Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

You are viewing this page in draft mode.

Diffusion chronometry and the timescales of magmatic processes

Abstract

Volcanic eruptions can represent major societal hazards. Placing tighter bounds on the timescales of magmatic processes that precede eruptions is, therefore, important for volcano monitoring and forecasting. Diffusion chronometry, where volcanic crystals that contain chemical gradients are treated as time capsules, allows the timescale of various magmatic processes to be constrained. In this Review, we discuss the basics of diffusion chronometry and describe how re-equilibration via chemical diffusion provides insights into the timescales of magma storage, ascent and eruption. Crystals from mafic volcanoes record timescales of days to years between magma intrusion and eruption, which broadly match those recorded by monitoring data (such as increased seismicity). The timescales recorded in crystals from large silicic calderas, however, are typically longer than those from mafic volcanoes, spanning decades to millennia, but almost two orders of magnitude shorter than the timescales obtained by U-Th isotope disequilibria in zircon. The cause of this discrepancy is debated but likely reflects the protracted magma accumulation and complex thermal history that many crystals experience before eruption. Diffusion chronometry adds the fourth dimension to volcano science (that is, time), and advances in analytical and experimental approaches (such as NanoSIMS) open up new opportunities for understanding magmatic systems.

Key points

  • Diffusion modelling of the chemical gradients in crystals can be used to extract invaluable time information from magmatic systems.

  • Crystals from mafic volcanoes record the timescales of magma and transfer towards eruption that correlate with surface-monitoring data.

  • Crystals from silicic volcanoes record timescales of magma remobilization and storage on the order of decades to hundreds of years, much shorter than U-Th dating of zircons.

  • Further studies that integrate diffusion chronometry, using a wide range of elements and minerals, with thermal models of magmatic systems are required to understand the timescales of magma storage and remobilization.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Schematic of a basaltic magma system below a volcano.
Fig. 2: The potential and current applications of diffusion chronometry.
Fig. 3: Multi-element chemical map of a clinopyroxene megacryst from Stromboli volcano.
Fig. 4: Comparison of the effects of diffusion and crystal growth.
Fig. 5: Correlation of diffusion chronometry with monitoring data.
Fig. 6: Use of melt embayments to determine timescales of magma decompression.
Fig. 7: Diffusion timescales obtained from different minerals in silicic systems.

References

  1. 1.

    Bowen, N. L. The Evolution of the Igneous Rocks (Princeton Univ. Press, 1928).

  2. 2.

    Young, D. A. Mind Over Magma: The Story of Igneous Petrology (Princeton Univ. Press, 2003).

  3. 3.

    Pichavant, M. et al. Equilibration scales in silicic to intermediate magmas-implications for experimental studies. J. Petrol. 48, 1955–1972 (2007).

    Google Scholar 

  4. 4.

    Ghiorso, M. & Sack, O. Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib. Mineral. Petrol. 119, 197–212 (1995).

    Google Scholar 

  5. 5.

    Blundy, J. & Cashman, K. Petrologic reconstruction of magmatic system variables and processes. Rev. Min. Geochem. 69, 179–239 (2008).

    Google Scholar 

  6. 6.

    Cashman, K. V., Sparks, R. S. J. & Blundy, J. D. Vertically extensive and unstable magmatic systems: A unified view of igneous processes. Science 355, eaag3055 (2017).

    Google Scholar 

  7. 7.

    Caricchi, L. et al. Non-Newtonian rheology of crystal-bearing magmas and implications for magma ascent dynamics. Earth Planet. Sci. Lett. 264, 402–419 (2007).

    Google Scholar 

  8. 8.

    Laumonier, M. et al. On the conditions of magma mixing and its bearing on andesite production in the crust. Nat. Commun. 5, 5607 (2014).

    Google Scholar 

  9. 9.

    Ruprecht, P., Bergantz, G. W. & Dufek, J. Modeling of gas-driven magmatic overturn: tracking of phenocryst dispersal and gathering during magma mixing. Geochem. Geophys. Geosyt. 9, Q07017 (2008).

    Google Scholar 

  10. 10.

    Bergantz, G. W., Schleicher, J. M. & Burgisser, A. Open-system dynamics and mixing in magma mushes. Nat. Geosci. 8, 793–796 (2015).

    Google Scholar 

  11. 11.

    Huber, C., Bachmann, O. & Dufek, J. Thermo-mechanical reactivation of locked crystal mushes: melting-induced internal fracturing and assimilation processes in magmas. Earth Planet. Sci. Lett. 304, 443–454 (2011).

    Google Scholar 

  12. 12.

    Annen, C., Blundy, J. D., Leuthold, J. & Sparks, R. S. Construction and evolution of igneous bodies: towards an integrated perspective of crustal magmatism. Lithos 230, 206–221 (2015).

    Google Scholar 

  13. 13.

    Ganguly, J. in EMU Notes in Mineralogy, Energy Modelling in Minerals Vol. 4 (ed. Gramaccioli, C. M.) 271–309 (Eotvos Univ. Press, 2002).

  14. 14.

    Lasaga, A. C. in Princeton Series in Geochemistry Vol. 402 (Princeton Univ. Press, 2014).

  15. 15.

    Zhang, Y. Geochemical Kinetics (Princeton Univ. Press, 2008). A comprehensive primer of kinetics in earth sciences and a good starting place for anyone wanting to get an introduction on constitutive equations and solutions for diffusion in minerals and melts.

  16. 16.

    Chakraborty, S. Diffusion in solid silicates: a tool to track timescales of processes comes of age. Annu. Rev. Earth Planet. Sci. 36, 153–190 (2008).

    Google Scholar 

  17. 17.

    Costa, F. & Morgan, D. in Timescales of Magmatic Processes: From Core to Atmosphere (eds Dosseto, A., Turner, S. P. & Van Orman, J. A.) 125–159 (Wiley, 2010).

  18. 18.

    Wood, J. A. The cooling rates and parent planets of several iron meteorites. Icarus 3, 429–459 (1964).

    Google Scholar 

  19. 19.

    Lasaga A. C. in Kinetics and Equilibrium in Mineral Reactions. Advances in Physical Geochemistry Vol. 3 (ed. Saxena, S. K.) 81–114 (Springer, 1983). Sets the foundation of the diffusion-speedometry approach with a mathematical derivation of the equations.

  20. 20.

    Maaløe, S. & Hansen, B. Olivine phenocrysts of Hawaiian olivine tholeiite and oceanite. Contrib. Mineral. Petrol. 81, 203–211 (1982). One of the first papers that modelled zoning profiles of olivine to extract timescales.

    Google Scholar 

  21. 21.

    Lasaga, A. C., Richardson, S. M. & Holland, H. D. in Energetics of Geological Processes (eds Saxena, S. K., Bhattacharji, S., Annersten, H. & Stephansson, O.) 353–388 (Springer, 1977).

  22. 22.

    Zhang, Y. & Cherniak, D. J. Diffusion in minerals and melts. Rev. Mineral. Geochem. 72, 1–4 (2010). Contains the most recent compilation of experimentally determined diffusion data plus theoretical models of diffusion in melts and crystals.

    Google Scholar 

  23. 23.

    Davidson, J. P., Morgan, D. J., Charlier, B. L. A., Harlou, R. & Hora, J. M. Microsampling and isotopic analysis of igneous rocks: implications for the study of magmatic systems. Ann. Rev. Earth Planet. Sci. 35, 273–311 (2007).

    Google Scholar 

  24. 24.

    Ubide, T., McKenna, C. A., Chew, D. M. & Kamber, B. S. High-resolution LA-ICP-MS trace element mapping of igneous minerals: in search of magma histories. Chem. Geol. 409, 157–168 (2015).

    Google Scholar 

  25. 25.

    Ubide, T., Mollo, S., Zhao, J.-X., Nazzari, M. & Scarlato, P. Sector-zoned clinopyroxene as a recorder of magma history, eruption triggers, and ascent rates. Geochim. Cosmochim. Acta 251, 265–283 (2019).

    Google Scholar 

  26. 26.

    Condomines, M., Gauthier, P. J. & Sigmarsson, O. Timescales of magma chamber processes and dating of young volcanic rocks. Rev. Mineral. Geochem. 52, 125–174 (2003).

    Google Scholar 

  27. 27.

    Cooper, K. M. & Reid, M. R. Uranium-series crystal ages. Rev. Mineral. Geochem. 69, 479–544 (2008).

    Google Scholar 

  28. 28.

    Cooper, K. M. Time scales and temperatures of crystal storage in magma reservoirs: implications for magma reservoir dynamics. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 377, 20180009 (2019). Contains a very detailed compilation of timescales obtained from diffusion chronometry and U-Th dating, and a discussion of the hot and cold magma-storage hypothesis.

    Google Scholar 

  29. 29.

    Ivanovich, M., & Harmon, R. S. Uranium-Series Disequilibrium: Applications to Earth, Marine, and Environmental Sciences 2nd edn (Clarendon Press, 1992).

  30. 30.

    Bourdon, B., Henderson, G. M., Lundstrom, C. C. & Turner, S. P. Introduction to U-series geochemistry. Rev. Mineral. Geochem. 52, 1–22 (2003).

    Google Scholar 

  31. 31.

    Putirka, K. D. Minerals, inclusions and volcanic processes. Rev. Mineral. Geochem. 69, 1–8 (2008).

    Google Scholar 

  32. 32.

    Shea, T. & Hammer, J. E. Kinetics of cooling- and decompression-induced crystallization in hydrous mafic-intermediate magmas. J. Volcanol. Geotherm. Res. 260, 127–145 (2013).

    Google Scholar 

  33. 33.

    Hammer, J. E. Experimental studies of the kinetics and energetics of magma crystallization. Rev. Mineral. Geochem. 69, 9–59 (2008).

    Google Scholar 

  34. 34.

    Vona, A. & Romano, C. The effects of undercooling and deformation rates on the crystallization kinetics of Stromboli and Etna basalts. Contrib. Mineral. Petrol. 166, 491–509 (2013).

    Google Scholar 

  35. 35.

    Toramaru, A. BND (bubble number density) decompression rate meter for explosive volcanic eruptions. J. Volcanol. Geotherm. Res. 154, 303–316 (2006).

    Google Scholar 

  36. 36.

    Mangan, M. & Sisson, T. Delayed, disequilibrium degassing in rhyolite magma: decompression experiments and implications for explosive volcanism. Earth Planet. Sci. Lett. 183, 441–455 (2000).

    Google Scholar 

  37. 37.

    Fiege, A. & Cichy, S. B. Experimental constraints on bubble formation and growth during magma ascent: a review. Am. Mineral. 100, 2426–2442 (2015).

    Google Scholar 

  38. 38.

    Shea, T. Bubble nucleation in magmas: a dominantly heterogeneous process? J. Volcanol. Geotherm. Res. 343, 155–170 (2017).

    Google Scholar 

  39. 39.

    Ubide, T. & Kamber, B. S. Volcanic crystals as time capsules of eruption history. Nat. Commun. 9, 326–326 (2018).

    Google Scholar 

  40. 40.

    Petrone, C. M., Braschi, E., Francalanci, L., Casalini, M. & Tommasini, S. Rapid mixing and short storage timescale in the magma dynamics of a steady-state volcano. Earth Planet. Sci. Lett. 492, 206–221 (2018).

    Google Scholar 

  41. 41.

    Allen, J. C. & Boettcher, A. L. The stability of amphibole in andesite and basalt at high pressures. Am. Mineral. 68, 307–314 (1983).

    Google Scholar 

  42. 42.

    Rutherford, M. J. & Hill, P. M. Magma ascent rates from amphibole breakdown: an experimental study applied to the 1980–1986 Mount St. Helens eruptions. J. Geophys. Res. Solid Earth 98, 19667–19685 (1993).

    Google Scholar 

  43. 43.

    Browne, B. L. & Gardner, J. E. The influence of magma ascent path on the texture, mineralogy, and formation of Hornblende reaction rims. Earth Planet. Sci. Lett. 246, 161–176 (2006).

    Google Scholar 

  44. 44.

    Rutherford, M. J. & Devine, J. D. Magmatic conditions and magma ascent as indicated by hornblende phase equilibria and reactions in the 1995–2002 Soufriere Hills magma. J. Petrol. 44, 1433–1453 (2003).

    Google Scholar 

  45. 45.

    Faure, G. & Mensing, T. M. Isotopes: principles and applications 3rd edn. (Wiley, 2005).

  46. 46.

    Cooper, K. M. Timescales of crustal magma reservoir processes: insights from U-series crystal ages. Geol. Soc. Lond. Spec. Publ. 422, 141–174 (2015).

    Google Scholar 

  47. 47.

    Reid, M. in Treatise on Geochemistry, The Crust Vol 3. (ed. Rudnick R. L.) 167–193 (Elsevier, 2004).

  48. 48.

    Schmitt, A. K. Uranium series accessory crystal dating of magmatic processes. Annu. Rev. Earth Planet. Sci. 39, 321–349 (2011).

    Google Scholar 

  49. 49.

    Cooper, K. M. & Reid, M. R. Re-examination of crystal ages in recent Mount St. Helens lavas: implications for magma reservoir processes. Earth Planet. Sci. Lett. 213, 149–167 (2003).

    Google Scholar 

  50. 50.

    Costa, F. & Dungan, M. Short time scales of magmatic assimilation from diffusion modeling of multiple elements in olivine. Geology 33, 837–840 (2005).

    Google Scholar 

  51. 51.

    Ginibre, C., Wörner, G. & Kronz, A. Crystal zoning as an archive for magmatic evolution. Elements 3, 261–266 (2007).

    Google Scholar 

  52. 52.

    Streck, M. J. Mineral textures and zoning as evidence for open system processes. Rev. Mineral. Geochem. 69, 595–622 (2008).

    Google Scholar 

  53. 53.

    Costa, F., Dohmen, R. & Chakraborty, S. Time scales of magmatic processes from modeling the zoning patterns of crystals. Rev. Mineral. Geochem. 69, 545–594 (2008). Provides a detailed methodology to apply the diffusion-chronometry approach, including best practices, as well as finite-difference solutions to the diffusion equation and an explanation of the theoretical models of point defects in olivine.

    Google Scholar 

  54. 54.

    Till, C. B., Vazquez, J. A. & Boyce, J. W. Months between rejuvenation and volcanic eruption at Yellowstone caldera, Wyoming. Geology 43, 695–698 (2015).

    Google Scholar 

  55. 55.

    Ubide, T. et al. Deep magma storage revealed by multi-method elemental mapping of clinopyroxene megacrysts at Stromboli volcano. Front. Earth Sci. 7, 239 (2019).

    Google Scholar 

  56. 56.

    Oeser, M., Dohmen, R., Horn, I., Schuth, S. & Weyer, S. Processes and time scales of magmatic evolution as revealed by Fe–Mg chemical and isotopic zoning in natural olivines. Geochim. Cosmochim. Acta 154, 130–150 (2015).

    Google Scholar 

  57. 57.

    Cao, M. et al. Micro- and nano-scale textural and compositional zonation in plagioclase at the Black Mountain porphyry Cu deposit: implications for magmatic processes. Am. Mineral. 104, 391–402 (2019).

    Google Scholar 

  58. 58.

    Pankhurst, M. J. et al. Monitoring the magmas fuelling volcanic eruptions in near-real-time using X-ray micro-computed tomography. J. Petrol. 55, 671–684 (2014).

    Google Scholar 

  59. 59.

    Moussallam, Y. et al. Megacrystals track magma convection between reservoir and surface. Earth Planet. Sci. Lett. 413, 1–12 (2015).

    Google Scholar 

  60. 60.

    Cheng, L., Costa, F. & Carniel, R. Unraveling the presence of multiple plagioclase populations and identification of representative two-dimensional sections using a statistical and numerical approach. Am. Mineral. 102, 1894–1905 (2017).

    Google Scholar 

  61. 61.

    Zeng, L., Cheng, L., Costa, F. & Herrin, J. CEmin: a MATLAB-based software for computational phenocryst extraction and statistical petrology. Geochem. Geophys. Geosyt. 19, 1378–1392 (2018).

    Google Scholar 

  62. 62.

    Barnes, S. J. et al. Imaging trace-element zoning in pyroxenes using synchrotron XRF mapping with the Maia detector array: benefit of low-incident energy. Am. Mineral. 105, 136–140 (2020).

    Google Scholar 

  63. 63.

    Shea, T., Costa, F., Krimer, D. & Hammer, J. E. Accuracy of timescales retrieved from diffusion modeling in olivine: a 3D perspective. Am. Mineral. 100, 2026–2042 (2015).

    Google Scholar 

  64. 64.

    Dohmen, R. & Chakraborty, S. Fe–Mg diffusion in olivine II: point defect chemistry, change of diffusion mechanisms and a model for calculation of diffusion coefficients in natural olivine. Phys. Chem. Min. 34, 409–430 (2007). A comprehensive analysis of experimental data and the thermodynamics of point defects in silicates, providing. insight into the variables that play a role in diffusion in olivine.

    Google Scholar 

  65. 65.

    Dohmen, R., Kasemann, S. A., Coogan, L. & Chakraborty, S. Diffusion of Li in olivine. Part I: experimental observations and a multi species diffusion model. Geochim. Cosmochim. Acta 74, 274–292 (2010).

    Google Scholar 

  66. 66.

    Ferriss, E., Plank, T., Newcombe, M., Walker, D. & Hauri, E. Rates of dehydration of olivines from San Carlos and Kilauea Iki. Geochim. Cosmochim. Acta 242, 165–190 (2018).

    Google Scholar 

  67. 67.

    Trail, D. et al. Li zoning in zircon as a potential geospeedometer and peak temperature indicator. Contrib. Mineral. Petrol. 171, 25 (2016).

    Google Scholar 

  68. 68.

    Costa, F., Chakraborty, S. & Dohmen, R. Diffusion coupling between trace and major elements and a model for calculation of magma residence times using plagioclase. Geochim. Cosmochim. Acta 67, 2189–2200 (2003).

    Google Scholar 

  69. 69.

    Zellmer, G. F., Blake, S., Vance, D., Hawkesworth, C. & Turner, S. Plagioclase residence times at two island arc volcanoes (Kameni Islands, Santorini, and Soufriere, St. Vincent) determined by Sr diffusion systematics. Contrib. Mineral. Petrol. 136, 345–357 (1999).

    Google Scholar 

  70. 70.

    de Maisonneuve, C. B. et al. How do olivines record magmatic events? Insights from major and trace element zoning. Contrib. Mineral. Petrol. 171, 56 (2016).

    Google Scholar 

  71. 71.

    Shea, T., Lynn, K. J. & Garcia, M. O. Cracking the olivine zoning code: distinguishing between crystal growth and diffusion. Geology 43, 935–938 (2015).

    Google Scholar 

  72. 72.

    Petrone, C. M., Bugatti, G., Braschi, E. & Tommasini, S. Pre-eruptive magmatic processes re-timed using a non-isothermal approach to magma chamber dynamics. Nat. Commun. 7, 12946 (2016).

    Google Scholar 

  73. 73.

    Cooper, K. M. & Kent, A. J. R. Rapid remobilization of magmatic crystals kept in cold storage. Nature 506, 480–483 (2014). Introduced the idea of ‘cold storage’ of magma, where crystals spend most of their lifetimes close to or under the magma solidus, as a way to explain the differences between the zircon ages and the timescales obtained from geospeedometry.

    Google Scholar 

  74. 74.

    Mutch, E. J. F., Maclennan, J., Holland, T. J. B. & Buisman, I. Millennial storage of near-Moho magma. Science 365, 260–264 (2019).

    Google Scholar 

  75. 75.

    Putirka, K. D. Thermometers and barometers for volcanic systems. Rev. Mineral. Geochem. 69, 61–120 (2008).

    Google Scholar 

  76. 76.

    Kahl, M., Chakraborty, S., Costa, F. & Pompilio, M. Dynamic plumbing system beneath volcanoes revealed by kinetic modeling, and the connection to monitoring data: an example from Mt. Etna. Earth Planet. Sci. Lett. 308, 11–22 (2011). Links diffusion timescales obtained from crystals with monitoring time-series data of volcanoes to better understand the structure and time evolution of the system leading up to eruption.

    Google Scholar 

  77. 77.

    Lynn, K. J., Garcia, M. O., Shea, T., Costa, F. & Swanson, D. A. Timescales of mixing and storage for Keanakāko’i Tephra magmas (1500–1820 C.E.), Kīlauea Volcano, Hawai’i. Contrib. Mineral. Petrol. 172, 76 (2017).

    Google Scholar 

  78. 78.

    Rae, A. S. P. et al. Time scales of magma transport and mixing at Kīlauea Volcano, Hawai’i. Geology 44, 463–466 (2016).

    Google Scholar 

  79. 79.

    Ruth, D. C. S. et al. Crystal and melt inclusion timescales reveal the evolution of magma migration before eruption. Nat. Commun. 9, 2657–2657 (2018).

    Google Scholar 

  80. 80.

    Chakraborty, S. Diffusion coefficients in olivine, wadsleyite and ringwoodite. Rev. Mineral. Geochem. 72, 603–639 (2010).

    Google Scholar 

  81. 81.

    Siebert L. & Simkin T. in Global Volcanism Program Digital Information Series, GVP-3 (Smithsonian Institution, 2013)

  82. 82.

    Pankhurst, M. J., Morgan, D. J., Thordarson, T. & Loughlin, S. C. Magmatic crystal records in time, space, and process, causatively linked with volcanic unrest. Earth Planet. Sci. Lett. 493, 231–241 (2018).

    Google Scholar 

  83. 83.

    Kahl, M. et al. Compositionally zoned crystals and real-time degassing data reveal changes in magma transfer dynamics during the 2006 summit eruptive episodes of Mt. Etna. Bull. Volcanol. 75, 692 (2013).

    Google Scholar 

  84. 84.

    Rasmussen, D. J. et al. When does eruption run-up begin? Multidisciplinary insight from the 1999 eruption of Shishaldin volcano. Earth Planet. Sci. Lett. 486, 1–14 (2018).

    Google Scholar 

  85. 85.

    Albert, H., Costa, F. & Martí, J. Years to weeks of seismic unrest and magmatic intrusions precede monogenetic eruptions. Geology 44, 211–214 (2016).

    Google Scholar 

  86. 86.

    Ruprecht, P. & Plank, T. Feeding andesitic eruptions with a high-speed connection from the mantle. Nature 500, 68–72 (2013).

    Google Scholar 

  87. 87.

    Bebbington, M. S. Assessing spatio-temporal eruption forecasts in a monogenetic volcanic field. J. Volcanol. Geotherm. Res. 252, 14–28 (2013).

    Google Scholar 

  88. 88.

    Brenna, M. et al. Olivine xenocryst diffusion reveals rapid monogenetic basaltic magma ascent following complex storage at Pupuke Maar, Auckland Volcanic Field, New Zealand. Earth Planet. Sci. Lett. 499, 13–22 (2018).

    Google Scholar 

  89. 89.

    Demouchy, S., Jacobsen, S. D., Gaillard, F. & Stern, C. R. Rapid magma ascent recorded by water diffusion profiles in mantle olivine. Geology 34, 429–432 (2006).

    Google Scholar 

  90. 90.

    Barth, A. et al. Magma decompression rate correlates with explosivity at basaltic volcanoes — constraints from water diffusion in olivine. J. Volcanol. Geotherm. Res. 387, 106664 (2019).

    Google Scholar 

  91. 91.

    Ferguson, D. J. et al. Magma decompression rates during explosive eruptions of Kīlauea volcano, Hawaii, recorded by melt embayments. Bull. Volcanol. 78, 71 (2016).

    Google Scholar 

  92. 92.

    Oppenheimer, C. Eruptions That Shook the World (Cambridge Univ. Press, 2011).

  93. 93.

    Bachmann, O. & Huber, C. Silicic magma reservoirs in the Earth’s crust. Am. Mineral. 101, 2377–2404 (2016).

    Google Scholar 

  94. 94.

    Rubin, A. E. et al. Rapid cooling and cold storage in a silicic magma reservoir recorded in individual crystals. Science 356, 1154–1156 (2017). Reports timescales from diffusion chronometry and dating of zircon from the same crystal zones. The results of long storage at low temperature generated significant discussion, especially for the application of Li diffusion in zircon.

    Google Scholar 

  95. 95.

    Druitt, T. H., Costa, F., Deloule, E., Dungan, M. & Scaillet, B. Decadal to monthly timescales of magma transfer and reservoir growth at a caldera volcano. Nature 482, 77–80 (2012).

    Google Scholar 

  96. 96.

    Chamberlain, K. J., Morgan, D. J. & Wilson, C. J. N. Timescales of mixing and mobilisation in the Bishop Tuff magma body: perspectives from diffusion chronometry. Contrib. Mineral. Petrol. 168, 1034 (2014).

    Google Scholar 

  97. 97.

    Myers, M. L., Wallace, P. J., Wilson, C. J. N., Morter, B. K. & Swallow, E. J. Prolonged ascent and episodic venting of discrete magma batches at the onset of the Huckleberry Ridge supereruption, Yellowstone. Earth Planet. Sci. Lett. 451, 285–297 (2016).

    Google Scholar 

  98. 98.

    Myers, M. L., Wallace, P. J., Wilson, C. J. N., Watkins, J. M. & Liu, Y. Ascent rates of rhyolitic magma at the onset of three caldera-forming eruptions. Am. Mineral. 103, 952–965 (2018).

    Google Scholar 

  99. 99.

    Reid, M. R., Coath, C. D., Mark Harrison, T. & McKeegan, K. D. Prolonged residence times for the youngest rhyolites associated with Long Valley Caldera: 230Th—238U ion microprobe dating of young zircons. Earth Planet. Sci. Lett. 150, 27–39 (1997).

    Google Scholar 

  100. 100.

    Simon, J. I. & Reid, M. R. The pace of rhyolite differentiation and storage in an ‘archetypical’ silicic magma system, Long Valley, California. Earth Planet. Sci. Lett. 235, 123–140 (2005).

    Google Scholar 

  101. 101.

    Costa, F. in Caldera Volcanism: Analysis, Modelling and Response Vol. 10 (eds Gottsmann, J. & Martí, J.) 1–55 (Elsevier, 2008).

  102. 102.

    Turner, S. & Costa, F. Measuring timescales of magmatic evolution. Elements 3, 267–272 (2007).

    Google Scholar 

  103. 103.

    Barboni, M. et al. Warm storage for arc magmas. Proc. Natl Acad. Sci. USA 113, 13959–13964 (2016).

    Google Scholar 

  104. 104.

    Kaiser, J. F., de Silva, S., Schmitt, A. K., Economos, R. & Sunagua, M. Million-year melt–presence in monotonous intermediate magma for a volcanic–plutonic assemblage in the Central Andes: contrasting histories of crystal-rich and crystal-poor super-sized silicic magmas. Earth Planet. Sci. Lett. 457, 73–86 (2017).

    Google Scholar 

  105. 105.

    Miller, C. F. Eruptible magma. Proc. Natl Acad. Sci. USA 113, 13941–13943 (2016).

    Google Scholar 

  106. 106.

    Bindeman, I. N. & Melnik, O. E. Zircon survival, rebirth and recycling during crustal melting, magma crystallization, and mixing based on numerical modelling. J. Petrol. 57, 437–460 (2016).

    Google Scholar 

  107. 107.

    Feigl, K. L. et al. Rapid uplift in Laguna del Maule volcanic field of the Andean southern volcanic zone (Chile) 2007–2012. Geophys. J. Int. 196, 885–901 (2014).

    Google Scholar 

  108. 108.

    Sparks, R. S. J. et al. Uturuncu volcano, Bolivia: volcanic unrest due to mid-crustal magma intrusion. Am. J. Sci. 308, 727–769 (2008).

    Google Scholar 

  109. 109.

    Crank, J. The Mathematics of Diffusion 2nd edn (Oxford Univ. Press, 1975).

  110. 110.

    Girona, T. & Costa, F. DIPRA: a user-friendly program to model multi-element diffusion in olivine with applications to timescales of magmatic processes. Geochem. Geophys. Geosyst. 14, 422–431 (2013).

    Google Scholar 

  111. 111.

    Demouchy, S. & Mackwell, S. Mechanisms of hydrogen incorporation and diffusion in iron-bearing olivine. Phys. Chem. Miner. 33, 347–355 (2006).

    Google Scholar 

  112. 112.

    Jollands, M. C., Burnham, A., O’Neill, H. S. C., Hermann, J. & Qian, Q. Beryllium diffusion in olivine: a new tool to investigate timescales of magmatic processes. Earth Planet. Sci. Lett. 450, 71–82 (2016).

    Google Scholar 

  113. 113.

    Holzapfel, C., Chakraborty, S., Rubie, D. C. & Frost, D. J. Effect of pressure on Fe–Mg, Ni and Mn diffusion in (FexMg1−x)2SiO4 olivine. Phys. Earth Planet. Inter. 162, 186–198 (2007).

    Google Scholar 

  114. 114.

    Jollands, M. C. et al. Substitution and diffusion of Cr2+ and Cr3+ in synthetic forsterite and natural olivine at 1200–1500 °C and 1 bar. Geochim. Cosmochim. Acta 220, 407–428 (2018).

    Google Scholar 

  115. 115.

    Coogan, L. A., Hain, A., Stahl, S. & Chakraborty, S. Experimental determination of the diffusion coefficient for calcium in olivine between 900°C and 1500°C. Geochim. Cosmochim. Acta 69, 3683–3694 (2005).

    Google Scholar 

  116. 116.

    Watson, E. B., Cherniak, D. J. & Holycross, M. E. Diffusion of phosphorus in olivine and molten basalt. Am. Mineral. 100, 2053–2065 (2015).

    Google Scholar 

  117. 117.

    Van Orman, J. A., Cherniak, D. J. & Kita, N. T. Magnesium diffusion in plagioclase: dependence on composition, and implications for thermal resetting of the 26Al–26Mg early solar system chronometer. Earth Planet. Sci. Lett. 385, 79–88 (2014).

    Google Scholar 

  118. 118.

    Giletti, B. J. & Casserly, J. E. D. Strontium diffusion kinetics in plagioclase feldspars. Geochim. Cosmochim. Acta 58, 3785–3793 (1994).

    Google Scholar 

  119. 119.

    Cherniak, D. J. Ba diffusion in feldspar. Geochim. Cosmochim. Acta 66, 1641–1650 (2002).

    Google Scholar 

  120. 120.

    Grove, T. L., Baker, M. B. & Kinzler, R. J. Coupled CaAl-NaSi diffusion in plagioclase feldspar: experiments and applications to cooling rate speedometry. Geochim. Cosmochim. Acta 48, 2113–2121 (1984).

    Google Scholar 

  121. 121.

    Dohmen, R., Ter Heege, J. H., Becker, H. W. & Chakraborty, S. Fe-Mg interdiffusion in orthopyroxene. Am. Mineral. 101, 2210–2221 (2016).

    Google Scholar 

  122. 122.

    Ferriss, E., Plank, T. & Walker, D. Site-specific hydrogen diffusion rates during clinopyroxene dehydration. Contrib. Mineral. Petrol. 171, 55 (2016).

    Google Scholar 

  123. 123.

    Müller, T., Dohmen, R., Becker, H. W., ter Heege, J. H. & Chakraborty, S. Fe–Mg interdiffusion rates in clinopyroxene: experimental data and implications for Fe–Mg exchange geothermometers. Contrib. Mineral. Petrol. 166, 1563–1576 (2013).

    Google Scholar 

  124. 124.

    Cherniak, D. J., Watson, E. B. & Wark, D. A. Ti diffusion in quartz. Chem. Geol. 236, 65–74 (2007).

    Google Scholar 

  125. 125.

    Tailby, N. D., Cherniak, D. J. & Watson, E. B. Al diffusion in quartz. Am. Mineral. 103, 839–847 (2018).

    Google Scholar 

  126. 126.

    Hartley, M. E., Morgan, D. J., Maclennan, J., Edmonds, M. & Thordarson, T. Tracking timescales of short-term precursors to large basaltic fissure eruptions through Fe–Mg diffusion in olivine. Earth Planet. Sci. Lett. 439, 58–70 (2016).

    Google Scholar 

  127. 127.

    Singer, B. S., Costa, F., Herrin, J. S., Hildreth, W. & Fierstein, J. The timing of compositionally-zoned magma reservoirs and mafic ‘priming’ weeks before the 1912 Novarupta-Katmai rhyolite eruption. Earth Planet. Sci. Lett. 451, 125–137 (2016).

    Google Scholar 

  128. 128.

    Longpré, M.-A., Klügel, A., Diehl, A. & Stix, J. Mixing in mantle magma reservoirs prior to and during the 2011–2012 eruption at El Hierro, Canary Islands. Geology 42, 315–318 (2014).

    Google Scholar 

  129. 129.

    Kahl, M., Chakraborty, S., Pompilio, M. & Costa, F. Constraints on the nature and evolution of the magma plumbing system of Mt. Etna volcano (1991–2008) from a combined thermodynamic and kinetic modelling of the compositional record of minerals. J. Petrol. 56, 2025–2068 (2015).

    Google Scholar 

  130. 130.

    Kahl, M., Viccaro, M., Ubide, T., Morgan, D. J. & Dingwell, D. B. A branched magma feeder system during the 1669 eruption of Mt Etna: evidence from a time-integrated study of zoned olivine phenocryst populations. J. Petrol. 58, 443–472 (2017).

    Google Scholar 

  131. 131.

    Albert, H. et al. Magma interactions, crystal mush formation, timescales, and unrest during caldera collapse and lateral eruption at ocean island basaltic volcanoes (Piton de la Fournaise, La Réunion). Earth Planet. Sci. Lett. 515, 187–199 (2019).

    Google Scholar 

  132. 132.

    Gordeychik, B. et al. Growth of, and diffusion in, olivine in ultra-fast ascending basalt magmas from Shiveluch volcano. Sci. Rep. 8, 11775 (2018).

    Google Scholar 

  133. 133.

    Morgado, E. et al. Transient shallow reservoirs beneath small eruptive centres: constraints from Mg-Fe interdiffusion in olivine. J. Volcanol. Geotherm. Res. 347, 327–336 (2017).

    Google Scholar 

  134. 134.

    Moussallam, Y. et al. Fast ascent rate during the 2017–2018 Plinian eruption of Ambae (Aoba) volcano: a petrological investigation. Contrib. Mineral. Petrol. 174, 90 (2019).

    Google Scholar 

  135. 135.

    Oeser, M., Ruprecht, P. & Weyer, S. Combined Fe-Mg chemical and isotopic zoning in olivine constraining magma mixing-to-eruption timescales for the continental arc volcano Irazú (Costa Rica) and Cr diffusion in olivine. Am. Mineral. 103, 582–599 (2018).

    Google Scholar 

  136. 136.

    Costa, F., Andreastuti, S., Bouvet de Maisonneuve, C. & Pallister, J. S. Petrological insights into the storage conditions, and magmatic processes that yielded the centennial 2010 Merapi explosive eruption. J. Volcanol. Geotherm. Res. 261, 209–235 (2013).

    Google Scholar 

  137. 137.

    Pan, Y. & Batiza, R. Mid-ocean ridge magma chamber processes: constraints from olivine zonation in lavas from the East Pacific Rise at 9°30′N and 10°30′N. J. Geophys. Res. Solid Earth 107, ECV9–ECV9-13 (2002).

    Google Scholar 

  138. 138.

    Zellmer, G. F. et al. Crystal growth during dike injection of MOR basaltic melts: evidence from preservation of local Sr disequilibria in plagioclase. Contrib. Mineral. Petrol. 161, 153–173 (2011).

    Google Scholar 

  139. 139.

    Moore, A., Coogan, L. A., Costa, F. & Perfit, M. R. Primitive melt replenishment and crystal-mush disaggregation in the weeks preceding the 2005–2006 eruption 9°50′N, EPR. Earth Planet. Sci. Lett. 403, 15–26 (2014).

    Google Scholar 

  140. 140.

    Andersen, N. L. et al. Petrochronologic perspective on rhyolite volcano unrest at Laguna del Maule, Chile. Earth Planet. Sci. Lett. 493, 57–70 (2018).

    Google Scholar 

  141. 141.

    Saunders, K., Blundy, J., Dohmen, R. & Cashman, K. Linking petrology and seismology at an active volcano. Science 336, 1023–1027 (2012).

    Google Scholar 

  142. 142.

    Morgan, D. J. et al. Time scales of crystal residence and magma chamber volume from modelling of diffusion profiles in phenocrysts: Vesuvius 1944. Earth Planet. Sci. Lett. 222, 933–946 (2004).

    Google Scholar 

  143. 143.

    Morgan, D. J. et al. Magma chamber recharge at Vesuvius in the century prior to the eruption of A.D. 79. Geology 34, 845–848 (2006).

    Google Scholar 

  144. 144.

    Costa, F. & Chakraborty, S. Decadal time gaps between mafic intrusion and silicic eruption obtained from chemical zoning patterns in olivine. Earth Planet. Sci. Lett. 227, 517–530 (2004).

    Google Scholar 

  145. 145.

    Allan, Aidan. S. R. et al. A cascade of magmatic events during the assembly and eruption of a super-sized magma body. Contrib. Mineral. Petrol. 172, 49 (2017).

    Google Scholar 

  146. 146.

    Barker, S. J., Wilson, C. J. N., Morgan, D. J. & Rowland, J. V. Rapid priming, accumulation, and recharge of magma driving recent eruptions at a hyperactive caldera volcano. Geology 44, 323–326 (2016).

    Google Scholar 

  147. 147.

    Matthews, N. E., Huber, C., Pyle, D. M. & Smith, V. C. Timescales of magma recharge and reactivation of large silicic systems from Ti diffusion in quartz. J. Petrol. 53, 1385–1416 (2012).

    Google Scholar 

  148. 148.

    Fabbro, G. N., Druitt, T. H. & Costa, F. Storage and eruption of Silicic magma across the transition from dominantly effusive to caldera-forming states at an arc volcano (Santorini, Greece). J. Petrol. 58, 2429–2464 (2018).

    Google Scholar 

  149. 149.

    Flaherty, T. et al. Multiple timescale constraints for high-flux magma chamber assembly prior to the Late Bronze Age eruption of Santorini (Greece). Contrib. Mineral. Petrol. 173, 75 (2018).

    Google Scholar 

  150. 150.

    Frontiers. Crystal Archives of Magmatic Processes. frontiersin.org https://www.frontiersin.org/research-topics/10167/crystal-archives-of-magmatic-processes#overview (2020).

Download references

Acknowledgements

F.C. acknowledges a Singapore National Research Foundation Investigatorship award (grant number NRF-NRFI2017-06). T.U. acknowledges funding from The University of Queensland (UQ-FREA RM2019001828 and UQ-MRFF RM2016000555). T.S. is supported by the National Science Foundation (NSF EAR grant 1725321).

Author information

Affiliations

Authors

Contributions

F.C. wrote the manuscript, with contributions from T.S. and T.U. T.S. drafted the figures, with contributions from T.U. and F.C.

Corresponding author

Correspondence to F. Costa.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Earth & Environment thanks J. Maclennan, K. Cooper, E. Bravo and M. Newcombe for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Diffusion coefficient

The constant of proportionality between the mass flux of elements through a given surface and the gradient of concentration due to elemental diffusion.

Classical nucleation theory

Thermodynamic formalism where the free energy of formation of a mineral or bubble nucleus of critical size overcomes the energy associated with creating a new interface.

Partition coefficients

Measures of the preference of a given element to be incorporated in a mineral (compatible) or remain in the melt (incompatible).

Secular equilibrium

Condition where the quantity of a radioactive isotope remains constant.

Half-lives

The time required for half the amount of the parent radioactive isotope to decay into a daughter one; disequilibria can usually be detected for ~5 times the half-life of the daughter.

Point defects

Defects in the lattice structure of solid media that can represent missing atoms (vacancies) or extra atoms (interstitials).

Anisotropic diffusion

Diffusion coefficients in crystals may vary according to crystallographic axes, owing to the different arrangement of atoms in non-cubic minerals.

Plutonic bodies

Magmatic environments below the Earth’s surface (within the crust), where magmas cool slowly and form plutonic rocks, such as granites.

Geothermobarometry

Calculation of the pressure and temperature of crystallization using experimentally calibrated models and the composition of natural mineral–glass or mineral–mineral pairs.

Sub-Plinian

Explosive eruption with similar dynamics to Plinian events but of lower intensity and eruptive column height.

Monogenetic volcanic fields

Areas in which volcanoes are built by a single eruption. They are typically small cones of a few tens to a few hundred metres tall, basaltic in composition and formed over time frames of weeks to years.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Costa, F., Shea, T. & Ubide, T. Diffusion chronometry and the timescales of magmatic processes. Nat Rev Earth Environ 1, 201–214 (2020). https://doi.org/10.1038/s43017-020-0038-x

Download citation

Further reading

Search

Quick links