Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Probing space to understand Earth

Abstract

Progress in the geosciences has often followed the same fundamental paradigm for about two centuries: Earth’s present is the key to understanding its past and its future. This concept is at the root of most of what is known about the Earth. Similarly, knowledge of Earth’s geological and atmospheric processes can be, and has been, applied when studying the history of other planetary bodies. More recently, however, observations from other planets have fed back into our understanding of Earth. In this Perspective, we argue that many scientific mysteries about the Earth can be solved only by looking beyond it, and describe instances where other bodies, such as Mars, Venus and the Moon, have or could augment our understanding of processes on Earth. Future space missions offer the opportunity to probe the rich diversity of planetary environments and compositions, and further explore how they might serve as analogues, experiments and archives.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Venus, Earth, the Moon and Mars through time.
Fig. 2: A shifting ‘habitable zone’ with greenhouse warming and the faint young Sun.
Fig. 3: Large wind ripples on Mars: an experiment that challenges our understanding of aeolian ripple formation, and a likely analogue to terrestrial current ripples.

References

  1. 1.

    Galilei, G. in Sidereus Nuncius (Thomas Baglioni, 1610).

  2. 2.

    Sinton, W. M. Further evidence of vegetation on Mars. Science 130, 1234–1237 (1959).

    Google Scholar 

  3. 3.

    Lowell, P. in Mars (Houghton, Mifflin and Company, 1895).

  4. 4.

    Wallace, A. R. in Is Mars Habitable? (Macmillan, 1907).

  5. 5.

    Lyot, B. Recherches sur la Polarisation de la Lumière des Planètes et de quelques Substances Terrestres. Thesis, Observatoire de Paris (1929).

  6. 6.

    Pettit, E. & Nicholson, S. B. Lunar radiation and temperatures. Astrophys. J. 71, 102–135 (1930).

    Google Scholar 

  7. 7.

    Wildt, R. On the possible existence of formaldehyde in the atmosphere of Venus. Astrophys. J. 92, 247–255 (1940).

    Google Scholar 

  8. 8.

    Sagan, C. & Kellogg, W. W. The terrestrial planets. Annu. Rev. Astron. Astrophys. 1, 235–266 (1963).

    Google Scholar 

  9. 9.

    Shoemaker, E. M., Hackman, R. J. & Eggleton, R. E. Interplanetary correlation of geologic time. Adv. Astronaut. Sci. 8, 70–89 (1963).

    Google Scholar 

  10. 10.

    Sharp, R. P. & Malin, M. C. Channels on Mars. Geol. Soc. Am. Bull. 86, 593–609 (1975).

    Google Scholar 

  11. 11.

    Sharp, R. P. Geomorphological processes on terrestrial planetary surfaces. Annu. Rev. Earth Planet. Sci. 8, 231–261 (1980).

    Google Scholar 

  12. 12.

    Lovelock, J. E. A physical basis for life detection experiments. Nature 207, 568–570 (1965).

    Google Scholar 

  13. 13.

    Turco, R. P. et al. Nuclear winter: Global consequences of multiple nuclear explosions. Science 222, 1283–1292 (1983).

    Google Scholar 

  14. 14.

    Ingersoll, A. P. The runaway greenhouse: A history of water on Venus. J. Atmos. Sci. 26, 1191–1198 (1969).

    Google Scholar 

  15. 15.

    Winn, J. N. & Fabrycky, D. C. The occurrence and architecture of exoplanetary systems. Annu. Rev. Astron. Astrophys. 53, 409–447 (2015).

    Google Scholar 

  16. 16.

    Morbidelli, A. & Raymond, S. N. Challenges in planet formation. J. Geophys. Res. Planets 121, 1962–1980 (2016).

    Google Scholar 

  17. 17.

    Petigura, E. A., Howard, A. W. & Marcy, G. W. Prevalence of Earth-size planets orbiting Sun-like stars. Proc. Natl Acad. Sci. USA 110, 19273–19278 (2013).

    Google Scholar 

  18. 18.

    Jontof-Hutter, D. The compositional diversity of low-mass exoplanets. Annu. Rev. Earth Planet. Sci. 47, 141–171 (2019).

    Google Scholar 

  19. 19.

    Tarduno, J. A. et al. Geodynamo, solar wind, and magnetopause 3.4 to 3.45 billion years ago. Science 327, 1238–1240 (2010).

    Google Scholar 

  20. 20.

    Biggin, A. J. et al. Palaeomagnetic field intensity variations suggest Mesoproterozoic inner-core nucleation. Nature 526, 245–248 (2015).

    Google Scholar 

  21. 21.

    Driscoll, P. & Bercovici, D. On the thermal and magnetic histories of Earth and Venus: Influences of melting, radioactivity, and conductivity. Phys. Earth Planet. Inter. 236, 36–51 (2014).

    Google Scholar 

  22. 22.

    Labrosse, S. Thermal evolution of the core with a high thermal conductivity. Phys. Earth. Planet. Inter. 247, 36–55 (2015).

    Google Scholar 

  23. 23.

    Olson, P. The new core paradox. Science 342, 431–432 (2013).

    Google Scholar 

  24. 24.

    Davies, C., Pozzo, M., Gubbins, D. & Alfè, D. Constraints from material properties on the dynamics and evolution of Earth’s core. Nat. Geosci. 8, 678–685 (2015).

    Google Scholar 

  25. 25.

    Tang, F. et al. Secondary magnetite in ancient zircon precludes analysis of a Hadean geodynamo. Proc. Natl Acad. Sci. USA 116, 407–412 (2019).

    Google Scholar 

  26. 26.

    Tarduno, J. A. et al. Paleomagnetism indicates that primary magnetite in zircon records a strong Hadean geodynamo. Proc. Natl Acad. Sci. USA 117, 2309–2318 (2020).

    Google Scholar 

  27. 27.

    Cauley, P. W., Shkolnik, E. L., Llama, J. & Lanza, A. F. Magnetic field strengths of hot Jupiters from signals of star–planet interactions. Nat. Astron. 3, 1128–1134 (2019).

    Google Scholar 

  28. 28.

    Driscoll, P. E. in Handbook of Exoplanets (eds Deeg, H. J. & Belmonte, J. A.) 1–18 (Springer, 2018).

  29. 29.

    Jacobson, S. A., Rubie, D. C., Hernlund, J., Morbidelli, A. & Nakajima, M. Formation, stratification, and mixing of the cores of Earth and Venus. Earth Planet. Sci. Lett. 474, 375–386 (2017).

    Google Scholar 

  30. 30.

    Acuña, N. H. et al. Global distribution of crustal magnetization discovered by the Mars Global Surveyor MAG/ER experiment. Science 284, 790–793 (1999).

    Google Scholar 

  31. 31.

    Williams, J.-P. & Nimmo, F. Thermal evolution of the Martian core: Implications for an early dynamo. Geology 32, 97–100 (2004).

    Google Scholar 

  32. 32.

    Weiss, B. P. & Tikoo, S. M. The lunar dynamo. Science 346, 1246753 (2014).

    Google Scholar 

  33. 33.

    Laneuville, M. et al. A long-lived lunar dynamo powered by core crystallization. Earth Planet. Sci. Lett. 401, 251–260 (2014).

    Google Scholar 

  34. 34.

    Le Reun, T. & Le Bars, M. in Fluid Mechanics of Planets and Stars Vol. 595 (eds Le Bars, M. & Leoanet, D.) 91–127 (Springer, 2020).

  35. 35.

    Reddy, K. S., Favier, B. & Le Bars, M. Turbulent kinematic dynamos in ellipsoids driven by mechanical forcing. Geophys. Res. Lett. 45, 1741–1750 (2018).

    Google Scholar 

  36. 36.

    Andrault, D., Monteux, J., Le Bars, M. & Samuel, H. The deep Earth may not be cooling down. Earth Planet. Sci. Lett. 443, 195–203 (2016).

    Google Scholar 

  37. 37.

    Scheinberg, A. L., Soderlund, K. M. & Elkins-Tanton, L. T. A basal magma ocean dynamo to explain the early lunar magnetic field. Earth Planet. Sci. Lett. 492, 144–151 (2018).

    Google Scholar 

  38. 38.

    Scipioni, R., Stixrude, L. & Desjarlais, M. P. Electrical conductivity of SiO2 at extreme conditions and planetary dynamos. Proc. Natl Acad. Sci. USA 114, 9009–9013 (2017).

    Google Scholar 

  39. 39.

    Holmström, E., Stixrude, L., Scipioni, R. & Foster, A. S. Electronic conductivity of solid and liquid (Mg, Fe)O computed from first principles. Earth Planet. Sci. Lett. 490, 11–19 (2018).

    Google Scholar 

  40. 40.

    Labrosse, S., Hernlund, J. W. & Coltice, N. A crystallizing dense magma ocean at the base of the Earth’s mantle. Nature 450, 866–869 (2007).

    Google Scholar 

  41. 41.

    Laneuville, M., Hernlund, J., Labrosse, S. & Guttenberg, N. Crystallization of a compositionally stratified basal magma ocean. Phys. Earth. Planet. Inter. 276, 86–92 (2018).

    Google Scholar 

  42. 42.

    Evans, A. J., Tikoo, S. M. & Andrews-Hanna, J. C. The case against an early lunar dynamo powered by core convection. Geophys. Res. Lett. 45, 98–107 (2018).

    Google Scholar 

  43. 43.

    Bartetzko, A., Delius, H., & Pechnig, R. in Petrophysical Properties of Crystalline Rocks (eds Harvey, P. K., Brewer, T. S., Pezard, P. A. & Petrov, V. A.) 255–278 (Geological Society, 2005).

  44. 44.

    Ziegler, L. B. & Stegman, D. R. Implications of a long-lived basal magma ocean in generating Earth’s ancient magnetic field. Geochem. Geophys. Geosyst. 14, 4735–4742 (2013).

    Google Scholar 

  45. 45.

    O’Rourke, J. G. & Stevenson, D. J. Powering Earth’s dynamo with magnesium precipitation from the core. Nature 529, 387–389 (2016).

    Google Scholar 

  46. 46.

    Badro, J. et al. Magnesium partitioning between Earth’s mantle and core and its potential to drive an early exsolution geodynamo. Geophys. Res. Lett. 45, 13240–13248 (2018).

    Google Scholar 

  47. 47.

    Badro, J., Siebert, J. & Nimmo, F. An early geodynamo by exsolution of mantle components from Earth’s core. Nature 536, 326–328 (2016).

    Google Scholar 

  48. 48.

    Hirose, K. et al. Crystallization of silicon dioxide and compositional evolution of the Earth’s core. Nature 543, 99–102 (2017).

    Google Scholar 

  49. 49.

    Nimmo, F. Why does Venus lack a magnetic field? Geology 30, 987–990 (2002).

    Google Scholar 

  50. 50.

    O’Rourke, J. G., Gillmann, C. & Tackley, P. Prospects for an ancient dynamo and modern crustal remanent magnetism on Venus. Earth Planet. Sci. Lett. 502, 46–56 (2018).

    Google Scholar 

  51. 51.

    Elkins-Tanton, L. T. Linked magma ocean solidification and atmospheric growth for Earth and Mars. Earth Planet. Sci. Lett. 271, 181–191 (2008).

    Google Scholar 

  52. 52.

    Zahnle, K., Schaefer, L. K. & Fegley, B. Jr Earth’s earliest atmosphere. CSH Perspect. Biol. 2, a004895 (2010).

    Google Scholar 

  53. 53.

    Kruijer, T. S., Kleine, T. & Borg, L. E. The great isotopic dichotomy of the early Solar System. Nat. Astron. 4, 32–40 (2020).

    Google Scholar 

  54. 54.

    Braukmüller, N., Wombacher, F., Funk, C. & Münker, C. Earth’s volatile element depletion pattern inherited from a carbonaceous chondrite-like source. Nat. Geosci. 12, 564–568 (2019).

    Google Scholar 

  55. 55.

    Schaefer, L. & Fegley, B. Jr Chemistry of atmospheres formed during accretion of the Earth and other terrestrial planets. Icarus 208, 438–448 (2010).

    Google Scholar 

  56. 56.

    Lebrun, T. et al. Thermal evolution of an early magma ocean in interaction with the atmosphere. J. Geophys. Res. Planets 118, 1155–1176 (2013).

    Google Scholar 

  57. 57.

    Hamno, K., Yutaka, A. & Genda, H. Emergence of two types of terrestrial planet on solidification of magma ocean. Nature 497, 607–610 (2013).

    Google Scholar 

  58. 58.

    Lupu, R. E. et al. The atmospheres of earthlike planets after giant impact events. Astrophys. J. 784, 27 (2014).

    Google Scholar 

  59. 59.

    Demory, B.-O. et al. A map of the large day–night temperature gradient of a super-Earth exoplanet. Nature 532, 207–209 (2016).

    Google Scholar 

  60. 60.

    Ito, Y. et al. Theoretical emission spectra of atmospheres of hot rocky super-Earths. Astrophys. J. 801, 144 (2015).

    Google Scholar 

  61. 61.

    Fegley, B. et al. Solubility of rock in steam atmospheres of planets. Astrophys. J. 824, 103 (2016).

    Google Scholar 

  62. 62.

    Schaefer, L., Wordsworth, R. D., Berta-Thompson, Z. & Sasselov, D. Predictions of the atmospheric composition of GJ 1132b. Astrophys. J. 829, 63 (2016).

    Google Scholar 

  63. 63.

    McKay, C. P., Pollack, J. B. & Courtin, R. The greenhouse and antigreenhouse effects on Titan. Science 253, 1118–1121 (1991).

    Google Scholar 

  64. 64.

    Wordsworth, R. D. & Pierrehumbert, R. Hydrogen-nitrogen greenhouse warming in Earth’s early atmosphere. Science 339, 64–67 (2013).

    Google Scholar 

  65. 65.

    Domagal-Goldman, S. D., Kasting, J. F., Johnston, D. T. & Farquhar, J. Organic haze, glaciations and multiple sulfur isotopes in the Mid-Archean Era. Earth Planet. Sci. Lett. 269, 29–40 (2008).

    Google Scholar 

  66. 66.

    Wolf, E. T. & Toon, O. B. Fractal organic hazes provided an ultraviolet shield for early Earth. Science 328, 1266–1268 (2010).

    Google Scholar 

  67. 67.

    Goldblatt, C. et al. Nitrogen-enhanced greenhouse warming on early Earth. Nat. Geosci. 2, 891–896 (2009).

    Google Scholar 

  68. 68.

    Som, S. M., Catling, D. C., Harnmeijer, J. P., Polivka, P. M. & Buick, R. Air density 2.7 billion years ago limited to less than twice modern levels by fossil raindrop imprints. Nature 484, 359–362 (2012).

    Google Scholar 

  69. 69.

    Wordsworth, R. D. & Pierrehumbert, R. Abiotic oxygen-dominated atmospheres on terrestrial habitable zone planets. Astrophys. J. Lett. 785, L20 (2014).

    Google Scholar 

  70. 70.

    Kleinhböhl, A., Willacy, K., Friedson, A. J., Chen, P. & Swain, M. R. Buildup of abiotic oxygen and ozone in moist atmospheres of temperate terrestrial exoplanets and its impact on the spectral fingerprint in transit observations. Astrophys. J. 862, 92 (2018).

    Google Scholar 

  71. 71.

    Meadows, V. S. et al. Exoplanet biosignatures: Understanding oxygen as a biosignature in the context of its environment. Astrobiology 18, 630–662 (2018).

    Google Scholar 

  72. 72.

    Som, S. M. et al. Earth’s air pressure 2.7 billion years ago constrained to less than half of modern levels. Nat. Geosci. 9, 448–451 (2016).

    Google Scholar 

  73. 73.

    Tomkins, A. G. et al. Ancient micrometeorites suggestive of an oxygen-rich Archaean upper atmosphere. Nature 533, 235–238 (2016).

    Google Scholar 

  74. 74.

    Zahnle, K. & Buick, R. Atmospheric science: Ancient air caught by shooting stars. Nature 533, 184–186 (2016).

    Google Scholar 

  75. 75.

    Rimmer, P. B., Shorttle, O. & Rugheimer, S. Oxidised micrometeorites as evidence for low atmospheric pressure on the early Earth. Geochem. Perspect. Lett. 9, 38–42 (2019).

    Google Scholar 

  76. 76.

    Johnson, B. & Goldblatt, C. The nitrogen budget of Earth. Earth-Sci. Rev. 148, 150–173 (2015).

    Google Scholar 

  77. 77.

    Wordsworth, R. D. Atmospheric nitrogen evolution on Earth and Venus. Earth Planet. Sci. Lett. 447, 103–111 (2016).

    Google Scholar 

  78. 78.

    Clapham, M. E. & Renne, P. R. Flood basalts and mass extinctions. Annu. Rev. Earth Planet. Sci. 47, 275–303 (2019).

    Google Scholar 

  79. 79.

    Palmer, K. F. & Williams, D. Optical constants of sulfuric acid; application to the clouds of Venus? Appl. Opt. 14, 208–219 (1975).

    Google Scholar 

  80. 80.

    Rossow, W. B. Cloud microphysics: analysis of the clouds of Earth, Venus, Mars and Jupiter. Icarus 36, 1–50 (1978).

    Google Scholar 

  81. 81.

    Bullock, M. A. & Grinspoon, D. H. The recent evolution of climate on Venus. Icarus 150, 19–37 (2001).

    Google Scholar 

  82. 82.

    Halevy, I. & Head, J. W. III Episodic warming on early Mars by punctuated volcanism. Nat. Geosci. 7, 865–868 (2014).

    Google Scholar 

  83. 83.

    Pope, K. O., Baines, K. H., Ocampo, A. C. & Ivanov, B. A. Impact winter and the Cretaceous/Tertiary extinctions: results of a Chicxulub asteroid impact model. Earth Planet. Sci. Lett. 128, 719–725 (1994).

    Google Scholar 

  84. 84.

    Pope, K. O., Baines, K. H., Ocampo, A. C. & Ivanov, B. A. Energy, volatile production, and climatic effects of the Chicxulub Cretaceous/Tertiary impact. J. Geophys. Res. Planets 102, 21645–21664 (1997).

    Google Scholar 

  85. 85.

    Timmreck, C. et al. Aerosol size confines climate response to volcanic super-eruptions. Geophys. Res. Lett. 37, L24705 (2010).

    Google Scholar 

  86. 86.

    Macdonald, F. A. & Wordsworth, R. Initiation of Snowball Earth with volcanic sulfur aerosol emissions. Geophys. Res. Lett. 44, 1938–1946 (2017).

    Google Scholar 

  87. 87.

    Keith, D. W. & MacMartin, D. G. A temporary, moderate and responsive scenario for solar geoengineering. Nat. Clim. Change 5, 201–206 (2015).

    Google Scholar 

  88. 88.

    Ribas, I., Guinan, E. F., Güdel, M. & Audard, M. Evolution of the solar activity over time and effects on planetary atmospheres. I. High-energy irradiances (1-1700 Å). Astrophys. J. 622, 680 (2005).

    Google Scholar 

  89. 89.

    Claire, M. W. et al. The evolution of solar flux from 0.1 nm to 160 µm: Quantitative estimates for planetary studies. Astrophys. J. 757, 95 (2012).

    Google Scholar 

  90. 90.

    Zahnle, K. J. & Walker, J. C. G. The evolution of solar ultraviolet luminosity. Rev. Geophys. 20, 280–292 (1982).

    Google Scholar 

  91. 91.

    Tu, L., Johnstone, C. P., Güdel, M. & Lammer, H. The extreme ultraviolet and X-ray Sun in Time: high-energy evolutionary tracks of a solar-like star. Astron. Astrophys. 577, L3 (2015).

    Google Scholar 

  92. 92.

    van Hunen, J. & Moyen, J.-F. Archean subduction: fact or fiction? Annu. Rev. Earth Planet. Sci. 40, 195–219 (2012).

    Google Scholar 

  93. 93.

    Korenaga, J. Initiation and evolution of plate tectonics on Earth: theories and observations. Annu. Rev. Earth Planet. Sci. 41, 117–151 (2013).

    Google Scholar 

  94. 94.

    McKinnon, W. B., Zhanle, K. J., Ivanov, B. D. & Melosh, J. H. in Venus II (eds Bougher, S. W., Hunten, D. M. & Philips, R. J.) (Univ. Arizona Press, 1997).

  95. 95.

    Hansen, V. L. Global tectonic evolution of Venus, from exogenic to endogenic over time, and implications for early Earth processes. Phil. Trans. R. Soc. A 376, 20170412 (2018).

    Google Scholar 

  96. 96.

    Davaille, A., Smrekar, S. E. & Tomlinson, S. Experimental and observational evidence for plume-induced subduction on Venus. Nat. Geosci. 10, 349–355 (2017).

    Google Scholar 

  97. 97.

    Gilmore, M., Treiman, A., Helbert, J. & Smrekar, S. E. Venus surface composition constrained by observation and experiment. Space Sci. Rev. 212, 1511–1540 (2017).

    Google Scholar 

  98. 98.

    Campbell, I. H. & Taylor, S. R. No water, no granites–no oceans, no continents. Geophys. Res. Lett. 10, 1061–1064 (1983).

    Google Scholar 

  99. 99.

    Hartmann, W. K. & Neukum, G. Cratering chronology and the evolution of Mars. Space Sci. Rev. 96, 165–194 (2001).

    Google Scholar 

  100. 100.

    Ehlmann, B. L. et al. The sustainability of habitability on terrestrial planets: Insights, questions, and needed measurements from Mars for understanding the evolution of Earth-like worlds. J. Geophys. Res. Planets 121, 1927–1961 (2016).

    Google Scholar 

  101. 101.

    Banham, S. G. et al. Ancient Martian aeolian processes and palaeomorphology reconstructed from the Stimson formation on the lower slope of Aeolis Mons, Gale crater, Mars. Sedimentology 65, 993–1042 (2018).

    Google Scholar 

  102. 102.

    Williams, R. M. E. et al. Martian fluvial conglomerates at Gale crater. Science 340, 1068–1072 (2013).

    Google Scholar 

  103. 103.

    Grotzinger, J. P. et al. A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale crater, Mars. Science 343, 1242777 (2014).

    Google Scholar 

  104. 104.

    Stack, K. M. et al. Evidence for plunging river plume deposits in the Pahrump Hills member of the Murray formation, Gale crater, Mars. Sedimentology 66, 1768–1802 (2019).

    Google Scholar 

  105. 105.

    Ohtomo, Y., Kakegawa, T., Ishida, A., Nagase, T. & Rosing, M. T. Evidence for biogenic graphite in early Archaean Isua metasedimentary rocks. Nat. Geosci. 7, 25–28 (2014).

    Google Scholar 

  106. 106.

    Tashiro, T. et al. Early trace of life from 3.95 Ga sedimentary rocks in Labrador, Canada. Nature 549, 516–518 (2017).

    Google Scholar 

  107. 107.

    Dietrich, W. E. & Perron, J. T. The search for a topographic signature of life. Nature 439, 411–418 (2006).

    Google Scholar 

  108. 108.

    Gurnell, A. Plants as river system engineers. Earth Surf. Process Landf. 39, 4–25 (2014).

    Google Scholar 

  109. 109.

    Glibling, M. R. et al. Palaeozoic co-evolution of rivers and vegetation: a synthesis of current knowledge. Proc. Geol. Assoc. 125, 524–533 (2014).

    Google Scholar 

  110. 110.

    McMahon, W. J. & Davies, N. S. Evolution of alluvial mudrock forced by early land plants. Science 359, 994–995 (2018).

    Google Scholar 

  111. 111.

    Burr, D. M., Williams, R. M. E., Wendell, K. D., Chojnacki, M. & Emery, J. P. Inverted fluvial features in the Aeolis/Zephyria Plana region, Mars: formation mechanism and initial paleodischarge estimates. J. Geophys. Res. Planets 115, E07011 (2010).

    Google Scholar 

  112. 112.

    Williams, R. M., Irwin, R. P. III, Burr, D. M., Harrison, T. & McClelland, P. Variability in Martian sinuous ridge form: case study of Aeolis Serpens in the Aeolis Dorsa, Mars, and insight from the Mirackina paleoriver, South Australia. Icarus 225, 308–324 (2013).

    Google Scholar 

  113. 113.

    Lapôtre, M. G. A., Ielpi, A., Lamb, M. P., Williams, R. M. E. & Knoll, A. H. Model for the formation of single-thread rivers in barren landscapes and implications for pre-Silurian and Martian fluvial deposits. J. Geophys. Res. Earth Surf. 124, 2757–2777 (2019).

    Google Scholar 

  114. 114.

    Ielpi, A. & Lapôtre, M. G. A. A tenfold slowdown in river meander migration driven by plant life. Nat. Geosci. 13, 82–86 (2020).

    Google Scholar 

  115. 115.

    Torres, M. A. et al. Model predictions of long-lived storage of organic carbon in river deposits. Earth Surf. Dyn. 5, 711–730 (2017).

    Google Scholar 

  116. 116.

    Hazen, R. M. et al. Mineral evolution. Am. Mineral. 93, 1693–1720 (2008).

    Google Scholar 

  117. 117.

    Adcock, C. T., Hausrath, E. M. & Forster, P. M. Readily available phosphate from minerals in early aqueous environments on Mars. Nat. Geosci. 6, 824–827 (2013).

    Google Scholar 

  118. 118.

    Sasselov, D. D., Grotzinger, J. P. & Sutherland, J. D. The origin of life as a planetary phenomenon. Sci. Adv. 6, eaax3419 (2020).

    Google Scholar 

  119. 119.

    Schaefer, L. & Sasselov, D. The persistence of oceans on Earth-like planets: Insights from the deep-water cycle. Astrophys. J. 801, 40 (2015).

    Google Scholar 

  120. 120.

    Walker, J. C. G., Hays, P. B. & Kasting, J. F. A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature. J. Geophys. Res. Oceans 86, 9776–9782 (1981).

    Google Scholar 

  121. 121.

    Checlair, J. H. et al. A statistical comparative planetology approach to maximize the scientific return of future exoplanet characterization efforts. arXiv https://arxiv.org/abs/1903.05211 (2019).

  122. 122.

    Greenwood, J. P., Karato, S.-I., Vander Kaaden, K. E., Pahlevan, K. & Usui, T. Water and volatile inventories of Mercury, Venus, the Moon, and Mars. Space Sci. Rev. 214, 92 (2018).

    Google Scholar 

  123. 123.

    Hirth, G. & Kohlstedt, D. L. Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet. Sci. Lett. 144, 93–108 (1996).

    Google Scholar 

  124. 124.

    Korenaga, J., Planavsky, N. J. & Evans, D. A. Global water cycle and the coevolution of the Earth’s interior and surface environment. Philos. Trans. R. Soc. A 375, 20150393 (2017).

    Google Scholar 

  125. 125.

    Fei, H., Wiedenbeck, M., Yamakazi, D. & Katsura, T. Small effect of water on upper-mantle rheology based on silicon self-diffusion coefficients. Nature 498, 213–215 (2013).

    Google Scholar 

  126. 126.

    Mackwell, S. J., Zimmerman, M. E. & Kohlstedt, D. L. High-temperature deformation of dry diabase with application to tectonics on Venus. J. Geophys. Res. Solid Earth 103, 975–984 (1998).

    Google Scholar 

  127. 127.

    Montési, L. G. J. Fabric development as the key for forming ductile shear zones and enabling plate tectonics. J. Struct. Geol. 50, 254–266 (2013).

    Google Scholar 

  128. 128.

    Tikoo, S. M. & Elkins-Tanton, L. T. The fate of water within Earth and super-Earths and implications for plate tectonics. Philos. Trans. R. Soc. A 375, 20150394 (2017).

    Google Scholar 

  129. 129.

    Kasting, J. F. & Pollack, J. B. Loss of water from Venus. I. Hydrodynamic escape of hydrogen. Icarus 53, 479–508 (1983).

    Google Scholar 

  130. 130.

    Kurosawa, K. Impact-driven planetary desiccation: The origin of the dry Venus. Earth Planet. Sci. Lett. 429, 181–190 (2015).

    Google Scholar 

  131. 131.

    Foley, B. J., Bercovici, D. & Landuyt, W. The conditions for plate tectonics on super-Earths: Inferences from convection models with damage. Earth Planet. Sci. Lett. 331–332, 281–290 (2012).

    Google Scholar 

  132. 132.

    Robinson, T. D. et al. Detection of ocean glint and ozone absorption using LCROSS Earth observations. Astrophys. J. 787, 171 (2014).

    Google Scholar 

  133. 133.

    de Wit, J. et al. A combined transmission spectrum of the Earth-sized exoplanets TRAPPIST-1b and c. Nature 537, 69–72 (2016).

    Google Scholar 

  134. 134.

    Bourrier, V. et al. Temporal evolution of the high-energy irradiation and water content of TRAPPIST-1 exoplanets. Astron. J. 154, 121 (2017).

    Google Scholar 

  135. 135.

    Kane, S. R. et al. Venus as a laboratory for exoplanetary science. J. Geophys. Res. Planets 124, 2015–2028 (2019).

    Google Scholar 

  136. 136.

    Bean, J. L., Abbot, D. S. & Kempton, E. M. R. A statistical comparative planetology approach to the hunt for habitable exoplanets and life beyond the solar system. Astrophys. J. Lett. 841, L24 (2017).

    Google Scholar 

  137. 137.

    Lamb, M. P., Grotzinger, J. P., Southard, J. B. & Tosca, N. J. in Sedimentary Geology of Mars Vol. 102 (eds Grotzinger, J. P. & Milliken, R. E.) 139–150 (Society for Sedimentary Geology, 2012).

  138. 138.

    Lapôtre, M. G. A. et al. Large wind ripples on Mars: a record of atmospheric evolution. Science 353, 55–58 (2016).

    Google Scholar 

  139. 139.

    Burr, D. M. et al. Fluvial features on Titan: insights from morphology and modeling. Bull. Geol. Soc. Am. 125, 299–321 (2013).

    Google Scholar 

  140. 140.

    Telfer, M. W. et al. Dunes on Pluto. Science 360, 992–997 (2018).

    Google Scholar 

  141. 141.

    Jia, P., Andreotti, B. & Claudin, P. Giant ripples on comet 67P/Churyumov–Gerasimenko sculpted by sunset thermal wind. Proc. Natl Acad. Sci. USA 114, 2509–2514 (2017).

    Google Scholar 

  142. 142.

    Grotzinger, J. P. et al. in Comparative Climatology of Terrestrial Planets (eds. Mackwell, S. J., Bullock, M. A. & Harder, J. W.) 99–123 (Univ. Arizona Press, 2013).

  143. 143.

    Thomas, N. et al. The morphological diversity of comet 67P/Churyumov-Gerasimenko. Science 347, aaa0440 (2015).

    Google Scholar 

  144. 144.

    Ewing, R. C. et al. Sedimentary processes of the Bagnold Dunes: implications for the eolian rock record of Mars. J. Geophys. Res. Planets 122, 2544–2573 (2017).

    Google Scholar 

  145. 145.

    Lapôtre, M. G. A. et al. Morphologic diversity of Martian ripples: Implications for large-ripple formation. Geophys. Res. Lett. 45, 10229–10239 (2018).

    Google Scholar 

  146. 146.

    Siminovich, A. et al. Numerical study of shear stress distribution over sand ripples under terrestrial and Martian conditions. J. Geophys. Res. Planets 124, 175–185 (2019).

    Google Scholar 

  147. 147.

    Duran Vinent, O., Andreotti, B., Claudin, P. & Winter, C. A unified model of ripples and dunes in water and planetary environments. Nat. Geosci. 12, 345–350 (2019).

    Google Scholar 

  148. 148.

    Lapôtre, M. G. A., Lamb, M. P. & McElroy, B. What sets the size of current ripples? Geology 45, 243–246 (2017).

    Google Scholar 

  149. 149.

    Kok, J. F. Difference in the wind speeds required for initiation versus continuation of sand transport on Mars: Implications for dunes and dust storms. Phys. Rev. Lett. 104, 074502 (2010).

    Google Scholar 

  150. 150.

    Sullivan, R. et al. Results of the Imager for Mars Pathfinder windsock experiment. J. Geophys. Res. Planets 105, 24547–24562 (2000).

    Google Scholar 

  151. 151.

    Bridges, N. T. et al. Martian aeolian activity at the Bagnold Dunes, Gale Crater: The view from the surface and orbit. J. Geophys. Res. Planets 122, 2077–2110 (2017).

    Google Scholar 

  152. 152.

    Newman, C. E. et al. Winds measured by the Rover Environmental Monitoring Station (REMS) during the Mars Science Laboratory (MSL) rover’s Bagnold Dunes Campaign and comparison with numerical modeling using MarsWRF. Icarus 291, 203–231 (2017).

    Google Scholar 

  153. 153.

    Bridges, N. T. et al. Planet-wide sand motion on Mars. Geology 40, 31–34 (2012).

    Google Scholar 

  154. 154.

    Bridges, N. T. et al. Earth-like sand fluxes on Mars. Nature 485, 339–342 (2012).

    Google Scholar 

  155. 155.

    Sullivan, R. et al. Wind-driven particle mobility on Mars: Insights from Mars Exploration Rover observations at “El Dorado” and surroundings at Gusev Crater. J. Geophys. Res. Planets 113, E06S07 (2008).

    Google Scholar 

  156. 156.

    Baker, M. M. et al. Coarse sediment transport in the modern Martian environment. J. Geophys. Res. Planets 123, 1380–1394 (2018).

    Google Scholar 

  157. 157.

    Baker, M. M. et al. The Bagnold Dunes in southern summer: active sediment transport on Mars observed by the Curiosity rover. Geophys. Res. Lett. 45, 8853–8863 (2018).

    Google Scholar 

  158. 158.

    Kok, J. F. An improved parameterization of wind-blown sand flux on Mars that includes the effect of hysteresis. Geophys. Res. Lett. 37, L12202 (2010).

    Google Scholar 

  159. 159.

    Yizhaq, H., Kok, J. F. & Katra, I. Basaltic sand ripples at Eagle crater as indirect evidence for the hysteresis effect in Martian saltation. Icarus 230, 143–150 (2014).

    Google Scholar 

  160. 160.

    Sullivan, R. & Kok, J. F. Aeolian saltation on Mars at low wind speeds. J. Geophys. Res. Planets 122, 2111–2143 (2017).

    Google Scholar 

  161. 161.

    Fedo, C. M., McGlynn, I. O. & McSween, H. Y. Jr. Grain size and hydrodynamic sorting controls on the composition of basaltic sediments: Implications for interpreting Martian soils. Earth Planet. Sci. Lett. 423, 67–77 (2015).

    Google Scholar 

  162. 162.

    Siebach, K. L. et al. Sorting out compositional trends in sedimentary rocks of the Bradbury group (Aeolis Palus), Gale crater, Mars. J. Geophys. Res. Planets 122, 295–328 (2017).

    Google Scholar 

  163. 163.

    Lapôtre, M. G. A. et al. Compositional variations in sands of the Bagnold Dunes, Gale Crater, Mars, from visible-shortwave infrared spectroscopy and comparison with ground truth from the Curiosity rover. J. Geophys. Res. Planets 122, 2489–2509 (2017).

    Google Scholar 

  164. 164.

    Ehlmann, B. L. et al. Chemistry, mineralogy, and grain properties at Namib and High dunes, Bagnold dune field, Gale crater, Mars: A synthesis of Curiosity rover observations. J. Geophys. Res. Planets 122, 2510–2543 (2017).

    Google Scholar 

  165. 165.

    Rampe, E. B. et al. Sand mineralogy within the Bagnold Dunes, Gale crater, as observed in situ and from orbit. Geophys. Res. Lett. 45, 9488–9497 (2018).

    Google Scholar 

  166. 166.

    Huang, J. et al. An ALMA survey of DCN/H13CN and DCO+/H13CO+ in protoplanetary disks. Astrophys. J. 835, 231 (2017).

    Google Scholar 

  167. 167.

    Walsh, K. J., Morbidelli, A., Raymond, S. N., O’Brien, D. P. & Mandell, A. M. A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475, 206–209 (2011).

    Google Scholar 

  168. 168.

    Spalding, C. The primordial solar wind as a sculptor of terrestrial planet formation. Astrophys. J. Lett. 869, L17 (2018).

    Google Scholar 

  169. 169.

    Dong, C. et al. Atmospheric escape from the TRAPPIST-1 planets and implications for habitability. Proc. Natl Acad. Sci. USA 115, 260–265 (2018).

    Google Scholar 

  170. 170.

    Daly, R. A. Meteorites and an earth-model. Bull. Geol. Soc. Am. 54, 401–456 (1943).

    Google Scholar 

  171. 171.

    Patterson, C., Tilton, G. & Inghram, M. Age of the Earth. Science 121, 65–75 (1955).

    Google Scholar 

  172. 172.

    Suess, H. E. & Urey, H. C. Abundances of the elements. Rev. Mod. Phys. 28, 53–74 (1956).

    Google Scholar 

  173. 173.

    Wood, J. A. On the origin of chondrules and chondrites. Icarus 2, 152–180 (1963).

    Google Scholar 

  174. 174.

    Clayton, R. N., Onuma, N. & Mayeda, T. K. A classification of meteorites based on oxygen isotopes. Earth Planet. Sci. Lett. 30, 10–18 (1976).

    Google Scholar 

  175. 175.

    Hart, S. R. & Zindler, A. In search of a bulk-Earth composition. Chem. Geol. 57, 247–267 (1986).

    Google Scholar 

  176. 176.

    Allègre, C. J., Manhès, G. & Göpel, C. The age of the Earth. Geochim. Cosmochim. Acta 59, 1445–1456 (1995).

    Google Scholar 

  177. 177.

    Amelin, Y., Krot, A. N., Hutcheon, I. D. & Ulyanov, A. A. Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions. Science 297, 1678–1683 (2002).

    Google Scholar 

  178. 178.

    Dauphas, N. The isotopic nature of the Earth’s accreting material through time. Nature 541, 521–524 (2017).

    Google Scholar 

  179. 179.

    Gänsicke, B. T. et al. The chemical diversity of exo-terrestrial planetary debris around white dwarfs. Mon. Not. R. Astron. Soc. 424, 333–347 (2012).

    Google Scholar 

  180. 180.

    Fitzsimmons, A. et al. Detection of CN gas in interstellar object 2I/Borisov. Astrophys. J. Lett. 885, L9 (2019).

    Google Scholar 

  181. 181.

    Doyle, A. E., Young, E. D., Klein, B., Zuckerman, B. & Schlichting, H. E. Oxygen fugacities of extrasolar rocks: evidence for an Earth-like geochemistry of exoplanets. Science 366, 356–359 (2019).

    Google Scholar 

  182. 182.

    Bergin, E. A., Blake, G. A., Ciesla, F., Hirschmann, M. M. & Li, J. Tracing the ingredients for a habitable Earth from interstellar space through planet formation. Proc. Natl Acad. Sci. USA 112, 8965–8970 (2015).

    Google Scholar 

  183. 183.

    Seligman, D. & Laughlin, G. The feasibility and benefits of in situ exploration of ‘Oumuamua-like objects. Astron. J. 155, 217 (2018).

    Google Scholar 

  184. 184.

    Jacobsen, S. B. The Hf-W isotopic system and the origin of the Earth and Moon. Annu. Rev. Earth Planet. Sci. 33, 531–570 (2005).

    Google Scholar 

  185. 185.

    Nemchin, A. et al. Timing of crystallization of the lunar magma ocean constrained by the oldest zircon. Nat. Geosci. 2, 133–136 (2009).

    Google Scholar 

  186. 186.

    Barboni, M. et al. Early formation of the Moon 4.51 billion years ago. Sci. Adv. 3, e1602365 (2017).

    Google Scholar 

  187. 187.

    Elkins-Tanton, L. T., Burgess, S. & Yin, Q.-Z. The lunar magma ocean: Reconciling the solidification process with lunar petrology and geochronology. Earth Planet. Sci. Lett. 304, 326–336 (2011).

    Google Scholar 

  188. 188.

    Bottke, W. F. & Norman, M. D. The late heavy bombardment. Annu. Rev. Earth Planet. Sci. 45, 619–647 (2017).

    Google Scholar 

  189. 189.

    Marchi, S. et al. Widespread mixing and burial of Earth’s Hadean crust by asteroid impact. Nature 511, 578–582 (2014).

    Google Scholar 

  190. 190.

    Wetherill, G. W. Late heavy bombardment of the Moon and the terrestrial planets. Proc. 6th Lunar Science Conf. Vol. 2, 1539–1561 (1975).

    Google Scholar 

  191. 191.

    Boehnke, P. & Harrison, T. M. Illusory late heavy bombardment. Proc. Natl Acad. Sci. USA 113, 10802–10806 (2016).

    Google Scholar 

  192. 192.

    Bellucci, J. J. et al. Terrestrial-like zircon in a clast from an Apollo 14 breccia. Earth Planet. Sci. Lett. 510, 173–185 (2019).

    Google Scholar 

  193. 193.

    Hoyle, F. Remarks on the computation of evolutionary tracks. Ric. Astron. 5, 223–230 (1958).

    Google Scholar 

  194. 194.

    Sagan, C. & Mullen, G. Earth and Mars: Evolution of atmospheres and surface temperatures. Science 177, 52–56 (1972).

    Google Scholar 

  195. 195.

    Sagan, C. & Chyba, C. The early faint sun paradox: organic shielding of ultraviolet-labile greenhouse gases. Science 276, 1217–1221 (1997).

    Google Scholar 

  196. 196.

    Haqq-Misra, J. D., Domagal-Goldman, S. D., Kasting, P. J. & Kasting, J. F. A revised, hazy methane greenhouse for the Archean Earth. Astrobiology 8, 1127–1137 (2008).

    Google Scholar 

  197. 197.

    Feulner, G. The faint young Sun problem. Rev. Geophys. 50, RG2006 (2012).

    Google Scholar 

  198. 198.

    Spalding, C. & Fischer, W. W. A shorter Archean day-length biases interpretations of the early Earth’s climate. Earth Planet. Sci. Lett. 514, 28–36 (2019).

    Google Scholar 

  199. 199.

    Bowen, G. H. & Willson, L. A. Large early solar mass loss – 1. Solar system evolution. Meteoritics 21, 338–339 (1986).

    Google Scholar 

  200. 200.

    Wood, B. E., Müller, H. R., Redfield, S. & Edelman, E. Evidence for a weak wind from the young Sun. Astrophys. J. Lett. 781, L33 (2014).

    Google Scholar 

  201. 201.

    Guzik, J. A. & Mussack, K. Exploring mass loss, low-Z accretion, and convective overshoot in solar models to mitigate the solar abundance problem. Astrophys. J. 713, 1108 (2010).

    Google Scholar 

  202. 202.

    Wood, S. R., Mussack, K. & Guzik, J. A. Solar models with dynamic screening and early mass loss tested by helioseismic, astrophysical, and planetary constraints. Sol. Phys. 293, 111 (2018).

    Google Scholar 

  203. 203.

    Oran, R., Weiss, B. P. & Cohen, O. Were chondrites magnetized by the early solar wind? Earth Planet. Sci. Lett. 492, 222–231 (2018).

    Google Scholar 

  204. 204.

    Fu, R. R. et al. Solar nebula magnetic fields recorded in the Semarkona meteorite. Science 346, 1089–1092 (2014).

    Google Scholar 

  205. 205.

    Minton, D. A. & Malhotra, R. Assessing the massive young Sun hypothesis to solve the warm young Earth puzzle. Astrophys. J. 660, 1700–1706 (2007).

    Google Scholar 

  206. 206.

    Spalding, C., Fischer, W. W. & Laughlin, G. An orbital window into the ancient Sun’s mass. Astrophys. J. Lett. 869, L19 (2018).

    Google Scholar 

  207. 207.

    Lewis, K. W. et al. Quasi-periodic bedding in the sedimentary record of Mars. Science 322, 1532–1535 (2008).

    Google Scholar 

  208. 208.

    Stack, K. M., Grotzinger, J. P. & Milliken, R. E. Bed thickness distributions on Mars: An orbital perspective. J. Geophys. Res. Planets 118, 1323–1349 (2013).

    Google Scholar 

  209. 209.

    Beaty, D. W. et al. The potential science and engineering value of samples delivered to Earth by Mars sample return. Meteorit. Planet. Sci. 54, S3–S152 (2019).

    Google Scholar 

  210. 210.

    Canup, R. M. Simulations of a late lunar-forming impact. Icarus 168, 433–456 (2004).

    Google Scholar 

  211. 211.

    Lock, S. J. et al. The origin of the moon within a terrestrial synestia. J. Geophys. Res. Planets 123, 910–951 (2018).

    Google Scholar 

  212. 212.

    Gardner, J. P. et al. The James Webb space telescope. Space Sci. Rev. 123, 485–606 (2006).

    Google Scholar 

  213. 213.

    McComas, D. J. et al. Probing the energetic particle environment near the Sun. Nature 576, 223–227 (2019).

    Google Scholar 

  214. 214.

    Cournede, C. et al. An early solar system magnetic field recorded in CM chondrites. Earth Planet. Sci. Lett. 410, 62–74 (2015).

    Google Scholar 

  215. 215.

    Hoffman, J. H., Hodges, R. R., Donahue, T. M. & McElroy, M. B. Composition of the Venus lower atmosphere from the Pioneer Venus Mass Spectrometer. J. Geophys. Res. Space 85, 7882–7890 (1980).

    Google Scholar 

  216. 216.

    Chassefière, E., Wieler, R., Marty, B. & Leblanc, F. The evolution of Venus: present state of knowledge and future exploration. Planet. Space Sci. 63–64, 15–23 (2012).

    Google Scholar 

  217. 217.

    Zeng, L. et al. Growth model interpretation of planet size distribution. Proc. Natl Acad. Sci. USA 116, 9723–9728 (2019).

    Google Scholar 

  218. 218.

    Tasker, E. et al. The language of exoplanet ranking metrics needs to change. Nat. Astron. 1, 0042 (2017).

    Google Scholar 

  219. 219.

    Rogers, L. A. Most 1.6 Earth-radius planets are not rocky. Astrophys. J. 801, 41 (2015).

    Google Scholar 

  220. 220.

    Filiberto, J., Trang, D., Treiman, A. H. & Gilmore, M. S. Present-day volcanism on Venus as evidenced from weathering rates of olivine. Sci. Adv. 6, eaax7445 (2020).

    Google Scholar 

  221. 221.

    Strom, R., Schaber, G. & Dawson, D. The global resurfacing of Venus. J. Geophys. Res. Planets 99, 10899–10926 (1994).

    Google Scholar 

  222. 222.

    Herrick, R. R. & Rumpf, M. E. Postimpact modification by volcanic or tectonic processes as the rule, not the exception, for Venusian craters. J. Geophys. Res. Planets 116, E02004 (2011).

    Google Scholar 

  223. 223.

    Smrekar, S. E. et al. Recent hotspot volcanism on Venus from VIRTIS emissivity data. Science 328, 605–608 (2010).

    Google Scholar 

  224. 224.

    Esposito, L. W. et al. Sulfur dioxide at the Venus cloud tops, 1978–1986. J. Geophys. Res. Atmos. 93, 5267–5276 (1988).

    Google Scholar 

  225. 225.

    Donahue, T. M., Hoffman, J. H., Hodges, R. R. & Watson, A. J. Venus was wet: A measurement of the ratio of deuterium to hydrogen. Science 216, 630–633 (1982).

    Google Scholar 

  226. 226.

    Greeley, R. et al. Aeolian features on Venus: preliminary Magellan results. J. Geophys. Res. Planets 97, 13319–13345 (1992).

    Google Scholar 

  227. 227.

    Radebaugh, J. et al. Dunes on Titan observed by Cassini radar. Icarus 194, 690–703 (2008).

    Google Scholar 

Download references

Acknowledgements

We thank the reviewers for their insightful and constructive suggestions, which helped us improve this manuscript.

Author information

Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Mathieu G. A. Lapôtre.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Earth & Environment thanks V. Baker, M. Laneuville and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lapôtre, M.G.A., O’Rourke, J.G., Schaefer , L.K. et al. Probing space to understand Earth. Nat Rev Earth Environ 1, 170–181 (2020). https://doi.org/10.1038/s43017-020-0029-y

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing