. B Soil Plant Sci. 69, 304–310 (2019).

    Google Scholar 

  136. Praveen, A., Mehrotra, S. & Singh, N. Mixed plantation of wheat and accumulators in arsenic contaminated plots: a novel way to reduce the uptake of arsenic in wheat and load on antioxidative defence of plant. Ecotoxicol. Environ. Saf. 182, 109462 (2019).

    Google Scholar 

  137. Ewel, J. J., Schreeg, L. A. & Sinclair, T. R. Resources for crop production: accessing the unavailable. Trends Plant Sci. 24, 121–129 (2019).

    Google Scholar 

  138. Wan, X., Lei, M., Chen, T. & Yang, J. Intercropped Pteris vittata L. and Morus alba L. presents a safe utilization mode for arsenic-contaminated soil. Sci. Total Environ. 579, 1467–1475 (2017).

    Google Scholar 

  139. Smith, E., Juhasz, A. L., Weber, J. & Naidu, R. Arsenic uptake and speciation in rice plants grown under greenhouse conditions with arsenic contaminated irrigation water. Sci. Total Environ. 392, 277–283 (2008).

    Google Scholar 

  140. ur Rehman, M. Z. et al. Remediation of heavy metal contaminated soils by using Solanum nigrum: a review. Ecotoxicol. Environ. Saf. 143, 236–248 (2017).

    Google Scholar 

  141. Cheng, S. F., Huang, C. Y., Lin, Y. C., Lin, S. C. & Chen, K. L. Phytoremediation of lead using corn in contaminated agricultural land-An in situ study and benefit assessment. Ecotoxicol. Environ. Saf. 111, 72–77 (2015).

    Google Scholar 

  142. Jeong, S., Moon, H. S. & Nam, K. Increased ecological risk due to the hyperaccumulation of As in Pteris cretica during the phytoremediation of an As-contaminated site. Chemosphere 122, 1–7 (2015).

    Google Scholar 

  143. Li, Z., Jia, M., Wu, L., Christie, P. & Luo, Y. Changes in metal availability, desorption kinetics and speciation in contaminated soils during repeated phytoextraction with the Zn/Cd hyperaccumulator Sedum plumbizincicola. Environ. Pollut. 209, 123–131 (2016).

    Google Scholar 

  144. Jiang, J. et al. Effects of multiple heavy metal contamination and repeated phytoextraction by Sedum plumbizincicola on soil microbial properties. Eur. J. Soil Biol. 46, 18–26 (2010).

    Google Scholar 

  145. Hou, X. et al. Pb stress effects on leaf chlorophyll fluorescence, antioxidative enzyme activities, and organic acid contents of Pogonatherum crinitum seedlings. Flora 240, 82–88 (2018).

    Google Scholar 

  146. Shen, Z., Wang, Y., Chen, Y. & Zhang, Z. Transfer of heavy metals from the polluted rhizosphere soil to Celosia argentea L. in copper mine tailings. Hortic. Environ. Biotechnol. 58, 93–100 (2017).

    Google Scholar 

  147. Pratas, J., Favas, P. J. C., Varun, M., D’Souza, R. & Paul, M. S. Distribution of rare earth elements, thorium and uranium in streams and aquatic mosses of Central Portugal. Environ. Earth Sci. 76, 156 (2017).

    Google Scholar 

  148. Bennett, L. E. et al. Analysis of transgenic Indian mustard plants for phytoremediation of metal-contaminated mine tailings. J. Environ. Qual. 32, 432–440 (2003).

    Google Scholar 

  149. Van Huysen, T. et al. Overexpression of cystathionine-γ-synthase enhances selenium volatilization in Brassica juncea. Planta 218, 71–78 (2003).

    Google Scholar 

  150. Davison, J. Risk mitigation of genetically modified bacteria and plants designed for bioremediation. J. Ind. Microbiol. Biotechnol. 32, 639–650 (2005).

    Google Scholar 

  151. Al-Ahmad, H., Galili, S. & Gressel, J. Tandem constructs to mitigate transgene persistence: tobacco as a model. Mol. Ecol. 13, 697–710 (2004).

    Google Scholar 

  152. Shrestha, P., Bellitürk, K. & Görres, J. H. Phytoremediation of heavy metal-contaminated soil by switchgrass: a comparative study utilizing different composts and coir fiber on pollution remediation, plant productivity, and nutrient leaching. Int. J. Environ. Res. Public Health 16, 1261 (2019).

    Google Scholar 

  153. Din, B. U. et al. Assisted phytoremediation of chromium spiked soils by Sesbania sesban in association with Bacillus xiamenensis PM14: a biochemical analysis. Plant Physiol. Biochem. 146, 249–258 (2020).

    Google Scholar 

  154. Zhang, X. et al. Effect of plant-growth-promoting rhizobacteria on phytoremediation efficiency of Scirpus triqueter in pyrene-Ni co-contaminated soils. Chemosphere 241, 125027 (2020).

    Google Scholar 

  155. Willscher, S. et al. Field scale phytoremediation experiments on a heavy metal and uranium contaminated site, and further utilization of the plant residues. Hydrometallurgy 131–132, 46–53 (2013).

    Google Scholar 

  156. Baker, A. J. M., McGrath, S. P., Sidoli, C. M. D. & Reeves, R. D. The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resour. Conserv. Recycl. 11, 41–49 (1994).

    Google Scholar 

  157. Kidd, P. et al. Agronomic practices for improving gentle remediation of trace element-contaminated soils. Int. J. Phytoremediat. 17, 1005–1037 (2015).

    Google Scholar 

  158. Ji, P., Sun, T., Song, Y., Ackland, M. L. & Liu, Y. Strategies for enhancing the phytoremediation of cadmium-contaminated agricultural soils by Solanum nigrum L. Environ. Pollut. 159, 762–768 (2011).

    Google Scholar 

  159. Li, N. et al. Effects of double harvesting on heavy metal uptake by six forage species and the potential for phytoextraction in field. Pedosphere 26, 717–724 (2016).

    Google Scholar 

  160. Lim, J. E. et al. Impact of natural and calcined starfish (Asterina pectinifera) on the stabilization of Pb, Zn and As in contaminated agricultural soil. Environ. Geochem. Health 39, 431–441 (2017).

    Google Scholar 

  161. Mertens, J., Vervaeke, P., Meers, E. & Tack, F. M. G. Seasonal changes of metals in willow (Salix sp.) stands for phytoremediation on dredged sediment. Environ. Sci. Technol. 40, 1962–1968 (2006).

    Google Scholar 

  162. Sampanpanish, P. & Nanthavong, K. Effect of EDTA and NTA on arsenic bioaccumulation and translocation using phytoremediation by Mimosa pudica L. from contaminated soils. Bull. Environ. Contam. Toxicol. 102, 140–145 (2019).

    Google Scholar 

  163. Wan, X., Lei, M. & Chen, T. Cost–benefit calculation of phytoremediation technology for heavy-metal-contaminated soil. Sci. Total Environ. 563–564, 796–802 (2016). Illustrates that the phytoremediation renders low environmental impacts and costs compared with other remediation technologies.

    Google Scholar 

  164. Ruttens, A. et al. Short rotation coppice culture of willows and poplars as energy crops on metal contaminated agricultural soils. Int. J. Phytoremediat. 13, 194–207 (2011). Suggests phytoremediation with tolerant plant species for adverse environmental conditions is a promising remediation method for mine tailings.

    Google Scholar 

  165. Touceda-González, M. et al. Aided phytostabilisation reduces metal toxicity, improves soil fertility and enhances microbial activity in Cu-rich mine tailings. J. Environ. Manage. 186, 301–313 (2017).

    Google Scholar 

  166. Grobelak, A. et al. Effects of single sewage sludge application on soil phytoremediation. J. Clean. Prod. 155, 189–197 (2017).

    Google Scholar 

  167. Galende, M. A. et al. Field assessment of the effectiveness of organic amendments for aided phytostabilization of a Pb-Zn contaminated mine soil. J. Geochem. Explor. 145, 181–189 (2014).

    Google Scholar 

  168. Panda, D., Panda, D., Padhan, B. & Biswas, M. Growth and physiological response of lemongrass (Cymbopogon citratus (D.C.) Stapf.) under different levels of fly ash-amended soil. Int. J. Phytoremediat. 20, 538–544 (2018).

    Google Scholar 

  169. Kursun Unver, I. & Terzi, M. Distribution of trace elements in coal and coal fly ash and their recovery with mineral processing practices: a review. J. Min. Environ. 9, 641–655 (2018).

    Google Scholar 

  170. Blissett, R. S. & Rowson, N. A. A review of the multi-component utilisation of coal fly ash. Fuel 97, 1–23 (2012).

    Google Scholar 

  171. Li, X., Wang, X., Chen, Y., Yang, X. & Cui, Z. Optimization of combined phytoremediation for heavy metal contaminated mine tailings by a field-scale orthogonal experiment. Ecotoxicol. Environ. Saf. 168, 1–8 (2019).

    Google Scholar 

  172. Khaokaew, S. & Landrot, G. A field-scale study of cadmium phytoremediation in a contaminated agricultural soil at Mae Sot district, Tak Province, Thailand: (1) Determination of Cd-hyperaccumulating plants. Chemosphere 138, 883–887 (2015).

    Google Scholar 

  173. Chen, Y., Shen, Z. & Li, X. The use of vetiver grass (Vetiveria zizanioides) in the phytoremediation of soils contaminated with heavy metals. Appl. Geochem. 19, 1553–1565 (2004).

    Google Scholar 

  174. Wang, L., Ji, B., Hu, Y., Liu, R. & Sun, W. A review on in situ phytoremediation of mine tailings. Chemosphere 184, 594–600 (2017).

    Google Scholar 

  175. Vangronsveld, J. et al. Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ. Sci. Pollut. Res. 16, 765–794 (2009).

    Google Scholar 

  176. Kallmeyer, J., Pockalny, R., Adhikari, R. R., Smith, D. C. & D’Hondt, S. Global distribution of microbial abundance and biomass in subseafloor sediment. Proc. Natl Acad. Sci. USA 109, 16213–16216 (2012).

    Google Scholar 

  177. Anantharaman, K. et al. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat. Commun. 7, 13219 (2016). Provides evidence that inter-organism interactions of soil microorganisms are significant in biogeochemical cycling of carbon, nitrogen, sulfur and hydrogen.

    Google Scholar 

  178. Serna-Chavez, H. M., Fierer, N. & Van Bodegom, P. M. Global drivers and patterns of microbial abundance in soil. Glob. Ecol. Biogeogr. 22, 1162–1172 (2013). Illustrates that soil microbial biomass is not primarily driven by soil temperature but by soil moisture and nutrients availability.

    Google Scholar 

  179. Madsen, E. L. Microorganisms and their roles in fundamental biogeochemical cycles. Curr. Opin. Biotechnol. 22, 456–464 (2011). A comprehensive view of the microbially mediated biogeochemical processes that transform and recycle organic and inorganic substances in soils, sediments and waters.

    Google Scholar 

  180. Lovley, D. R. Cleaning up with genomics: applying molecular biology to bioremediation. Nat. Rev. Microbiol. 1, 35–44 (2003). A comprehensive view of the application of genome-enabled techniques for bioremediation.

    Google Scholar 

  181. Gadd, G. M. Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Curr. Opin. Biotechnol. 11, 271–279 (2000). The environmental fate of toxic metals and radionuclides is determined by diverse mechanisms of microorganisms.

    Google Scholar 

  182. Rajendran, P., Muthukrishnan, J. & Gunasekaran, P. Microbes in heavy metal remediation. Indian. J. Exp. Biol. 41, 935–944 (2003).

    Google Scholar 

  183. Pushpanathan, M., Jayashree, S., Gunasekaran, P. & Rajendhran, J. in Microbial Biodegradation and Bioremediation (ed. Das, S.) 407–419 (Elsevier, 2014).

  184. Kavamura, V. N. & Esposito, E. Biotechnological strategies applied to the decontamination of soils polluted with heavy metals. Biotechnol. Adv. 28, 61–69 (2010).

    Google Scholar 

  185. Gadd, G. M. Microbial influence on metal mobility and application for bioremediation. Geoderma 122, 109–119 (2004).

    Google Scholar 

  186. Gadd, G. M. Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156, 609–643 (2010). Microbial transformations of metals and minerals are vital biosphere processes, with both beneficial and detrimental impacts on human society.

    Google Scholar 

  187. Hesse, E. et al. Anthropogenic remediation of heavy metals selects against natural microbial remediation. Proc. R. Soc. B Biol. Sci. 286, 20190804 (2019).

    Google Scholar 

  188. Luján, A. M., Gómez, P. & Buckling, A. Siderophore cooperation of the bacterium Pseudomonas fluorescens in soil. Biol. Lett. 11, 20140934 (2015).

    Google Scholar 

  189. Hider, R. C. & Kong, X. Chemistry and biology of siderophores. Nat. Prod. Rep. 27, 637 (2010).

    Google Scholar 

  190. Hesse, E. et al. Ecological selection of siderophore-producing microbial taxa in response to heavy metal contamination. Ecol. Lett. 21, 117–127 (2018).

    Google Scholar 

  191. O’Brien, S. & Buckling, A. The sociality of bioremediation: Hijacking the social lives of microbial populations to clean up heavy metal contamination. EMBO Rep. 16, 1241–5 (2015).

    Google Scholar 

  192. Diels, L., De Smet, M., Hooyberghs, L. & Corbisier, P. Heavy metals bioremediation of soil. Mol. Biotechnol. 12, 149–158 (1999).

    Google Scholar 

  193. Shenker, M. & Chen, Y. Increasing iron availability to crops: fertilizers, organo-fertilizers, and biological approaches. Soil Sci. Plant Nutr. 51, 1–17 (2005).

    Google Scholar 

  194. Blowes, D. W., Ptacek, C. J., Jambor, J. L. & Weisener, C. G. in Treatise on Geochemistry (eds Holland, H. D. & Turekian, K. K.) 149–204 (Elsevier, 2003).

  195. White, C., Shaman, A. K. & Gadd, G. M. An integrated microbial process for the bioremediation of soil contaminated with toxic metals. Nat. Biotechnol. 16, 572–575 (1998).

    Google Scholar 

  196. Chang, C.-Y., Chen, S.-Y., Klipkhayai, P. & Chiemchaisri, C. Bioleaching of heavy metals from harbor sediment using sulfur-oxidizing microflora acclimated from native sediment and exogenous soil. Environ. Sci. Pollut. Res. 26, 6818–6828 (2019).

    Google Scholar 

  197. Rasoulnia, P., Mousavi, S. M., Rastegar, S. O. & Azargoshasb, H. Fungal leaching of valuable metals from a power plant residual ash using Penicillium simplicissimum: Evaluation of thermal pretreatment and different bioleaching methods. Waste Manag. 52, 309–317 (2016).

    Google Scholar 

  198. Ren, W.-X., Li, P.-J., Geng, Y. & Li, X.-J. Biological leaching of heavy metals from a contaminated soil by Aspergillus niger. J. Hazard. Mater. 167, 164–169 (2009).

    Google Scholar 

  199. Jadhav, U., Su, C. & Hocheng, H. Leaching of metals from printed circuit board powder by an Aspergillus niger culture supernatant and hydrogen peroxide. RSC Adv. 6, 43442–43452 (2016).

    Google Scholar 

  200. Liang, X. & Gadd, G. M. Metal and metalloid biorecovery using fungi. Microb. Biotechnol. 10, 1199–1205 (2017).

    Google Scholar 

  201. Deng, X. et al. Bioleaching of heavy metals from a contaminated soil using indigenous Penicillium chrysogenum strain F1. J. Hazard. Mater. 233–234, 25–32 (2012).

    Google Scholar 

  202. Deng, X., Yang, Z. & Chen, R. Study of characteristics on metabolism of Penicillium chrysogenum F1 during bioleaching of heavy metals from contaminated soil. Can. J. Microbiol. 65, 629–641 (2019).

    Google Scholar 

  203. Zayed, A. M. & Terry, N. Chromium in the environment: Factors affecting biological remediation. Plant Soil 249, 139–156 (2003).

    Google Scholar 

  204. Alessi, D. S. et al. Speciation and reactivity of uranium products formed during in situ bioremediation in a shallow alluvial aquifer. Environ. Sci. Technol. 48, 12842–12850 (2014).

    Google Scholar 

  205. Bargar, J. R. et al. Uranium redox transition pathways in acetate-amended sediments. Proc. Natl Acad. Sci. USA 110, 4506–4511 (2013).

    Google Scholar 

  206. Damian, G. E., Micle, V., Sur, I. M. & Chirilă Băbău, A. M. From environmental ethics to sustainable decision-making: assessment of potential ecological risk in soils around abandoned mining areas-case study “Larga de Sus mine” (Romania). J. Agric. Environ. Ethics 32, 27–49 (2019).

    Google Scholar 

  207. Xie, Z. et al. Conservation opportunities on uncontested lands. Nat. Sustain. 3, 9–15 (2020).

    Google Scholar 

  208. Favas, P. J. C., Pratas, J., Paul, M. S. & Prasad, M. N. V. in Phytomanagement of Polluted Sites (eds Pandey, V. C. & Bauddh, K.) 277–300 (Elsevier, 2019).

  209. Gadd, G. M. Heavy metal accumulation by bacteria and other microorganisms. Experientia 46, 834–840 (1990).

    Google Scholar 

  210. Kasemodel, M. C., Sakamoto, I. K., Varesche, M. B. A. & Rodrigues, V. G. S. Potentially toxic metal contamination and microbial community analysis in an abandoned Pb and Zn mining waste deposit. Sci. Total Environ. 675, 367–379 (2019).

    Google Scholar 

  211. Nies, D. H. Heavy metal-resistant bacteria as extremophiles: Molecular physiology and biotechnological use of Ralstonia sp. CH34. Extremophiles 4, 77–82 (2000).

    Google Scholar 

  212. Valls, M. & de Lorenzo, V. Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol. Rev. 26, 327–338 (2002).

    Google Scholar 

  213. Liang, Y. et al. Molecular characteristics, proton dissociation properties, and metal binding properties of soil organic matter: A theoretical study. Sci. Total Environ. 656, 521–530 (2019).

    Google Scholar 

  214. Elghali, A. et al. The role of hardpan formation on the reactivity of sulfidic mine tailings: a case study at Joutel mine (Québec). Sci. Total Environ. 654, 118–128 (2019).

    Google Scholar 

  215. Achal, V., Pan, X. & Zhang, D. Remediation of copper-contaminated soil by Kocuria flava CR1, based on microbially induced calcite precipitation. Ecol. Eng. 37, 1601–1605 (2011).

    Google Scholar 

  216. Wang, J. et al. Iron–manganese (oxyhydro)oxides, rather than oxidation of sulfides, determine mobilization of Cd during soil drainage in paddy soil systems. Environ. Sci. Technol. 53, 2500–2508 (2019).

    Google Scholar 

  217. Chen, Y.-W., Yu, X. & Belzile, N. Arsenic speciation in surface waters and lake sediments in an abandoned mine site and field observations of arsenic eco-toxicity. J. Geochem. Explor. 205, 106349 (2019).

    Google Scholar 

  218. Wilkin, R. T. Contaminant attenuation processes at mine sites. Mine Water Environ. 27, 251–258 (2008).

    Google Scholar 

  219. Kumar, V. et al. Impact of tillage and crop establishment methods on crop yields, profitability and soil physical properties in rice–wheat system of Indo-Gangetic Plains of India. Soil Use Manag. 35, 303–313 (2019).

    Google Scholar 

  220. Farhate, C. V. V. et al. Soil tillage and cover crop on soil CO2 emissions from sugarcane fields. Soil Use Manag. 35, 273–282 (2019).

    Google Scholar 

  221. Mangalassery, S., Mooney, S. J., Sparkes, D. L., Fraser, W. T. & Sjögersten, S. Impacts of zero tillage on soil enzyme activities, microbial characteristics and organic matter functional chemistry in temperate soils. Eur. J. Soil Biol. 68, 9–17 (2015).

    Google Scholar 

  222. Lovley, D. R. & Coates, J. D. Bioremediation of metal contamination. Curr. Opin. Biotechnol. 8, 285–289 (1997).

    Google Scholar 

  223. Thornton, S. F., Nicholls, H. C. G., Rolfe, S. A., Mallinson, H. E. H. & Spence, M. J. Biodegradation and fate of ethyl tert-butyl ether (ETBE) in soil and groundwater: a review. J. Hazard. Mater. 391, 122046 (2020).

    Google Scholar 

  224. Ławniczak, Ł., Woźniak-Karczewska, M., Loibner, A. P., Heipieper, H. J. & Chrzanowski, Ł. Microbial degradation of hydrocarbons—basic principles for bioremediation: a review. Molecules 25, 856 (2020).

    Google Scholar 

  225. Newsome, L., Morris, K. & Lloyd, J. R. The biogeochemistry and bioremediation of uranium and other priority radionuclides. Chem. Geol. 363, 164–184 (2014).

    Google Scholar 

  226. Donati, E. R., Sani, R. K., Goh, K. M. & Chan, K.-G. Editorial: recent advances in bioremediation/biodegradation by extreme microorganisms. Front. Microbiol. 10, 1851 (2019).

    Google Scholar 

  227. Lebeau, T. in Bioaugmentation, Biostimulation and Biocontrol. Soil Biology Vol. 108 (eds Singh, A., Parmar, N. & Kuhad, R.) 129–186 (Springer, 2011).

  228. Young, C.-C., Rekha, P. D., Lai, W.-A. & Arun, A. B. Encapsulation of plant growth-promoting bacteria in alginate beads enriched with humic acid. Biotechnol. Bioeng. 95, 76–83 (2006).

    Google Scholar 

  229. Bashan, Y., Hernandez, J. P., Leyva, L. A. & Bacilio, M. Alginate microbeads as inoculant carriers for plant growth-promoting bacteria. Biol. Fertil. Soils 35, 359–368 (2002).

    Google Scholar 

  230. van Elsas, J. D., Trevors, J. T., Rosado, A. S. & Nannipieri, P. Modern Soil Microbiology 3rd edn (CRC, 2019).

  231. Diep, P., Mahadevan, R. & Yakunin, A. F. Heavy metal removal by bioaccumulation using genetically engineered microorganisms. Front. Bioeng. Biotechnol. 6, 157 (2018).

    Google Scholar 

  232. Kang, S. H. et al. Bacteria metabolically engineered for enhanced phytochelatin production and cadmium accumulation. Appl. Environ. Microbiol. 73, 6317–6320 (2007).

    Google Scholar 

  233. Yadav, S. K. Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South Afr. J. Bot. 76, 167–179 (2010).

    Google Scholar 

  234. Sneller, F. E. C. et al. Derivatization of phytochelatins from Silene vulgaris, induced upon exposure to arsenate and cadmium: comparison of derivatization with Ellman’s reagent and monobromobimane. J. Agric. Food Chem. 48, 4014–4019 (2000).

    Google Scholar 

  235. Gupta, S. & Singh, D. in Advances in Environmental Biotechnology (eds Kumar, R., Sharma, A. & Ahluwalia, S.) 197–214 (Springer, 2017).

  236. Yergeau, E., Sanschagrin, S., Maynard, C., St-Arnaud, M. & Greer, C. W. Microbial expression profiles in the rhizosphere of willows depend on soil contamination. ISME J. 8, 344–358 (2014).

    Google Scholar 

  237. Rajkumar, M., Sandhya, S., Prasad, M. N. V. & Freitas, H. Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol. Adv. 30, 1562–1574 (2012).

    Google Scholar 

  238. Braud, A., Jézéquel, K., Bazot, S. & Lebeau, T. Enhanced phytoextraction of an agricultural Cr- and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere 74, 280–286 (2009).

    Google Scholar 

  239. Plewniak, F., Crognale, S., Rossetti, S. & Bertin, P. N. A genomic outlook on bioremediation: the case of arsenic removal. Front. Microbiol. 9, 820 (2018).

    Google Scholar 

  240. Mesa, J. et al. Moving closer towards restoration of contaminated estuaries: bioaugmentation with autochthonous rhizobacteria improves metal rhizoaccumulation in native Spartina maritima. J. Hazard. Mater. 300, 263–271 (2015).

    Google Scholar 

  241. Li, D., Niu, Y. Y., Fan, M., Xu, D. L. & Xu, P. Focusing phenomenon caused by soil conductance heterogeneity in the electrokinetic remediation of chromium (VI)-contaminated soil. Sep. Purif. Technol. 120, 52–58 (2013).

    Google Scholar 

  242. Liang, L. et al. Phytoremediation of heavy metal contaminated saline soils using halophytes: current progress and future perspectives. Environ. Rev. 25, 269–281 (2017).

    Google Scholar 

  243. Aboughalma, H., Bi, R. & Schlaak, M. Electrokinetic enhancement on phytoremediation in Zn, Pb, Cu and Cd contaminated soil using potato plants. J. Environ. Sci. Health A 43, 926–933 (2008).

    Google Scholar 

  244. Burges, A., Alkorta, I., Epelde, L. & Garbisu, C. From phytoremediation of soil contaminants to phytomanagement of ecosystem services in metal contaminated sites. Int. J. Phytoremediat. 20, 384–397 (2018).

    Google Scholar 

  245. Conesa, H. M., Evangelou, M. W. H., Robinson, B. H. & Schulin, R. A critical view of current state of phytotechnologies to remediate soils: still a promising tool? Sci. World J. 2012, 173829 (2012).

    Google Scholar 

  246. Robinson, B. H., Bañuelos, G., Conesa, H. M., Evangelou, M. W. H. & Schulin, R. The phytomanagement of trace elements in soil. Crit. Rev. Plant Sci. 28, 240–266 (2009).

    Google Scholar 

  247. Evangelou, M. W. H., Papazoglou, E. G., Robinson, B. H. & Schulin, R. in Phytoremediation: Management of Environmental Contaminants Vol. 1 (eds Ansari, A. et al.) 115–132 (Springer, 2015).

  248. Hou, D. & Ok, Y. S. Soil pollution — speed up global mapping. Nature 566, 455–455 (2019).

    Google Scholar 

  249. O’Connor, D. et al. Biochar application for the remediation of heavy metal polluted land: a review of in situ field trials. Sci. Total Environ. 619–620, 815–826 (2018).

    Google Scholar 

  250. United Nations Environment Assembly of the United Nations Environment Programme. Implementation plan “Towards a pollution-free planet” (UNEP, 2019).

  251. Jiang, Y. et al. Field scale remediation of Cd and Pb contaminated paddy soil using three mulberry (Morus alba L.) cultivars. Ecol. Eng. 129, 38–44 (2019).

    Google Scholar 

  252. Li, J. T., Liao, B., Dai, Z. Y., Zhu, R. & Shu, W. S. Phytoextraction of Cd-contaminated soil by carambola (Averrhoa carambola) in field trials. Chemosphere 76, 1233–1239 (2009).

    Google Scholar 

  253. Mayerová, M. et al. Non-enhanced phytoextraction of cadmium, zinc, and lead by high-yielding crops. Environ. Sci. Pollut. Res. 24, 14706–14716 (2017).

    Google Scholar 

  254. van Slycken, S. et al. Field evaluation of willow under short rotation coppice for phytomanagement of metal-polluted agricultural soils. Int. J. Phytoremediat. 15, 677–689 (2013).

    Google Scholar 

  255. Ma, J., Lei, E., Lei, M., Liu, Y. & Chen, T. Remediation of arsenic contaminated soil using malposed intercropping of Pteris vittata L. and maize. Chemosphere 194, 737–744 (2018).

    Google Scholar 

  256. Meers, E. et al. The use of bio-energy crops (Zea mays) for ‘phytoattenuation’ of heavy metals on moderately contaminated soils: a field experiment. Chemosphere 78, 35–41 (2010).

    Google Scholar 

  257. Favas, P. J. C., Pratas, J., Varun, M., D’Souza, R. & Paul, M. S. in Environmental Risk Assessment of Soil Contamination (ed. Hernandez Soriano, M. C.) 485–518 (InTech, 2014).

  258. Ahemad, M. Remediation of metalliferous soils through the heavy metal resistant plant growth promoting bacteria: paradigms and prospects. Arab. J. Chem. 12, 1365–1377 (2019).

    Google Scholar 

Download references

Acknowledgements

This work was carried out with the support of the Cooperative Research Program for Agriculture Science and Technology Development (project no. PJ01475801), Rural Development Administration, Republic of Korea. This work was also supported by the National Research Foundation of Korea (NRF) (NRF-2015R1A2A2A11001432) and the NRF Germany-Korea Partnership Program (GEnKO Program) (2018–2020). Y.S.O. and A.D.I. were partly supported by the KU Future Research Grant (KU FRG) Fund, Korea Biochar Research Center (KBRC) Fund and the Association of Pacific Rim Universities (APRU) Sustainable Waste Management Program from the Korea University, Republic of Korea. D.H. and D.O.C. were supported by the National Key Research and Development Program of China (grant no. 2018YFC1801300), the National Water Pollution Control and Treatment Science and Technology Major Project (no. 2018ZX07109-003) and the Ministry of Ecology and Environment’s National Soil Pollution Investigation Project in China.

Author information

Authors and Affiliations

Authors

Contributions

Y.S.O., D.H., D.O.C., A.D.I., J.L. and D.C.W.T. researched data for the article. Y.S.O., D.H. and D.C.W.T. made a substantial contribution to the discussion of content. Y.S.O., D.H., D.O.C., A.D.I., D.S.A. and J.L. contributed to the writing of the review. Y.S.O., D.H., D.O.C., A.D.I., D.S.A., D.C.W.T., D.L.S., Y.Y. and J.R. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Yong Sik Ok.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Bioavailability

The proportion of a soil constituent that interacts with living organisms.

Geogenic

Resulting from natural geological processes.

Rhizosphere

The very narrow region of soil in the vicinity of plant roots.

Humic acids

Soil organic substances that coagulate when strong base extracts are acidified.

Fulvic acids

Soil organic substances that remain soluble when strong base extracts are acidified.

Hyperaccumulators

Plant species that extract and concentrate certain heavy metal(loid)s within their biomass when grown in metal-contaminated soils.

Siderophores

Chelating compounds secreted by microorganisms that bind with iron and other metals, increasing their bioavailability.

Lime

Calcium-rich alkaline-soil amendments, including marl, chalk, limestone or hydrated lime.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, D., O’Connor, D., Igalavithana, A.D. et al. Metal contamination and bioremediation of agricultural soils for food safety and sustainability. Nat Rev Earth Environ 1, 366–381 (2020). https://doi.org/10.1038/s43017-020-0061-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-020-0061-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing