Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The formation, character and changing nature of mesoscale convective systems

Abstract

Mesoscale convective systems (MCSs) describe organized groupings of thunderstorms in the tropics and mid-latitudes that span thousands of square kilometres. While recognized for over a century, the advent of satellite and radar observations, as well as atmospheric-model simulations, has brought about their increased understanding. In this Review, we synthesize current knowledge on MCS formation, climatological characteristics, hazardous weather, predictive capacity and projected changes with anthropogenic warming. Driven by typical deep moist convective processes (moisture, lift and instability) and vertical wind shear, MCS formation occurs preferentially in locations where these ingredients are present and can be maintained by large-scale ascent and the cold pools that they produce. MCSs also generate hazardous weather, including extreme rainfall, flooding, derechos and, sometimes, tornadoes and hail, all of which have substantial economic and societal impacts. Given that MCSs also produce a large fraction of warm-season rainfall, there is critical need for both short-term forecasts and long-term projections, presently challenged by inadequate model resolution. Yet, with continually improving modelling capabilities, as well as greater theoretical basis, it is suggested that MCSs might increase in frequency and intensity under a warming climate. Further modelling progress, in turn, offers improved understanding of MCS characteristics, from their life cycle through to impacts.

Key points

  • Organized lines or clusters of convective storms — known as mesoscale convective systems (MCSs) — frequently occur across the global tropics, subtropics and mid-latitudes.

  • MCSs produce over half of the annual rainfall in some regions and provide critical water resources for agriculture in those regions.

  • Much of the extreme rainfall in mid-latitude land areas comes from MCSs, often causing deadly and destructive flash flooding. MCSs are also responsible for widespread damaging wind events, called derechos.

  • MCS organization, structure and maintenance is governed by the ingredients for deep moist convection (moisture, instability and lift) and by how vertical wind shear interacts with convective updrafts and cold pools.

  • Prediction of MCS rainfall and hazards is a major challenge, owing to multiscale processes and insufficient resolution of atmospheric models. Yet, predictions are improving with advances in understanding and computing.

  • Understanding how MCSs will change in a warmer climate is a new and important research area. Results thus far suggest that heavy rainfall from MCSs is likely to increase.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Key MCS types.
Fig. 2: The contribution of MCSs to global rainfall.
Fig. 3: MCS frequency and the rainfall contribution of MCSs in the USA.
Fig. 4: Common environments for MCS formation and maintenance.
Fig. 5: Conceptual model of a squall line.
Fig. 6: Derecho impacts.

References

  1. Maddox, R. A. Mesoscale convective complexes. Bull. Am. Meteorol. Soc. 61, 1374–1387 (1980).

    Article  Google Scholar 

  2. Weisman, M. L. & Davis, C. A. Mechanisms for the generation of mesoscale vortices within quasi-linear convective systems. J. Atmos. Sci. 55, 2603–2622 (1998).

    Article  Google Scholar 

  3. Fujita, T. T. Manual of downburst identification for project NIMROD [National Intensive Meteorological Research on Downburst] (Univ. Chicago, 1978).

  4. Parker, M. D. & Johnson, R. H. Organizational modes of midlatitude mesoscale convective systems. Mon. Weather Rev. 128, 3413–3436 (2000).

    Article  Google Scholar 

  5. Schumacher, R. S. & Johnson, R. H. Organization and environmental properties of extreme-rain-producing mesoscale convective systems. Mon. Weather Rev. 133, 961–976 (2005).

    Article  Google Scholar 

  6. Nesbitt, S. W., Cifelli, R. & Rutledge, S. A. Storm morphology and rainfall characteristics of TRMM precipitation features. Mon. Weather Rev. 134, 2702–2721 (2006).

    Article  Google Scholar 

  7. Haberlie, A. M. & Ashley, W. S. A radar-based climatology of mesoscale convective systems in the United States. J. Clim. 32, 1591–1606 (2019). Comprehensively performs long-term analysis of MCS rainfall and characteristics in the USA.

    Article  Google Scholar 

  8. Junker, N. W., Schneider, R. S. & Fauver, S. L. A study of heavy rainfall events during the Great Midwest Flood of 1993. Weather Forecast. 14, 701–712 (1999).

    Article  Google Scholar 

  9. Johns, R. H. & Hirt, W. D. Derechos: widespread convectively induced windstorms. Weather Forecast. 2, 32–49 (1987).

    Article  Google Scholar 

  10. Stevenson, S. N. & Schumacher, R. S. A 10-year survey of extreme rainfall events in the central and eastern United States using gridded multisensor precipitation analyses. Mon. Weather Rev. 142, 3147–3162 (2014).

    Article  Google Scholar 

  11. Ashley, W. S., Haberlie, A. M. & Strohm, J. A climatology of quasi-linear convective systems and their hazards in the United States. Weather Forecast. 34, 1605–1631 (2019).

    Article  Google Scholar 

  12. Rasmussen, K. L. & Houze, R. A. Jr A flash-flooding storm at the steep edge of high terrain: disaster in the Himalayas. Bull. Am. Meteorol. Soc. 93, 1713–1724 (2012).

    Article  Google Scholar 

  13. National Oceanic and Atmospheric Administration. The historic derecho of June 29, 2012 (NOAA, 2013).

  14. Rasmussen, K. L., Prein, A. F., Rasmussen, R. M., Ikeda, K. & Liu, C. Changes in the convective population and thermodynamic environments in convection-permitting regional climate simulations over the United States. Clim. Dyn. https://doi.org/10.1007/s00382-017-4000-7 (2017).

  15. Diffenbaugh, N. S., Scherer, M. & Trapp, R. J. Robust increases in severe thunderstorm environments in response to greenhouse forcing. Proc. Natl Acad. Sci. USA 110, 16361–16366 (2013).

    Article  Google Scholar 

  16. Prein, A. F. et al. Increased rainfall volume from future convective storms in the US. Nat. Clim. Change 7, 880–884 (2017).

    Article  Google Scholar 

  17. Feng, Z. et al. More frequent intense and long-lived storms dominate the springtime trend in central US rainfall. Nat. Commun. 7, 13429 (2016).

    Article  Google Scholar 

  18. Westra, S. et al. Future changes to the intensity and frequency of short-duration extreme rainfall. Rev. Geophys. 52, 522–555 (2014).

    Article  Google Scholar 

  19. Houze, R. A. Jr Mesoscale convective systems. Rev. Geophys. 42, RG4003 (2004).

    Article  Google Scholar 

  20. Houze, R. A. Jr 100 years of research on mesoscale convective systems. Meteorol. Monogr. 59, 17.1–17.54 (2018). A historical perspective on MCS research.

    Article  Google Scholar 

  21. Zipser, E. J., Cecil, D. J., Liu, C., Nesbitt, S. W. & Yorty, D. P. Where are the most intense thunderstorms on Earth? Bull. Am. Meteorol. Soc. 87, 1057–1071 (2006).

    Article  Google Scholar 

  22. Wang, J. et al. The detection of mesoscale convective systems by the GPM Ku-band spaceborne radar. J. Meteorol. Soc. Japan 97, 1059–1073 (2019).

    Article  Google Scholar 

  23. Schiesser, H. H., Houze, R. A. Jr & Huntreiser, H. The mesoscale structure of severe precipitation systems in Switzerland. Mon. Weather Rev. 123, 2070–2097 (1995).

    Article  Google Scholar 

  24. Dalal, S., Lohar, D., Sarkar, S., Sadhukhan, I. & Debnath, G. C. Organizational modes of squall-type mesoscale convective systems during premonsoon season over eastern India. Atmos. Res. 106, 120–138 (2012).

    Article  Google Scholar 

  25. Meng, Z., Yan, D. & Zhang, Y. General features of squall lines in East China. Mon. Weather Rev. 141, 1629–1647 (2013).

    Article  Google Scholar 

  26. Kuo, Y.-H. & Chen, G. T.-J. The Taiwan area mesoscale experiment (TAMEX): An overview. Bull. Am. Meteorol. Soc. 71, 488–503 (1990).

    Article  Google Scholar 

  27. Lee, T.-Y. & Kim, Y.-H. Heavy precipitation systems over the Korean peninsula and their classification. Asia-Pac. J. Atmospheric Sci. 43, 367–396 (2007).

    Google Scholar 

  28. Houze, R. A. Jr, Smull, B. F. & Dodge, P. Mesoscale organization of springtime rainstorms in Oklahoma. Mon. Weather Rev. 118, 613–654 (1990).

    Article  Google Scholar 

  29. Geerts, B. Mesoscale convective systems in the southeast United States during 1994–95: A survey. Weather Forecast. 13, 860–869 (1998).

    Article  Google Scholar 

  30. Haberlie, A. M. & Ashley, W. S. A method for identifying midlatitude mesoscale convective systems in radar mosaics. Part I: Segmentation and classification. J. Appl. Meteorol. Climatol. 57, 1575–1598 (2018).

    Article  Google Scholar 

  31. Haberlie, A. M. & Ashley, W. S. A method for identifying midlatitude mesoscale convective systems in radar mosaics. Part II: Tracking. J. Appl. Meteorol. Climatol. 57, 1599–1621 (2018).

    Article  Google Scholar 

  32. Feng, Z. et al. Spatiotemporal characteristics and large-scale environments of mesoscale convective systems east of the Rocky Mountains. J. Clim. 32, 7303–7328 (2019).

    Article  Google Scholar 

  33. Laing, A. G. & Fritsch, J. M. The global population of mesoscale convective complexes. Q. J. R. Meteorol. Soc. 123, 389–405 (1997).

    Article  Google Scholar 

  34. Liu, C., Zipser, E. J., Cecil, D. J., Nesbitt, S. W. & Sherwood, S. A cloud and precipitation feature database from nine years of TRMM observations. J. Appl. Meteorol. Climatol. 47, 2712–2728 (2008).

    Article  Google Scholar 

  35. Liu, C. & Zipser, E. J. The global distribution of largest, deepest, and most intense precipitation systems. Geophys. Res. Lett. 42, 3591–3595 (2015).

    Article  Google Scholar 

  36. Rasmussen, K. L., Chaplin, M. M., Zuluaga, M. D. & Houze, R. A. Contribution of extreme convective storms to rainfall in South America. J. Hydrometeorol. 17, 353–367 (2016).

    Article  Google Scholar 

  37. Durkee, J. D., Mote, T. L. & Shepherd, J. M. The contribution of mesoscale convective complexes to rainfall across subtropical South America. J. Clim. 22, 4590–4605 (2009).

    Article  Google Scholar 

  38. Mathon, V., Laurent, H. & Lebel, T. Mesoscale convective system rainfall in the Sahel. J. Appl. Meteorol. 41, 1081–1092 (2002).

    Article  Google Scholar 

  39. Laing, A. G. & Fritsch, J. M. Mesoscale convective complexes over the Indian monsoon region. J. Clim. 6, 911–919 (1993).

    Article  Google Scholar 

  40. Zuluaga, M. D. & Houze, R. A. Jr Extreme convection of the near-equatorial Americas, Africa, and adjoining oceans as seen by TRMM. Mon. Weather Rev. 143, 298–316 (2015).

    Article  Google Scholar 

  41. Garstang, M., Massie, H. L. Jr, Halverson, J., Greco, S. & Scala, J. Amazon coastal squall lines. Part I: Structure and kinematics. Mon. Weather Rev. 122, 608–622 (1994).

    Article  Google Scholar 

  42. Zuluaga, M. D. & Houze, R. A. Jr Evolution of the population of precipitating convective systems over the equatorial Indian Ocean in active phases of the Madden–Julian oscillation. J. Atmos. Sci. 70, 2713–2725 (2013).

    Article  Google Scholar 

  43. Fritsch, J. M., Kane, R. J. & Chelius, C. R. The contribution of mesoscale convective weather systems to the warm-season precipitation in the United States. J. Climate Appl. Meteorol. 25, 1333–1345 (1986).

    Article  Google Scholar 

  44. Houze, R. A. Jr, Rasmussen, K. L., Zuluaga, M. D. & Brodzik, S. R. The variable nature of convection in the tropics and subtropics: A legacy of 16 years of the Tropical Rainfall Measuring Mission satellite. Rev. Geophys. 53, 994–1021 (2015).

    Article  Google Scholar 

  45. Morel, C. & Senesi, S. A climatology of mesoscale convective systems over Europe using satellite infrared imagery. II: Characteristics of European mesoscale convective systems. Q. J. R. Meteorol. Soc. 128, 1973–1995 (2002).

    Article  Google Scholar 

  46. Ding, Y. H. in East Asian Monsoon (ed. Chang, C.-P.) 3–53 (World Scientific, 2004).

  47. Rehbein, A., Ambrizzi, T. & Mechoso, C. R. Mesoscale convective systems over the Amazon basin. Part I: climatological aspects. Int. J. Climatol. 38, 215–229 (2018).

    Article  Google Scholar 

  48. Fritsch, J. M. & Forbes, G. S. in Severe Convective Storms. Meteorological Monographs (ed. Doswell, C. A.) 323–357 (American Meteorological Society, 2001).

  49. Carbone, R. E., Tuttle, J. D., Ahijevych, D. A. & Trier, S. B. Inferences of predictability associated with warm season precipitation episodes. J. Atmos. Sci. 59, 2033–2056 (2002).

    Article  Google Scholar 

  50. Nesbitt, S. W. & Zipser, E. J. The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J. Clim. 16, 1456–1475 (2003).

    Article  Google Scholar 

  51. Rife, D. L., Pinto, J. O., Monaghan, A. J., Davis, C. A. & Hannan, J. R. Global distribution and characteristics of diurnally varying low-level jets. J. Clim. 23, 5041–5064 (2010).

    Article  Google Scholar 

  52. Tuttle, J. D. & Davis, C. A. Corridors of warm season precipitation in the central United States. Mon. Weather Rev. 134, 2297–2317 (2006).

    Article  Google Scholar 

  53. Markowski, P. & Richardson, Y. Mesoscale Meteorology in Midlatitudes (Wiley-Blackwell, 2010).

  54. Cotton, W. R., Bryan, G. H. & van den Heever, S. C. Storm and Cloud Dynamics (Academic, 2010).

  55. Trapp, R. J. Mesoscale-Convective Processes in the Atmosphere (Cambridge Univ. Press, 2013).

  56. Houze, R. A. Jr Cloud Dynamics (Academic, 2014).

  57. Johns, R. H. & Doswell, C. A. III. Severe local storms forecasting. Weather Forecast. 7, 588–612 (1992).

    Article  Google Scholar 

  58. Schultz, D. M., Schumacher, P. N. & Doswell, C. A. III. The intricacies of instabilities. Mon. Weather Rev. 128, 4143–4148 (2000).

    Article  Google Scholar 

  59. Rotunno, R., Klemp, J. B. & Weisman, M. L. A theory for strong, long-lived squall lines. J. Atmos. Sci. 45, 463–485 (1988).

    Article  Google Scholar 

  60. Lafore, J.-P. & Moncrieff, M. W. A numerical investigation of the organization and interaction of the convective and stratiform regions of tropical squall lines. J. Atmos. Sci. 46, 521–544 (1989).

    Article  Google Scholar 

  61. Fovell, R. G. & Ogura, Y. Numerical simulation of a midlatitude squall line in two dimensions. J. Atmos. Sci. 45, 3846–3879 (1988).

    Article  Google Scholar 

  62. Weisman, M. L. The role of convectively generated rear-inflow jets in the evolution of long-lived mesoconvective systems. J. Atmos. Sci. 49, 1826–1847 (1992).

    Article  Google Scholar 

  63. Parker, M. D. Simulated convective lines with parallel stratiform precipitation. Part II: Governing dynamics and associated sensitivities. J. Atmos. Sci. 64, 289–313 (2007).

    Article  Google Scholar 

  64. LeMone, M. A., Zipser, E. J. & Trier, S. B. The role of environmental shear and thermodynamic conditions in determining the structure and evolution of mesoscale convective systems during TOGA COARE. J. Atmos. Sci. 55, 3493–3518 (1998). Explores the role of vertical wind shear in tropical MCSs.

    Article  Google Scholar 

  65. Johnson, R. H., Aves, S. L., Ciesielski, P. E. & Keenan, T. D. Organization of oceanic convection during the onset of the 1998 East Asian summer monsoon. Mon. Weather Rev. 133, 131–148 (2005).

    Article  Google Scholar 

  66. Jorgensen, D. P. & Weckwerth, T. M. in Radar and Atmospheric Science: A Collection of Essays in Honor of David Atlas (eds Wakimoto, R. M. & Srivastava, R.) 75–103 (American Meteorological Society, 2003).

  67. Laing, A. G. & Fritsch, J. M. The large scale environments of the global populations of mesoscale convective complexes. Mon. Weather Rev. 128, 2756–2776 (2000). A synthesis of meteorological regimes supporting MCCs around the world.

    Article  Google Scholar 

  68. Rasmussen, K. L. & Houze, R. A. Jr. Convective initiation near the Andes in subtropical South America. Mon. Weather Rev. 144, 2351–2374 (2016).

    Article  Google Scholar 

  69. Trier, S. B., Davis, C. A. & Ahijevych, D. A. Environmental controls on the simulated diurnal cycle of warm-season precipitation in the continental United States. J. Atmos. Sci. 67, 1066–1093 (2010).

    Article  Google Scholar 

  70. Zhang, Y., Zhang, F., Davis, C. A. & Sun, J. Diurnal evolution and structure of long-lived mesoscale convective vortices along the Mei-Yu front over the East China Plains. J. Atmos. Sci. 75, 1005–1025 (2018).

    Article  Google Scholar 

  71. Trier, S. B., Davis, C. A., Ahijevych, D. A. & Manning, K. W. Use of the parcel buoyancy minimum (B min) to diagnose simulated thermodynamic destabilization. Part II: Composite analysis of mature MCS environments. Mon. Weather Rev. 142, 967–990 (2014).

    Article  Google Scholar 

  72. Maddox, R. A. Large scale meteorological conditions associated with midlatitude mesoscale convective complexes. Mon. Weather Rev. 111, 1475–1493 (1983).

    Article  Google Scholar 

  73. Corfidi, S. F. Cold pools and MCS propagation: forecasting the motion of downwind-developing MCSs. Weather Forecast. 18, 997–1017 (2003).

    Article  Google Scholar 

  74. Peters, J. M. & Schumacher, R. S. Objective categorization of heavy-rain-producing MCS synoptic types by rotated principal component analysis. Mon. Weather Rev. 142, 1716–1737 (2014). Examines the meteorological regimes for heavy-rain-producing MCSs using objective analysis methods.

    Article  Google Scholar 

  75. Song, F. et al. Contrasting spring and summer large-scale environments associated with mesoscale convective systems over the US Great Plains. J. Clim. 32, 6749–6767 (2019).

    Article  Google Scholar 

  76. Trier, S. B. & Parsons, D. B. Evolution of environmental conditions preceding the development of a nocturnal mesoscale convective complex. Mon. Weather Rev. 121, 1078–1098 (1993).

    Article  Google Scholar 

  77. Augustine, J. A. & Caracena, F. Lower-tropospheric precursors to nocturnal MCS development over the central United States. Weather Forecast. 9, 116–135 (1994).

    Article  Google Scholar 

  78. Moore, J. T., Glass, F. H., Graves, C. E., Rochette, S. M. & Singer, M. J. The environment of warm-season elevated thunderstorms associated with heavy rainfall over the central United States. Weather Forecast. 18, 861–878 (2003).

    Article  Google Scholar 

  79. Coniglio, M. C., Hwang, J. Y. & Stensrud, D. J. Environmental factors in the upscale growth and longevity of MCSs derived from Rapid Update Cycle analyses. Mon. Weather Rev. 138, 3514–3539; Corrigendum, 139, 2686–2688 (2010).

    Article  Google Scholar 

  80. Tuttle, J. D. & Carbone, R. E. Coherent regeneration and the role of water vapor and shear in a long-lived convective episode. Mon. Weather Rev. 132, 192–208 (2004).

    Article  Google Scholar 

  81. Peters, J. M. & Schumacher, R. S. The simulated structure and evolution of a quasi-idealized warm-season convective system with a training convective line. J. Atmos. Sci. 72, 1987–2010 (2015).

    Article  Google Scholar 

  82. Guan, P., Chen, G., Zeng, W. & Liu, Q. Corridors of Mei-Yu-season rainfall over eastern China. J. Clim. 33, 2603–2626 (2020).

    Article  Google Scholar 

  83. Trier, S. B., Davis, C. A. & Carbone, R. E. Mechanisms governing the persistence and diurnal cycle of a heavy rainfall corridor. J. Atmos. Sci. 71, 4102–4126 (2014).

    Article  Google Scholar 

  84. Weisman, M. L. & Rotunno, R. “A theory for strong long-lived squall lines” revisited. J. Atmos. Sci. 61, 361–382 (2004).

    Article  Google Scholar 

  85. Bryan, G. H., Knievel, J. C. & Parker, M. D. A multimodel assessment of RKW theory’s relevance to squall-line characteristics. Mon. Weather Rev. 134, 2772–2792 (2006).

    Article  Google Scholar 

  86. Parker, M. D. Relationship between system slope and updraft intensity in squall lines. Mon. Weather Rev. 138, 3572–3578 (2010).

    Article  Google Scholar 

  87. Stensrud, D. J., Coniglio, M. C., Davies-Jones, R. P. & Evans, J. S. Comments on “‘A theory for strong long-lived squall lines’ revisited”. J. Atmos. Sci. 62, 2989–2996 (2005).

    Article  Google Scholar 

  88. Coniglio, M. C., Corfidi, S. F. & Kain, J. S. Views on applying RKW theory: an illustration using the 8 May 2009 Derecho-producing convective system. Mon. Weather Rev. 140, 1023–1043 (2012).

    Article  Google Scholar 

  89. Houze, R. A. Jr Stratiform precipitation in regions of convection: a meteorological paradox? Bull. Am. Meteorol. Soc. 78, 2179–2196 (1997).

    Article  Google Scholar 

  90. Houze, R. A. Jr, Rutledge, S. A., Biggerstaff, M. I. & Smull, B. F. Interpretation of Doppler weather radar displays of midlatitude mesoscale convective systems. Bull. Am. Meteorol. Soc. 70, 608–619 (1989).

    Article  Google Scholar 

  91. Haertel, P. T., Johnson, R. H. & Tulich, S. N. Some simple simulations of thunderstorm outflows. J. Atmos. Sci. 58, 504–516 (2001).

    Article  Google Scholar 

  92. Crook, N. A. & Moncrieff, M. W. The effect of large-scale convergence on the generation and maintenance of deep moist convection. J. Atmos. Sci. 45, 3606–3624 (1988).

    Article  Google Scholar 

  93. Trier, S. B., Marsham, J. H., Davis, C. A. & Ahijevych, D. A. Numerical simulations of the postsunrise reorganization of a nocturnal mesoscale convective system during 13 June IHOP_2002. J. Atmos. Sci. 68, 2988–3011 (2011).

    Article  Google Scholar 

  94. Schumacher, R. S. Mechanisms for quasi-stationary behavior in simulated heavy-rain-producing convective systems. J. Atmos. Sci. 66, 1543–1568 (2009).

    Article  Google Scholar 

  95. Marsham, J. H. et al. Multi-sensor observations of a wave beneath an impacting rear-inflow jet in an elevated mesoscale convective system. Q. J. R. Meteorol. Soc. 136, 1788–1812 (2010).

    Article  Google Scholar 

  96. Adams-Selin, R. D. & Johnson, R. H. Mesoscale surface pressure and temperature features associated with bow echoes. Mon. Weather Rev. 138, 212–227 (2010).

    Article  Google Scholar 

  97. Weisman, M. L. The genesis of severe, long–lived bow echoes. J. Atmos. Sci. 50, 645–670 (1993).

    Article  Google Scholar 

  98. Weisman, M. L. Bow echoes: A tribute to TT Fujita. Bull. Am. Meteorol. Soc. 82, 97–116 (2001).

    Article  Google Scholar 

  99. Yang, Q., Houze, R. A. Jr, Leung, L. R. & Feng, Z. Environments of long-lived mesoscale convective systems over the central united states in convection permitting climate simulations. J. Geophys. Res. Atmos. 122, 13,288–13,307 (2017).

    Article  Google Scholar 

  100. Fritsch, J. M., Murphy, J. D. & Kain, J. S. Warm-core vortex amplification over land. J. Atmos. Sci. 51, 1780–1807 (1994). Thorough investigation of MCV intensification and persistence over continents.

    Article  Google Scholar 

  101. Trier, S. B. & Davis, C. A. Influence of balanced motions on heavy precipitation within a long-lived convectively generated vortex. Mon. Weather Rev. 130, 877–899 (2002).

    Article  Google Scholar 

  102. Schumacher, R. S. & Johnson, R. H. Quasi-stationary, extreme-rain-producing convective systems associated with midlevel cyclonic circulations. Weather Forecast. 24, 555–574 (2009).

    Article  Google Scholar 

  103. Bosart, L. F. & Sanders, F. The Johnstown flood of July 1977: A long-lived convective system. J. Atmos. Sci. 38, 1616–1642 (1981).

    Article  Google Scholar 

  104. Gale, J. J., Gallus, W. A. J. & Jungbluth, K. A. Toward improved prediction of mesoscale convective system dissipation. Weather Forecast. 17, 856–872 (2002).

    Article  Google Scholar 

  105. Hinrichs, G. Tornadoes and derechos. Am. Meteorol. J. 5, 341–349 (1888).

    Google Scholar 

  106. Guastini, C. T. & Bosart, L. F. Analysis of a progressive derecho climatology and associated formation environments. Mon. Weather Rev. 144, 1363–1382 (2016).

    Article  Google Scholar 

  107. Taszarek, M. et al. Derecho evolving from a mesocyclone–a study of 11 August 2017 severe weather outbreak in Poland: event analysis and high-resolution simulation. Mon. Weather Rev. 147, 2283–2306 (2019).

    Article  Google Scholar 

  108. Xia, R., Wang, D., Sun, J., Wang, G. & Xia, G. An observational analysis of a derecho in South China. Acta Meteorol. Sin. 26, 773–787 (2012).

    Article  Google Scholar 

  109. Negrón-Juárez, R. I. et al. Widespread Amazon forest tree mortality from a single cross-basin squall line event. Geophys. Res. Lett. 37, L16701 (2010).

    Article  Google Scholar 

  110. Minnesota Department of Natural Resources. Boundary waters: the fire next time (DNR, 2019).

  111. Corfidi, S. F., Coniglio, M. C., Cohen, A. E. & Mead, C. M. A proposed revision to the definition of “Derecho”. Bull. Am. Meteorol. Soc. 97, 935–949 (2016).

    Article  Google Scholar 

  112. Schenkman, A. D. & Xue, M. Bow-echo mesovortices: A review. Atmos. Res. 170, 1–13 (2016).

    Article  Google Scholar 

  113. Coniglio, M. C., Stensrud, D. J. & Richman, M. B. An observational study of derecho-producing convective systems. Weather Forecast. 19, 320–337 (2004).

    Article  Google Scholar 

  114. Schumacher, R. S. & Johnson, R. H. Characteristics of United States extreme rain events during 1999–2003. Weather Forecast. 21, 69–85 (2006).

    Article  Google Scholar 

  115. Zhang, L., Min, J., Zhuang, X. & Schumacher, R. S. General features of extreme rainfall events produced by MCSs over East China during 2016–17. Mon. Weather Rev. 147, 2693–2714 (2019).

    Article  Google Scholar 

  116. Zhang, D.-L. et al. The Beijing extreme rainfall of 21 July 2012: “Right results” but for wrong reasons. Geophys. Res. Lett. 40, 1426–1431 (2013).

    Article  Google Scholar 

  117. Doswell, C. A. III, Brooks, H. E. & Maddox, R. A. Flash flood forecasting: An ingredients-based methodology. Weather Forecast. 11, 560–581 (1996).

    Article  Google Scholar 

  118. Alfaro, D. A. & Khairoutdinov, M. Thermodynamic constraints on the morphology of simulated midlatitude squall lines. J. Atmos. Sci. 72, 3116–3137 (2015).

    Article  Google Scholar 

  119. Schumacher, R. S. & Peters, J. M. Near-surface thermodynamic sensitivities in simulated extreme-rain-producing mesoscale convective systems. Mon. Weather Rev. 145, 2177–2200 (2017).

    Article  Google Scholar 

  120. Galarneau, T. J. Jr, Bosart, L. F. & Schumacher, R. S. Predecessor rain events ahead of tropical cyclones. Mon. Weather Rev. 138, 3272–3297 (2010).

    Article  Google Scholar 

  121. Schumacher, R. S., Galarneau, T. J. Jr & Bosart, L. F. Distant effects of a recurving tropical cyclone on rainfall in a midlatitude convective system: a high-impact predecessor rain event. Mon. Weather Rev. 139, 650–667 (2011).

    Article  Google Scholar 

  122. Moore, B. J., Bosart, L. F., Keyser, D. & Jurewicz, M. L. Synoptic-scale environments of predecessor rain events occurring east of the Rocky Mountains in association with Atlantic basin tropical cyclones. Mon. Weather Rev. 141, 1022–1047 (2013).

    Article  Google Scholar 

  123. Payne, A. E. et al. Responses and impacts of atmospheric rivers to climate change. Nat. Rev. Earth Environ. 1, 143–157 (2020).

    Article  Google Scholar 

  124. Moore, B. J., Neiman, P. J., Ralph, F. M. & Barthold, F. E. Physical processes associated with heavy flooding rainfall in Nashville, Tennessee, and vicinity during 1–2 May 2010: the role of an atmospheric river and mesoscale convective systems. Mon. Weather Rev. 140, 358–378 (2012).

    Article  Google Scholar 

  125. Maddox, R. A., Chappell, C. F. & Hoxit, L. R. Synoptic and meso-α scale aspects of flash flood events. Bull. Am. Meteorol. Soc. 60, 115–123 (1979).

    Article  Google Scholar 

  126. Chappell, C. F. in Mesoscale Meteorology and Forecasting (ed. Ray, P. S.) 289–310 (American Meteorological Society, 1986).

  127. Corfidi, S. F., Merritt, J. H. & Fritsch, J. M. Predicting the movement of mesoscale convective complexes. Weather Forecast. 11, 41–46 (1996).

    Article  Google Scholar 

  128. Kato, T. Quasi-stationary band-shaped precipitation systems, named “Senjo-Kousuitai”, causing localized heavy rainfall in Japan. J. Meteorol. Soc. Japan https://doi.org/10.2151/jmsj.2020-029 (2020).

  129. Smith, J. A., Baeck, M. L., Zhang, Y. & Doswell, C. A. Extreme rainfall and flooding from supercell thunderstorms. J. Hydrometeorol. 2, 469–489 (2001).

    Article  Google Scholar 

  130. Nielsen, E. R. & Schumacher, R. S. Dynamical mechanisms supporting extreme rainfall accumulations in the Houston “Tax Day” 2016 flood. Mon. Weather Rev. 148, 83–109 (2020).

    Article  Google Scholar 

  131. Nielsen, E. R. & Schumacher, R. S. Dynamical insights into extreme short-term precipitation associated with supercells and mesovortices. J. Atmos. Sci. 75, 2983–3009 (2018).

    Article  Google Scholar 

  132. Grams, J. S. et al. A climatology and comparison of parameters for significant tornado events in the United States. Weather Forecast. 27, 106–123 (2012).

    Article  Google Scholar 

  133. Cecil, D. J. & Blankenship, C. B. Toward a global climatology of severe hailstorms as estimated by satellite passive microwave imagers. J. Clim. 25, 687–703 (2012).

    Article  Google Scholar 

  134. Duda, J. D. & Gallus, W. A. Spring and summer midwestern severe weather reports in supercells compared to other morphologies. Weather Forecast. 25, 190–206 (2010).

    Article  Google Scholar 

  135. Bruick, Z. S., Rasmussen, K. L. & Cecil, D. J. Subtropical South American hailstorm characteristics and environments. Mon. Weather Rev. 147, 4289–4304.

  136. Albrecht, R. I., Goodman, S. J., Buechler, D. E., Blakeslee, R. J. & Christian, H. J. Where are the lightning hotspots on Earth? Bull. Am. Meteorol. Soc. 97, 2051–2068 (2016).

    Article  Google Scholar 

  137. Petersen, W. A. & Rutledge, S. A. On the relationship between cloud-to-ground lightning and convective rainfall. J. Geophys. Res. Atmos. 103, 14025–14040 (1998).

    Article  Google Scholar 

  138. Rutledge, S. A., Williams, E. R. & Petersen, W. A. Lightning and electrical structure of mesoscale convective systems. Atmos. Res. 29, 27–53 (1993).

    Article  Google Scholar 

  139. Ashley, W. S. & Gilson, C. W. A reassessment of US lightning mortality. Bull. Am. Meteorol. Soc. 90, 1501–1518 (2009).

    Article  Google Scholar 

  140. Bauer, P., Thorpe, A. & Brunet, G. The quiet revolution of numerical weather prediction. Nature 525, 47–55 (2015).

    Article  Google Scholar 

  141. Fritsch, J. M. & Carbone, R. E. Improving quantitative precipitation forecasts in the warm season: A USWRP research and development strategy. Bull. Am. Meteorol. Soc. 85, 955–965 (2004).

    Article  Google Scholar 

  142. Sukovich, E. M., Ralph, F. M., Barthold, F. E., Reynolds, D. W. & Novak, D. R. Extreme quantitative precipitation forecast performance at the Weather Prediction Center from 2001 to 2011. Weather Forecast. 29, 894–911 (2014).

    Article  Google Scholar 

  143. Herman, G. R., Nielsen, E. R. & Schumacher, R. S. Probabilistic verification of Storm Prediction Center convective outlooks. Weather Forecast. 33, 161–184 (2018).

    Article  Google Scholar 

  144. Lilly, D. K. Numerical prediction of thunderstorms — Has its time come? Q. J. R. Meteorol. Soc. 116, 779–798 (1990).

    Google Scholar 

  145. Roberts, N. M. & Lean, H. W. Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Weather Rev. 136, 78–97 (2008).

    Article  Google Scholar 

  146. Weisman, M. L., Davis, C., Wang, W., Manning, K. W. & Klemp, J. B. Experiences with 0–36-h explicit convective forecasts with the WRF-ARW model. Weather Forecast. 23, 407–437 (2008).

    Article  Google Scholar 

  147. Schwartz, C. S. et al. Next-day convection-allowing WRF model guidance: a second look at 2-km versus 4-km grid spacing. Mon. Weather Rev. 137, 3351–3372 (2009).

    Article  Google Scholar 

  148. Kain, J. S. et al. Some practical considerations regarding horizontal resolution in the first generation of operational convection-allowing NWP. Weather Forecast. 23, 931–952 (2008).

    Article  Google Scholar 

  149. Xue, M. et al. Prediction of convective storms at convection-resolving 1 km resolution over continental United States with radar data assimilation: An example case of 26 May 2008 and precipitation forecasts from spring 2009. Adv. Meteorol. 2013, 259052 (2013).

    Article  Google Scholar 

  150. Weisman, M. L., Evans, C. & Bosart, L. The 8 May 2009 superderecho: Analysis of a real-time explicit convective forecast. Weather Forecast. 28, 863–892 (2013).

    Article  Google Scholar 

  151. Schumacher, R. S. Heavy rainfall and flash flooding. Oxf. Res. Encycl. Nat. Hazard Sci. https://doi.org/10.1093/acrefore/9780199389407.013.132 (2017).

    Article  Google Scholar 

  152. Pinto, J. O., Grim, J. A. & Steiner, M. Assessment of the high-resolution rapid refresh model’s ability to predict mesoscale convective systems using object-based evaluation. Weather Forecast. 30, 892–913 (2015).

    Article  Google Scholar 

  153. Zhang, F., Odins, A. M. & Nielsen-Gammon, J. W. Mesoscale predictability of an extreme warm-season precipitation event. Weather Forecast. 21, 149–166 (2006).

    Article  Google Scholar 

  154. Herman, G. R. & Schumacher, R. S. Extreme precipitation in models: an evaluation. Weather Forecast. 31, 1853–1879 (2016).

    Article  Google Scholar 

  155. Iyer, E. R., Clark, A. J., Xue, M. & Kong, F. A comparison of 36–60-h precipitation forecasts from convection-allowing and convection-parameterizing ensembles. Weather Forecast. 31, 647–661 (2016).

    Article  Google Scholar 

  156. Schwartz, C. S., Romine, G. S., Sobash, R. A., Fossell, K. R. & Weisman, M. L. NCAR’s experimental real-time convection-allowing ensemble prediction system. Weather Forecast. 30, 1645–1654 (2015).

    Article  Google Scholar 

  157. Lawson, J. R. et al. Advancing from convection-allowing NWP to warn-on-forecast: evidence of progress. Weather Forecast. 33, 599–607 (2018).

    Article  Google Scholar 

  158. Ahijevych, D., Pinto, J. O., Williams, J. K. & Steiner, M. Probabilistic forecasts of mesoscale convective system initiation using the random forest data mining technique. Weather Forecast. 31, 581–599 (2016).

    Article  Google Scholar 

  159. Lagerquist, R., McGovern, A. & Smith, T. Machine learning for real-time prediction of damaging straight-line convective wind. Weather Forecast. 32, 2175–2193 (2017).

    Article  Google Scholar 

  160. Herman, G. R. & Schumacher, R. S. Money doesn’t grow on trees, but forecasts do: forecasting extreme precipitation with random forests. Mon. Weather Rev. 146, 1571–1600 (2018).

    Article  Google Scholar 

  161. Herman, G. R. & Schumacher, R. S. ‘Dendrology’ in numerical weather prediction: what random forests and logistic regression tell us about forecasting extreme precipitation. Mon. Weather Rev. 146, 1785–1812 (2018).

    Article  Google Scholar 

  162. Gutowski, W. J. Jr et al. The ongoing need for high-resolution regional climate models: Process understanding and stakeholder information. Bull. Am. Meteorol. Soc. https://doi.org/10.1175/BAMS-D-19-0113.1 (2020).

  163. Kooperman, G. J., Pritchard, M. S. & Somerville, R. C. J. The response of US summer rainfall to quadrupled CO2 climate change in conventional and superparameterized versions of the NCAR community atmosphere model. J. Adv. Model. Earth Syst. 6, 859–882 (2014).

    Article  Google Scholar 

  164. Kunkel, K. E. et al. Meteorological causes of the secular variations in observed extreme precipitation events for the conterminous United States. J. Hydrometeorol. 13, 1131–1141 (2012).

    Article  Google Scholar 

  165. Hu, H., Leung, L. R. & Feng, Z. Observed warm-season characteristics of MCS and non-MCS rainfall and their recent changes in the central United States. Geophys. Res. Lett. 47, e2019GL086783 (2020).

    Google Scholar 

  166. Tan, J., Jakob, C., Rossow, W. B. & Tselioudis, G. Increases in tropical rainfall driven by changes in frequency of organized deep convection. Nature 519, 451–454 (2015).

    Article  Google Scholar 

  167. Ye, H., Fetzer, E. J., Wong, S. & Lambrigtsen, B. H. Rapid decadal convective precipitation increase over Eurasia during the last three decades of the 20th century. Sci. Adv. 3, e1600944 (2017).

    Article  Google Scholar 

  168. Taylor, C. M. et al. Frequency of extreme Sahelian storms tripled since 1982 in satellite observations. Nature 544, 475–478 (2017).

    Article  Google Scholar 

  169. Trenberth, K. E., Dai, A., Rasmussen, R. M. & Parsons, D. B. The changing character of precipitation. Bull. Am. Meteorol. Soc. 84, 1205–1218 (2003).

    Article  Google Scholar 

  170. Del Genio, A. D. & Kovari, W. Climatic properties of tropical precipitating convection under varying environmental conditions. J. Clim. 15, 2597–2615 (2002).

    Article  Google Scholar 

  171. O’Gorman, P. A. & Schneider, T. The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proc. Natl Acad. Sci. USA 106, 14773–14777 (2009).

    Article  Google Scholar 

  172. Ban, N., Schmidli, J. & Schär, C. Heavy precipitation in a changing climate: does short-term summer precipitation increase faster? Geophys. Res. Lett. 42, 1165–1172 (2015).

    Article  Google Scholar 

  173. Haberlie, A. M. & Ashley, W. S. Climatological representation of mesoscale convective systems in a dynamically downscaled climate simulation. Int. J. Climatol. 39, 1144–1153 (2019).

    Article  Google Scholar 

  174. Liu, C. et al. Continental-scale convection-permitting modeling of the current and future climate of North America. Clim. Dyn. 49, 71–95 (2017).

    Article  Google Scholar 

  175. Morcrette, C. J. et al. Introduction to CAUSES: Description of weather and climate models and their near-surface temperature errors in 5 day hindcasts near the Southern Great Plains. J. Geophys. Res. Atmos. 123, 2655–2683 (2018).

    Article  Google Scholar 

  176. Fitzpatrick, R. G. J. et al. What drives the intensification of mesoscale convective systems over the West African Sahel under climate change? J. Clim. 33, 3151–3172 (2020).

    Article  Google Scholar 

  177. Brooks, H. E. Severe thunderstorms and climate change. Atmos. Res. 123, 129–138 (2013).

    Article  Google Scholar 

  178. Gensini, V. A. & Mote, T. L. Estimations of hazardous convective weather in the United States using dynamical downscaling. J. Clim. 27, 6581–6589 (2014).

    Article  Google Scholar 

  179. Seeley, J. T. & Romps, D. M. Why does tropical convective available potential energy (CAPE) increase with warming? Geophys. Res. Lett. 42, 10,429–10,437 (2015).

    Article  Google Scholar 

  180. Romps, D. M. Clausius–Clapeyron scaling of CAPE from analytical solutions to RCE. J. Atmos. Sci. 73, 3719–3737 (2016).

    Article  Google Scholar 

  181. Chen, J., Dai, A., Zhang, Y. & Rasmussen, K. L. Changes in convective available potential energy and convective inhibition under global warming. J. Clim. 33, 2025–2050 (2020).

    Article  Google Scholar 

  182. National Research Council. When Weather Matters: Science and Services to Meet Critical Societal Needs (National Academies Press, 2010).

  183. Zhang, J. et al. Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimation: initial operating capabilities. Bull. Am. Meteorol. Soc. 97, 621–638 (2016).

    Article  Google Scholar 

  184. Bowman, K. P. & Homeyer, C. R. GridRad — three-dimensional gridded NEXRAD WSR-88D radar data. Res. Data Archive Natl Center Atmos. Res. Comput. Inform. Syst. Lab. https://doi.org/10.5065/D6NK3CR7 (2017).

  185. Lackmann, G. M. The south-central US flood of May 2010: present and future. J. Clim. 26, 4688–4709 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank D. Lindsey, S. Nesbitt and A. Haberlie for providing data and updated figures. R.S.S. is supported by National Science Foundation grants AGS1636663, AGS-637244 and AGS-1661862 and NOAA grants NA18OAR4590308 and NA18OAR4590378. K.L.R. is supported by National Science Foundation grants AGS-1661657, AGS-1641167 and AGS-1854399.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Russ S. Schumacher.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer reviewer information

Nature Reviews Earth & Environment thanks Kathleen Schiro, Zhe Feng and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schumacher, R.S., Rasmussen, K.L. The formation, character and changing nature of mesoscale convective systems. Nat Rev Earth Environ 1, 300–314 (2020). https://doi.org/10.1038/s43017-020-0057-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-020-0057-7

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing