Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Monitoring ocean biogeochemistry with autonomous platforms

Abstract

Human activities have altered the state of the ocean, leading to warming, acidification and deoxygenation. These changes impact ocean biogeochemistry and influence ecosystem functions and ocean health. The long-term global effects of these changes are difficult to predict using current satellite sensing and traditional in situ observation techniques. Autonomous platforms equipped with biogeochemical sensors allow for the observation of marine biogeochemical processes and ecosystem dynamics, covering a wide range of spatial and temporal scales. The international Biogeochemical-Argo (BGC-Argo) project is currently building a global, multidisciplinary ocean-observing network of autonomous Argo floats equipped with an extensive range of biogeochemical sensors. Other autonomous platforms, such as gliders and surface vehicles, have also incorporated such sensors, mainly operating on regional scales and near the ocean surface. Autonomous mobile assets, along with remotely sensed data, will provide the 4D information required to improve model simulations and forecasts of ocean conditions and ecosystem health.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Timeline of oceanographic observation platforms and international projects measuring marine biogeochemistry.
Fig. 2: Measuring across spatiotemporal scales in marine systems.
Fig. 3: Four available ocean-observation platforms and example areas of operation.
Fig. 4: Locations of recent autonomous ocean observations.
Fig. 5: Relationships between new observation technologies, biogeochemical models and ecosystem health management.

References

  1. 1.

    Lotze, H. K. et al. Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change. Proc. Natl Acad. Sci. USA 116, 12907–12912 (2019).

    Article  Google Scholar 

  2. 2.

    Cheng, L., Abraham, J., Hausfather, Z. & Trenberth, K. E. How fast are the oceans warming. Science 363, 128–129 (2019).

    Article  Google Scholar 

  3. 3.

    Intergovernmental Panel on Climate Change. Climate Change 2013: the physical science basis (IPCC, 2013).

  4. 4.

    Rombouts, I. et al. Evaluating marine ecosystem health: case studies of indicators using direct observations and modelling methods. Ecol. Indic. 24, 353–365 (2013).

    Article  Google Scholar 

  5. 5.

    Dore, J. E., Lukas, R., Sadler, D. W., Church, M. J. & Karl, D. M. Physical and biogeochemical modulation of ocean acidification in the central North Pacific. Proc. Natl Acad. Sci. USA 106, 12235–12240 (2009).

    Article  Google Scholar 

  6. 6.

    Chacko, N. Chlorophyll bloom in response to tropical cyclone Hudhud in the Bay of Bengal: Bio-Argo subsurface observations. Deep Sea Res. Part I Oceanogr. Res. Pap. 124, 66–72 (2017).

    Article  Google Scholar 

  7. 7.

    Ardyna, M. et al. Hydrothermal vents trigger massive phytoplankton blooms in the Southern Ocean. Nat. Commun. 10, 2451 (2019).

    Article  Google Scholar 

  8. 8.

    Xu, H., Tang, D., Sheng, J., Liu, Y. & Sui, Y. Study of dissolved oxygen responses to tropical cyclones in the Bay of Bengal based on Argo and satellite observations. Sci. Total Environ. 659, 912–922 (2019).

    Article  Google Scholar 

  9. 9.

    Bishop, J. K. B., Davis, R. E. & Sherman, J. T. Robotic observations of dust storm enhancement of carbon biomass in the North Pacific. Science 298, 817–821 (2002).

    Article  Google Scholar 

  10. 10.

    Johnson, K. S. et al. Observing biogeochemical cycles at global scales with profiling floats and gliders: prospects for a global array. Oceanography 22, 216–225 (2009).

    Article  Google Scholar 

  11. 11.

    Claustre, H., Johnson, K. S. & Takeshita, Y. Observing the global ocean with Biogeochemical-Argo. Annu. Rev. Mar. Sci. 12, 23–48 (2020).

    Article  Google Scholar 

  12. 12.

    Shattuck, G. B. The expedition to the Bahama Islands of the Geographical Society of Baltimore. Science 18, 427–432 (1903).

    Article  Google Scholar 

  13. 13.

    Sloyan, B. M. et al. The Global Ocean Ship-based Hydrographic Investigations Program (GO-SHIP): a platform for integrated multidisciplinary ocean science. Front. Mar. Sci. 6, 445 (2019).

    Article  Google Scholar 

  14. 14.

    Bakker, D. C. E. et al. A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT). Earth Syst. Sci. Data 8, 383–413 (2016).

    Article  Google Scholar 

  15. 15.

    Martin, J. H. et al. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature 371, 123–129 (1994).

    Article  Google Scholar 

  16. 16.

    Lewis, M. R., Hebert, D. L., Harrison, W. G., Platt, T. & Oakey, N. S. Vertical nitrate fluxes in the oligotrophic ocean. Science 234, 870–873 (1986).

    Article  Google Scholar 

  17. 17.

    Anderson, R. F. GEOTRACES: accelerating research on the marine biogeochemical cycles of trace elements and their isotopes. Annu. Rev. Mar. Sci. 12, 49–85 (2020).

    Article  Google Scholar 

  18. 18.

    Pierella Karlusich, J. J., Ibarbalz, F. M. & Bowler, C. Phytoplankton in the Tara Ocean. Annu. Rev. Mar. Sci. 12, 233–265 (2020).

    Article  Google Scholar 

  19. 19.

    Freeland, H. A short history of Ocean Station Papa and Line P. Prog. Oceanogr. 75, 120–125 (2007).

    Article  Google Scholar 

  20. 20.

    Steinberg, D. K. et al. Overview of the US JGOFS Bermuda Atlantic Time-series Study (BATS): a decade-scale look at ocean biology and biogeochemistry. Deep Sea Res. Part II Top. Stud. Oceanogr. 48, 1405–1447 (2001).

    Article  Google Scholar 

  21. 21.

    Karl, D. M. et al. Ecosystem changes in the North Pacific subtropical gyre attributed to the 1991–92 El Niño. Nature 373, 230–234 (1995).

    Article  Google Scholar 

  22. 22.

    Signorini, S. R., McClain, C. R., Christian, J. R. & Wong, C. S. Seasonal and interannual variability of phytoplankton, nutrients, TCO2, pCO2, and O2 in the eastern subarctic Pacific (ocean weather station Papa). J. Geophys. Res. 106, 31197–31215 (2001).

    Article  Google Scholar 

  23. 23.

    Smith, G. C. et al. Polar ocean observations: a critical gap in the observing system and its effect on environmental predictions from hours to a season. Front. Mar. Sci. 6, 429 (2019).

    Article  Google Scholar 

  24. 24.

    Wanninkhof, R. et al. A surface ocean CO2 reference network, SOCONET and associated marine boundary layer CO2 measurements. Front. Mar. Sci. 6, 400 (2019).

    Article  Google Scholar 

  25. 25.

    Sutton, A. et al. Using present-day observations to detect when anthropogenic change forces surface ocean carbonate chemistry outside preindustrial bounds. Biogeosciences 13, 5065–5083 (2016).

    Article  Google Scholar 

  26. 26.

    Benway, H. M. et al. Ocean time series observations of changing marine ecosystems: an era of integration, synthesis, and societal applications. Front. Mar. Sci. 6, 393 (2019).

    Article  Google Scholar 

  27. 27.

    Bailey, K. et al. Coastal mooring observing networks and their data products: recommendations for the next decade. Front. Mar. Sci. 6, 180 (2019).

    Article  Google Scholar 

  28. 28.

    Munk, W. in Elsevier Oceanography Series, 63. Satellites, Oceanography and Society Ch. 1 (ed. Halpern, D.) 1–4 (Elsevier, 2000).

  29. 29.

    Gordon, H. R., Clark, D. K., Mueller, J. L. & Hovis, W. A. Phytoplankton pigments from the Nimbus-7 Coastal Zone Color Scanner: comparisons with surface measurements. Science 210, 63–66 (1980).

    Article  Google Scholar 

  30. 30.

    Groom, S. et al. Satellite ocean colour: current status and future perspective. Front. Mar. Sci. 6, 485 (2019).

    Article  Google Scholar 

  31. 31.

    Halpern, D. (ed.) Elsevier Oceanography Series, 63. Satellites, Oceanography and Society (Elsevier, 2000).

  32. 32.

    Gregg, W. W., Conkright, M. E., Ginoux, P., O’Reilly, J. E. & Casey, N. W. Ocean primary production and climate: Global decadal changes. Geophys. Res. Lett. 30, 1809 (2003).

    Article  Google Scholar 

  33. 33.

    Signorini, S. R. & McClain, C. R. Subtropical gyre variability as seen from satellites. Remote. Sens. Lett. 3, 471–479 (2012).

    Article  Google Scholar 

  34. 34.

    Polovina, J. J., Howell, E. A. & Abecassis, M. Ocean’s least productive waters are expanding. Geophys. Res. Lett. 35, L03618 (2008).

    Article  Google Scholar 

  35. 35.

    Resplandy, L., Vialard, J., Lévy, M., Aumont, O. & Dandonneau, Y. Seasonal and intraseasonal biogeochemical variability in the thermocline ridge of the southern tropical Indian Ocean. J. Geophys. Res. 114, C07024 (2009).

    Article  Google Scholar 

  36. 36.

    Martinez, E., Antoine, D., D’Ortenzio, F. & Gentili, B. Climate-driven basin-scale decadal oscillations of oceanic phytoplankton. Science 326, 1253–1256 (2009).

    Article  Google Scholar 

  37. 37.

    Behrenfeld, M. J. et al. Climate-driven trends in contemporary ocean productivity. Nature 444, 752–755 (2006).

    Article  Google Scholar 

  38. 38.

    Fabry, V. J., McClintock, J. B., Mathis, J. T. & Grebmeier, J. M. Ocean acidification at high latitudes: the bellwether. Oceanography 22, 160–171 (2009).

    Article  Google Scholar 

  39. 39.

    Gregg, W. W. & Casey, N. W. Sampling biases in MODIS and SeaWiFS ocean chlorophyll data. Remote. Sens. Environ. 111, 25–35 (2007).

    Article  Google Scholar 

  40. 40.

    Letelier, R. M. et al. Climate-driven oscillation of phosphorus and iron limitation in the North Pacific Subtropical Gyre. Proc. Natl Acad. Sci. USA 116, 12720–12728 (2019).

    Article  Google Scholar 

  41. 41.

    Niewiadomska, K., Claustre, H., Prieur, L. & d’Ortenzio, F. Submesoscale physical-biogeochemical coupling across the Ligurian current (northwestern Mediterranean) using a bio-optical glider. Limnol. Oceanogr. 53, 2210–2225 (2008).

    Article  Google Scholar 

  42. 42.

    Ascani, F. et al. Physical and biological controls of nitrate concentrations in the upper subtropical North Pacific Ocean. Deep Sea Res. Part II Top. Stud. Oceanogr. 93, 119–134 (2013).

    Article  Google Scholar 

  43. 43.

    Cetinic´, I. et al. A simple optical index shows spatial and temporal heterogeneity in phytoplankton community composition during the 2008 North Atlantic Bloom Experiment. Biogeosciences 12, 2179–2194 (2015).

    Article  Google Scholar 

  44. 44.

    Meinig, C., Lawrence-Slavas, N., Jenkins, R. & Tabisola, H. M. The use of Saildrones to examine spring conditions in the Bering Sea: vehicle specification and mission performance. Proc. MTS/IEEE Oceans 2015, 1–6 (2015).

    Google Scholar 

  45. 45.

    Llort, J. et al. Evaluating Southern Ocean carbon eddy-pump from biogeochemical-Argo floats. J. Geophys. Res. 123, 971–984 (2018).

    Article  Google Scholar 

  46. 46.

    Zhang, D. et al. Comparing air-sea flux measurements from a new unmanned surface vehicle and proven platforms during the SPURS-2 field campaign. Oceanography 32, 122–133 (2019).

    Article  Google Scholar 

  47. 47.

    Mahadevan, A., D’Asaro, E., Lee, C. & Perry, M. J. Eddy-driven stratification initiates North Atlantic spring phytoplankton blooms. Science 337, 54–58 (2012).

    Article  Google Scholar 

  48. 48.

    Omand, M. M. et al. Eddy-driven subduction exports particulate organic carbon from the spring bloom. Science 348, 222–225 (2015).

    Article  Google Scholar 

  49. 49.

    Cokelet, E. D. et al. The use of Saildrones to examine spring conditions in the Bering sea. Proc. MTS/IEEE Oceans 2015, 1–7 (2015).

    Google Scholar 

  50. 50.

    Roemmich, D. et al. On the future of Argo: A global, full-depth, multi-disciplinary array. Front. Mar. Sci. 6, 439 (2019).

    Article  Google Scholar 

  51. 51.

    Olsen, A. et al. The Global Ocean Data Analysis Project version 2 (GLODAPv2) – an internally consistent data product for the world ocean. Earth Syst. Sci. Data 8, 297–323 (2016).

    Article  Google Scholar 

  52. 52.

    Gray, A. R. et al. Autonomous biogeochemical floats detect significant carbon dioxide outgassing in the high-latitude Southern Ocean. Geophys. Res. Lett. 45, 9049–9057 (2018).

    Article  Google Scholar 

  53. 53.

    Cossarini, G. et al. Towards operational 3D-Var assimilation of chlorophyll Biogeochemical-Argo float data into a biogeochemical model of the Mediterranean Sea. Ocean Model. 133, 112–128 (2019).

    Article  Google Scholar 

  54. 54.

    Organelli, E. et al. Bio-optical anomalies in the world’s oceans: an investigation on the diffuse attenuation coefficients for downward irradiance derived from Biogeochemical Argo float measurements. J. Geophys. Res. Oceans 122, 3543–3564 (2017).

    Article  Google Scholar 

  55. 55.

    Barbieux, M. et al. Assessing the variability in the relationship between the particulate backscattering coefficient and the chlorophyll a concentration from a global Biogeochemical-Argo database. J. Geophys. Res. 123, 1229–1250 (2017).

    Article  Google Scholar 

  56. 56.

    Bellacicco, M. et al. Global variability of optical backscattering by non-algal particles from a Biogeochemical-Argo data set. Geophys. Res. Lett. 46, 9767–9776 (2019).

    Article  Google Scholar 

  57. 57.

    Martin, A. et al. The oceans’ twilight zone must be studied now, before it is too late. Nature 580, 26–28 (2020).

    Article  Google Scholar 

  58. 58.

    Briggs, N. et al. High-resolution observations of aggregate flux during a sub-polar North Atlantic spring bloom. Deep Sea Res. Part I Oceanogr. Res. Pap. 58, 1031–1039 (2011).

    Article  Google Scholar 

  59. 59.

    Lacour, L. et al. Unexpected winter phytoplankton blooms in the North Atlantic subpolar gyre. Nat. Geosci. 10, 836–839 (2017).

    Article  Google Scholar 

  60. 60.

    Lacour, L., Briggs, N., Claustre, H., Ardyna, M. & Dall’Olmo, G. The intraseasonal dynamics of the mixed layer pump in the subpolar North Atlantic Ocean: A Biogeochemical-Argo float approach. Global Biogeochemical Cycles 33, 266–281 (2019).

    Article  Google Scholar 

  61. 61.

    Rembauville, M. et al. Plankton assemblage estimated with BGC-Argo floats in the Southern Ocean: Implications for seasonal successions and particle export. J. Geophys. Res. 122, 8278–8292 (2017).

    Article  Google Scholar 

  62. 62.

    Boyd, P. W., Claustre, H., Levy, M., Siegel, D. & Weber, T. Multi-faceted particle pumps drive carbon sequestration in the ocean. Nature 568, 327–335 (2019).

    Article  Google Scholar 

  63. 63.

    Briggs, N., Dall’Olmo, G. & Claustre, H. Major role of particle fragmentation in regulating biological sequestration of CO2 by the oceans. Science 367, 791–793 (2020).

    Article  Google Scholar 

  64. 64.

    Estapa, M., Feen, M. & Breves, E. Direct observations of biological carbon export from profiling floats in the subtropical North Atlantic. Global Biogeochem. Cycles 33, 282–300 (2019).

    Article  Google Scholar 

  65. 65.

    Willcox, S. et al. An autonomous mobile platform for underway surface carbon measurements in open-ocean and coastal waters. Proc. IEEE Oceans 2010, 1–8 (2010).

    Google Scholar 

  66. 66.

    Meinig, C. et al. Public–private partnerships to advance regional ocean-observing capabilities: a saildrone and NOAA-PMEL case study and future considerations to expand to global scale observing. Front. Mar. Sci. 6, 448 (2019).

    Article  Google Scholar 

  67. 67.

    Wong, A. P. S. & Riser, S. C. Profiling float observations of the upper ocean under sea ice off the Wilkes Land coast of Antarctica. J. Phys. Oceanogr. 41, 1102–1115 (2011).

    Article  Google Scholar 

  68. 68.

    Mayot, N. et al. Assessing phytoplankton activities in the seasonal ice zone of the Greenland Sea over an annual cycle. J. Geophys. Res. 123, 8004–8025 (2018).

    Article  Google Scholar 

  69. 69.

    Boss, E. et al. Observations of pigment and particle distributions in the western North Atlantic from an autonomous float and ocean color satellite. Limnol. Oceanogr. 53, 2112–2122 (2008).

    Article  Google Scholar 

  70. 70.

    Xing, X. et al. Seasonal variations of bio-optical properties and their interrelationships observed by Bio-Argo floats in the subpolar North Atlantic. J. Geophys. Res. 119, 7372–7388 (2014).

    Article  Google Scholar 

  71. 71.

    Mignot, A., Ferrari, R. & Claustre, H. Floats with bio-optical sensors reveal what processes trigger the North Atlantic bloom. Nat. Commun. 9, 190 (2018).

    Article  Google Scholar 

  72. 72.

    Davis, R. E., Regier, L. A., Dufour, J. & Webb, D. C. The Autonomous Lagrangian Circulation Explorer (ALACE). J. Atmos. Ocean. Technol. 9, 264–285 (1992).

    Article  Google Scholar 

  73. 73.

    Intergovernmental Oceanographic Commission. The Argo project: IOC assembly resolution XX-6 (IOC, 1999).

  74. 74.

    Riser, S. C. et al. Fifteen years of ocean observations with the global Argo array. Nat. Clim. Change 6, 145–153 (2016).

    Article  Google Scholar 

  75. 75.

    Zilberman, N. V. Deep Argo: sampling the total ocean volume in state of the climate in 2016. Bull. Am. Meteorol. Soc. 98, S73–S74 (2017).

    Google Scholar 

  76. 76.

    Vilibic´, I. & Mihanovic´, H. Observing the bottom density current over a shelf using an Argo profiling float. Geophys. Res. Lett. 40, 910–915 (2013).

    Article  Google Scholar 

  77. 77.

    Johnson, K. S. et al. Biogeochemical sensor performance in the SOCCOM profiling float array. J. Geophys. Res. 122, 6416–6436 (2017).

    Article  Google Scholar 

  78. 78.

    Riser, S. C., Swift, D. D. & Drucker, R. Profiling floats in SOCCOM: technical capabilities for studying the southern ocean. J. Geophys. Res. 123, 4055–4073 (2018).

    Article  Google Scholar 

  79. 79.

    Sauzède, R. et al. A neural network-based method for merging ocean color and Argo data to extend surface bio-optical properties to depth: retrieval of the particulate backscattering coefficient. J. Geophys. Res. Ocean. 121, 2552–2571 (2016).

    Article  Google Scholar 

  80. 80.

    Bishop, J. K. B. & Wood, T. J. Year-round observations of carbon biomass and flux variability in the Southern Ocean. Global Biogeochem. Cycles 23, GB2019 (2009).

    Article  Google Scholar 

  81. 81.

    Bif, M. B., Siqueira, L. & Hansell, D. A. Warm events induce loss of resilience in organic carbon production in the northeast Pacific Ocean. Global Biogeochem. Cycles 33, 1174–1186 (2019).

    Article  Google Scholar 

  82. 82.

    Graff, J. R. et al. Analytical phytoplankton carbon measurements spanning diverse ecosystems. Deep Sea Res. Part I Oceanogr. Res. Pap. 102, 16–25 (2015).

    Article  Google Scholar 

  83. 83.

    Davis, R. E., Eriksen, C. C. & Jones, C. P. in Technology and Applications of Autonomous Underwater Vehicles (ed. Griffiths, G.) 37–58 (Taylor & Francis, 2002).

  84. 84.

    Schofield, O. et al. Slocum gliders: Robust and ready. J. Field Robot. 24, 473–485 (2007).

    Article  Google Scholar 

  85. 85.

    Rudnick, D. L. Ocean research enabled by underwater gliders. Annu. Rev. Mar. Sci. 8, 519–541 (2016).

    Article  Google Scholar 

  86. 86.

    Glenn, S. et al. Stratified coastal ocean interactions with tropical cyclones. Nat. Commun. 7, 10887–10887 (2016).

    Article  Google Scholar 

  87. 87.

    Chao, Y. Autonomous underwater vehicles and sensors powered by ocean thermal energy. Proc. IEEE Oceans 2016, 1–4 (2016).

    Google Scholar 

  88. 88.

    Cross, J. N. et al. Innovative technology development for Arctic exploration. Proc. IEE Oceans 2015, 1–8 (2015).

    Google Scholar 

  89. 89.

    Mordy, C. W. et al. Advances in ecosystem research: Saildrone surveys of oceanography, fish, and marine mammals in the Bering Sea. Oceanography 30, 113–115 (2017).

    Article  Google Scholar 

  90. 90.

    Bourassa, M. A. et al. High-latitude ocean and sea ice surface fluxes: challenges for climate research. Bull. Am. Meteorol. Soc. 94, 403–423 (2013).

    Article  Google Scholar 

  91. 91.

    Todd, R. E. et al. Global perspectives on observing ocean boundary current systems. Front. Mar. Sci. 6, 423 (2019).

    Article  Google Scholar 

  92. 92.

    Monteiro, P. M. S. et al. Intraseasonal variability linked to sampling alias in air-sea CO2 fluxes in the Southern Ocean. Geophys. Res. Lett. 42, 8507–8514 (2015).

    Article  Google Scholar 

  93. 93.

    Biogeochemical-Argo Planning Group. The scientific rationale, design, and implementation plan for a Biogeochemical-Argo float array (eds Johnson K. & Claustre H.) (Biogeochemical-Argo, 2016).

  94. 94.

    Bittig, H. C. et al. A BGC-Argo guide: Planning, deployment, data handling and usage. Front. Mar. Sci. 6, 502 (2019).

    Article  Google Scholar 

  95. 95.

    Testor, P. et al. OceanGliders: a component of the integrated GOOS. Front. Mar. Sci. 6, 422 (2019).

    Article  Google Scholar 

  96. 96.

    Guihen, D., Fielding, S., Murphy, E. J., Heywood, K. J. & Griffiths, G. An assessment of the use of ocean gliders to undertake acoustic measurements of zooplankton: the distribution and density of Antarctic krill (Euphausia superba) in the Weddell Sea. Limnol. Oceanogr. Methods 12, 373–389 (2014).

    Article  Google Scholar 

  97. 97.

    Cyr, F. et al. A new glider-compatible optical sensor for dissolved organic matter measurements: test case from the NW Mediterranean Sea. Front. Mar. Sci. 4, 89 (2017).

    Article  Google Scholar 

  98. 98.

    Jiang, Z.-P. et al. Application and assessment of a membrane-based pCO2 sensor under field and laboratory conditions. Limnol. Oceanogr. Methods 12, 264–280 (2014).

    Article  Google Scholar 

  99. 99.

    Briggs, E. M. et al. Solid state sensor for simultaneous measurement of total alkalinity and pH of seawater. ACS Sens. 2, 1302–1309 (2017).

    Article  Google Scholar 

  100. 100.

    Williams, N. L. et al. Calculating surface ocean pCO2 from biogeochemical Argo floats equipped with pH: An uncertainty analysis. Global Biogeochem. Cycles 31, 591–604 (2017).

    Article  Google Scholar 

  101. 101.

    Bittig, H. C. et al. Oxygen optode sensors: principle, characterization, calibration, and application in the ocean. Front. Mar. Sci. 4, 429 (2018).

    Article  Google Scholar 

  102. 102.

    Irigoien, X. et al. Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nat. Commun. 5, 3271–3271 (2014).

    Article  Google Scholar 

  103. 103.

    John, M. A. S. et al. A dark hole in our understanding of marine ecosystems and their services: perspectives from the mesopelagic community. Front. Mar. Sci. 3, 31 (2016).

    Google Scholar 

  104. 104.

    Riser, S. C. & Johnson, K. S. Net production of oxygen in the subtropical ocean. Nature 451, 323–325 (2008).

    Article  Google Scholar 

  105. 105.

    Yang, J., Riser, S. C., Nystuen, J. A., Asher, W. & Jessup, A. T. Regional rainfall measurements: using the Passive Aquatic Listener during the SPURS field campaign. Oceanography 28, 124–133 (2015).

    Article  Google Scholar 

  106. 106.

    Suberg, L. et al. Assessing the potential of autonomous submarine gliders for ecosystem monitoring across multiple trophic levels (plankton to cetaceans) and pollutants in shallow shelf seas. Methods Oceanogr. 10, 70–89 (2014).

    Article  Google Scholar 

  107. 107.

    Wall, C. C. et al. Mapping the soundscape off the southeastern USA by using passive acoustic glider technology. Mar. Coast. Fish. 9, 23–37 (2017).

    Article  Google Scholar 

  108. 108.

    Guihen, D. & Hewitt, J. High-resolution acoustic surveys with diving gliders come at a cost of aliasing moving targets. PLoS One 13, e0201816 (2018).

    Article  Google Scholar 

  109. 109.

    Delworth, T. L. et al. Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model. J. Clim. 25, 2755–2781 (2012).

    Article  Google Scholar 

  110. 110.

    Jones, S. D., Le Quéré, C. & Rödenbeck, C. Autocorrelation characteristics of surface ocean pCO2 and air-sea CO2 fluxes. Global Biogeochem. Cycles 26, GB2042 (2012).

    Article  Google Scholar 

  111. 111.

    Majkut, J. D. et al. An observing system simulation for Southern Ocean carbon dioxide uptake. Philos. Trans. A Math. Phys. Eng. Sci. 372, 20130046 (2014).

    Article  Google Scholar 

  112. 112.

    Voosen, P. Saildrone fleet could help replace aging buoys. Science 359, 1082–1083 (2018).

    Article  Google Scholar 

  113. 113.

    Adams, K. A., Barth, J. A. & Shearman, R. K. Intraseasonal cross-shelf variability of hypoxia along the Newport, Oregon, hydrographic line. J. Phys. Oceanogr. 46, 2219–2238 (2016).

    Article  Google Scholar 

  114. 114.

    Saldías, G. S., Shearman, R. K., Barth, J. A. & Tufillaro, N. Optics of the offshore Columbia River plume from glider observations and satellite imagery. J. Geophys. Res. 121, 2367–2384 (2016).

    Article  Google Scholar 

  115. 115.

    Barth, J. A. et al. Better regional ocean observing through cross-national cooperation: a case study from the Northeast Pacific. Front. Mar. Sci. 6, 93 (2019).

    Article  Google Scholar 

  116. 116.

    Domingues, R. et al. Upper ocean response to Hurricane Gonzalo (2014): Salinity effects revealed by targeted and sustained underwater glider observations. Geophys. Res. Lett. 42, 7131–7138 (2015).

    Article  Google Scholar 

  117. 117.

    Miles, T., Seroka, G., Kohut, J., Schofield, O. & Glenn, S. Glider observations and modeling of sediment transport in Hurricane Sandy. J. Geophys. Res. 120, 1771–1791 (2015).

    Article  Google Scholar 

  118. 118.

    Todd, R. E., Asher, T. G., Heiderich, J., Bane, J. M. & Luettich, R. A. Transient response of the Gulf Stream to multiple hurricanes in 2017. Geophys. Res. Lett. 45, 10,509–10,519 (2018).

    Article  Google Scholar 

  119. 119.

    Domingues, R. et al. Ocean observations in support of studies and forecasts of tropical and extratropical cyclones. Front. Mar. Sci. 6, 446 (2019).

    Article  Google Scholar 

  120. 120.

    Gawarkiewicz, G. et al. The changing nature of shelf-break exchange revealed by the OOI Pioneer Array. Oceanography 31, 60–70 (2018).

    Article  Google Scholar 

  121. 121.

    Trowbridge, J. et al. The Ocean Observatories Initiative. Front. Mar. Sci. 6, 74 (2019).

    Article  Google Scholar 

  122. 122.

    Swart, S., Thomalla, S. J. & Monteiro, P. M. S. The seasonal cycle of mixed layer dynamics and phytoplankton biomass in the Sub-Antarctic Zone: A high-resolution glider experiment. J. Mar. Syst. 147, 103–115 (2015).

    Article  Google Scholar 

  123. 123.

    Cheng, L., Abraham, J., Hausfather, Z. & Trenberth, K. E. How fast are the oceans warming? Science 363, 128–129 (2019).

    Article  Google Scholar 

  124. 124.

    Viglione, G. A., Thompson, A. F., Flexas, M. M., Sprintall, J. & Swart, S. Abrupt transitions in submesoscale structure in southern Drake Passage: glider observations and model results. J. Phys. Oceanogr. 48, 2011–2027 (2018).

    Article  Google Scholar 

  125. 125.

    Kahl, L. A., Schofield, O. & Fraser, W. R. Autonomous gliders reveal features of the water column associated with foraging by Adelie penguins. Integr. Comp. Biol. 50, 1041–1050 (2010).

    Article  Google Scholar 

  126. 126.

    Schofield, O. et al. Penguin biogeography along the West Antarctic Peninsula: Testing the canyon hypothesis with Palmer LTER observations. Oceanography 26, 204–206 (2013).

    Article  Google Scholar 

  127. 127.

    Thompson, A. F., Heywood, K. J., Schmidtko, S. & Stewart, A. L. Eddy transport as a key component of the Antarctic overturning circulation. Nat. Geosci. 7, 879–884 (2014).

    Article  Google Scholar 

  128. 128.

    Carvalho, F., Kohut, J., Oliver, M. J., Sherrell, R. M. & Schofield, O. Mixing and phytoplankton dynamics in a submarine canyon in the West Antarctic Peninsula. J. Geophys. Res. 121, 5069–5083 (2016).

    Article  Google Scholar 

  129. 129.

    Carvalho, F., Kohut, J., Oliver, M. J. & Schofield, O. Defining the ecologically relevant mixed-layer depth for Antarctica’s coastal seas. Geophys. Res. Lett. 44, 338–345 (2017).

    Article  Google Scholar 

  130. 130.

    Schofield, O. et al. In situ phytoplankton distributions in the Amundsen Sea Polynya measured by autonomous gliders. Elementa 3, 1–17 (2015).

    Google Scholar 

  131. 131.

    Garabato, A. C. N. et al. Vigorous lateral export of the meltwater outflow from beneath an Antarctic ice shelf. Nature 542, 219–222 (2017).

    Article  Google Scholar 

  132. 132.

    Tintoré, J. et al. Challenges for sustained observing and forecasting systems in the Mediterranean Sea. Front. Mar. Sci. 6, 568 (2019).

    Article  Google Scholar 

  133. 133.

    Thomson, J. & Girton, J. B. Sustained measurements of Southern Ocean air-sea coupling from a wave glider autonomous surface vehicle. Oceanography 30, 104–109 (2017).

    Article  Google Scholar 

  134. 134.

    Schmidt, K. M., Swart, S., Reason, C. & Nicholson, S. A. Evaluation of satellite and reanalysis wind products with in situ wave glider wind observations in the Southern Ocean. J. Atmos. Ocean. Technol. 34, 2551–2568 (2017).

    Article  Google Scholar 

  135. 135.

    Talley, L. D. et al. Changes in ocean heat, carbon content, and ventilation: a review of the first decade of GO-SHIP global repeat hydrography. Annu. Rev. Mar. Sci. 8, 185–215 (2016).

    Article  Google Scholar 

  136. 136.

    Williams, N. L. et al. Assessment of the carbonate chemistry seasonal cycles in the Southern Ocean from persistent observational platforms. J. Geophys. Res. 123, 4833–4852 (2018).

    Article  Google Scholar 

  137. 137.

    Sauzède, R. et al. Estimates of water-column nutrient concentrations and carbonate system parameters in the global ocean: a novel approach based on neural networks. Front. Mar. Sci. 4, 128 (2017).

    Article  Google Scholar 

  138. 138.

    Bittig, H. C. et al. An alternative to static climatologies: robust estimation of open ocean CO2 variables and nutrient concentrations from T, S, and O2 data using Bayesian neural networks. Front. Mar. Sci. 5, 328 (2018).

    Article  Google Scholar 

  139. 139.

    Pfeil, B. et al. A uniform, quality controlled Surface Ocean CO2 Atlas (SOCAT). Earth Syst. Sci. Data 5, 125–143 (2012).

    Article  Google Scholar 

  140. 140.

    Villareal, T. A. & Wilson, C. A comparison of the Pac-X trans-Pacific wave glider data and satellite data (MODIS, Aquarius, TRMM and VIIRS). PLoS One 9, e92280 (2014).

    Article  Google Scholar 

  141. 141.

    Haentjens, N., Boss, E. & Talley, L. D. Revisiting Ocean Color algorithms for chlorophyll a and particulate organic carbon in the Southern Ocean using biogeochemical floats. J. Geophys. Res. 122, 6583–6593 (2017).

    Article  Google Scholar 

  142. 142.

    Wojtasiewicz, B. et al. Use of bio-optical profiling float data in validation of ocean colour satellite products in a remote ocean region. Remote. Sens. Environ. 209, 275–290 (2018).

    Article  Google Scholar 

  143. 143.

    Lavigne, H., D’Ortenzio, F., Claustre, H. & Poteau, A. Towards a merged satellite and in situ fluorescence ocean chlorophyll product. Biogeosciences 9, 2111–2125 (2012).

    Article  Google Scholar 

  144. 144.

    Roesler, C. et al. Recommendations for obtaining unbiased chlorophyll estimates from in situ chlorophyll fluorometers: A global analysis of WET Labs ECO sensors. Limnol. Oceanogr. Methods 15, 572–585 (2017).

    Article  Google Scholar 

  145. 145.

    Gerbi, G. P. et al. Validation of ocean color remote sensing reflectance using autonomous floats. J. Atmos. Ocean. Technol. 33, 2331–2352 (2016).

    Article  Google Scholar 

  146. 146.

    Leymarie, E. et al. ProVal: A new autonomous profiling float for high quality radiometric measurements. Front. Mar. Sci. 5, 437 (2018).

    Article  Google Scholar 

  147. 147.

    Dierssen, H. M. & Smith, R. C. Bio-optical properties and remote sensing ocean color algorithms for Antarctic Peninsula waters. J. Geophys. Res. 105, 26301–26312 (2000).

    Article  Google Scholar 

  148. 148.

    Kahru, M. & Mitchell, B. G. Blending of ocean colour algorithms applied to the Southern Ocean. Remote. Sens. Lett. 1, 119–124 (2010).

    Article  Google Scholar 

  149. 149.

    Guinet, C. et al. Calibration procedures and first data set of Southern Ocean chlorophyll a profiles collected by elephant seals equipped with a newly developed CTD-fluorescence tags. Earth Syst. Sci. Data 5, 15–29 (2013).

    Article  Google Scholar 

  150. 150.

    Coale, K. H. et al. IronEx-I, an in situ iron-enrichment experiment: Experimental design, implementation and results. Deep Sea Res. Part II Top. Stud. Oceanogr. 45, 919–945 (1998).

    Article  Google Scholar 

  151. 151.

    Pascual, A. et al. A multiplatform experiment to unravel meso- and submesoscale processes in an intense front (AlborEx). Front. Mar. Sci. 4, 39 (2017).

    Article  Google Scholar 

  152. 152.

    Lindstrom, E. J. et al. Autonomous multi-platform observations during the salinity processes in the upper-ocean regional study. Oceanography 30, 38–48 (2017).

    Article  Google Scholar 

  153. 153.

    Centurioni, L. R. et al. Northern Arabian Sea Circulation-Autonomous Research (NASCar): a research initiative based on autonomous sensors. Oceanography 30, 74–87 (2017).

    Article  Google Scholar 

  154. 154.

    Siegel, D. et al. Prediction of the export and fate of global ocean net primary production: The EXPORTS science plan. Front. Mar. Sci. 3, 22 (2016).

    Article  Google Scholar 

  155. 155.

    Fennel, K. et al. Advancing marine biogeochemical and ecosystem reanalyses and forecasts as tools for monitoring and managing ecosystem health. Front. Mar. Sci. 6, 89 (2019).

    Article  Google Scholar 

  156. 156.

    Verdy, A. & Mazloff, M. R. A data assimilating model for estimating Southern Ocean biogeochemistry. J. Geophys. Res. 122, 6968–6988 (2017).

    Article  Google Scholar 

  157. 157.

    Yu, L., Fennel, K., Bertino, L., El Gharamti, M. & Thompson, K. R. Insights on multivariate updates of physical and biogeochemical ocean variables using an Ensemble Kalman Filter and an idealized model of upwelling. Ocean Model. 126, 13–28 (2018).

    Article  Google Scholar 

  158. 158.

    Wang, B., Fennel, K., Yu, L. & Gordon, C. Assessing the value of Argo profiles versus satellite observations for biogeochemical model optimization in the Gulf of Mexico. Biogeosciences Discuss. https://doi.org/10.5194/bg-2020-137 (2020).

  159. 159.

    Vincent, A. G. et al. Nitrate drawdown during a shelf sea spring bloom revealed using a novel microfluidic in situ chemical sensor deployed within an autonomous underwater glider. Mar. Chem. 205, 29–36 (2018).

    Article  Google Scholar 

  160. 160.

    Buitenhuis, E. T., Hashioka, T. & Le Quéré, C. Combined constraints on global ocean primary production using observations and models. Global Biogeochem. Cycles 27, 847–858 (2013).

    Article  Google Scholar 

  161. 161.

    Subramanian, A. C. et al. Ocean observations to improve our understanding, modeling, and forecasting of subseasonal-to-seasonal variability. Front. Mar. Sci. 6, 427 (2019).

    Article  Google Scholar 

  162. 162.

    Lehodey, P., Senina, I., Nicol, S. & Hampton, J. Modelling the impact of climate change on South Pacific albacore tuna. Deep Sea Res. Part II Top. Stud. Oceanogr. 113, 246–259 (2015).

    Article  Google Scholar 

  163. 163.

    Barange, M. et al. Impacts of climate change on marine ecosystem production in societies dependent on fisheries. Nat. Clim. Change 4, 211–216 (2014).

    Article  Google Scholar 

  164. 164.

    Koenigstein, S., Mark, F. C., Gößlingreisemann, S., Reuter, H. & Poertner, H. Modelling climate change impacts on marine fish populations: process-based integration of ocean warming, acidification and other environmental drivers. Fish Fish. 17, 972–1004 (2016).

    Article  Google Scholar 

  165. 165.

    Ryabinin, V. et al. The UN Decade of Ocean Science for Sustainable Development. Front. Mar. Sci. 6, 470 (2019).

    Article  Google Scholar 

  166. 166.

    Zhang, X., Wang, L., Jiang, X. & Zhu, C. (eds) Modeling with Digital Ocean and Digital Coast (Springer, 2017).

  167. 167.

    Zhang, W.-Z., Wang, H., Chai, F. & Qiu, G. Physical drivers of chlorophyll variability in the open South China Sea. J. Geophys. Res. 121, 7123–7140 (2016).

    Article  Google Scholar 

  168. 168.

    Yu, Y., Gu, L. L. & Wu, X. Q. The application of artificial intelligence in ocean development. Adv. Mater. Res. 864–867, 2116–2119 (2014).

    Google Scholar 

  169. 169.

    Reichstein, M. et al. Deep learning and process understanding for data-driven Earth system science. Nature 566, 195–204 (2019).

    Article  Google Scholar 

  170. 170.

    Liu, Y., Qiu, M., Liu, C. & Guo, Z. Big data challenges in ocean observation: a survey. Pers. Ubiquitous Comput. 21, 55–65 (2017).

    Article  Google Scholar 

  171. 171.

    Runge, J. et al. Inferring causation from time series in Earth system sciences. Nat. Commun. 10, 2553 (2019).

    Article  Google Scholar 

  172. 172.

    Le Traon, P. Y. From satellite altimetry to Argo and operational oceanography: three revolutions in oceanography. Ocean. Sci. 9, 901–915 (2013).

    Article  Google Scholar 

  173. 173.

    Gasparin, F. et al. Requirements for an integrated in situ Atlantic Ocean observing system from coordinated observing system simulation experiments. Front. Mar. Sci. 6, 83 (2019).

    Article  Google Scholar 

  174. 174.

    Le Traon, P. Y. et al. From observation to information and users: the Copernicus Marine Service perspective. Front. Mar. Sci. 6, 234 (2019).

    Article  Google Scholar 

  175. 175.

    Johnson, K. S. et al. Long-term nitrate measurements in the ocean using the In Situ Ultraviolet Spectrophotometer: sensor integration into the Apex profiling float. J. Atmos. Ocean. Technol. 30, 1854–1866 (2013).

    Article  Google Scholar 

  176. 176.

    Johnson, K. S. et al. Deep-Sea DuraFET: a pressure tolerant pH sensor designed for global sensor networks. Anal. Chem. 88, 3249–3256 (2016).

    Article  Google Scholar 

  177. 177.

    Cetinic´, I., Toro-Farmer, G., Ragan, M., Oberg, C. & Jones, B. H. Calibration procedure for Slocum glider deployed optical instruments. Opt. Express 17, 15420–15430 (2009).

    Article  Google Scholar 

  178. 178.

    Haëntjens, N. et al. Detecting mesopelagic organisms using biogeochemical-Argo floats. Geophys. Res. Lett. 47, e2019GL086088 (2020).

    Article  Google Scholar 

  179. 179.

    Bushinsky, S. M., Takeshita, Y. & Williams, N. L. Observing changes in ocean carbonate chemistry: our autonomous future. Curr. Clim. Change Rep. 5, 207–220 (2019).

    Article  Google Scholar 

  180. 180.

    Ruhl, H. A. et al. Societal need for improved understanding of climate change, anthropogenic impacts, and geo-hazard warning drive development of ocean observatories in European Seas. Prog. Oceanogr. 91, 1–33 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

F.C., X.X. and Y.W. were supported by the National Key Research and Development Program of China (2016YFC1401600), the National Natural Science Foundation of China (41730536) and the Scientific Research Fund of the Second Institute of Oceanography, Ministry of Natural Resources, China (14283). K.S.J. was supported by the David and Lucile Packard Foundation and by the NSF’s Southern Ocean Carbon and Climate Observations and Modeling project (SOCCOM) under the NSF award PLR-1425989, with additional support from the NOAA and NASA. H.C. was supported by funding from a European Research Council Advanced Grant (REFINE, no. 834177). BGC-Argo data are collected and made freely available by the international Argo programme and the national programmes that contribute to it (http://www.argo.ucsd.edu, http://argo.jcommops.org). The Argo programme is part of the Global Ocean Observing System (GOOS). This is Pacific Marine Environmental Laboratory (PMEL) contribution #5058.

Author information

Affiliations

Authors

Contributions

F.C., X.X. and Y.W. researched data for the article. F.C., K.S.J., H.C., X.X., K.F., O.S. and A.S. all contributed to the writing of the article. F.C., X.X., Y.W., E.B. and S.R. contributed to reviewing and editing the manuscript prior to submission. All authors made a substantial contribution to the discussion of content.

Corresponding author

Correspondence to Fei Chai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Earth & Environment thanks Burton Jones, Tetsuichi Fujiki, Zhaohui Aleck Wang and the other, anonymous, reviewer for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Biogeochemical-Argo programme: https://biogeochemical-argo.org/

OceanObs’19: http://www.oceanobs19.net/

United Nations Decade of Ocean Science for Sustainable Development: https://www.oceandecade.org/

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chai, F., Johnson, K.S., Claustre, H. et al. Monitoring ocean biogeochemistry with autonomous platforms. Nat Rev Earth Environ 1, 315–326 (2020). https://doi.org/10.1038/s43017-020-0053-y

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing