Deep-ocean polymetallic nodules as a resource for critical materials


Deep-ocean polymetallic nodules form on or just below the vast, sediment-covered, abyssal plains of the global ocean. Polymetallic nodules primarily consist of precipitated iron oxyhydroxides and manganese oxides, onto which metals such as nickel, cobalt, copper, titanium and rare earth elements sorb. The enormous tonnage of nodules on the seabed, and the immense quantities of critical metals that they contain, have made them a target for future mining operations. Mining of polymetallic nodules has been spurred by the need for critical metals to support growing populations, urbanization, high-technology applications and the development of a green-energy economy. Nevertheless, an improved understanding of the affected ecosystems and their connectivity, as well as the environmental impacts of deep-ocean mining, is required before operations begin. Opportunities exist, however, to ensure that this new industry applies adaptive management to continually refine operations with the goal of environmental protection and invests in the development of green technologies for extractive metallurgy and mining. In this Review, we explore the chemical processes that control the concentration of critical metals in deep-ocean polymetallic nodules, discuss the mining and metallurgical techniques required, and highlight the opportunities and potential risks that are presented by this new industry.

Key points

  • Polymetallic nodules cover vast areas of the abyssal ocean floor and contain significant amounts of critical metals.

  • The chemical and mineralogical compositions of polymetallic nodules are primarily controlled by their formation process.

  • A unique characteristic of deep-ocean nodules compared to terrestrial deposits is the presence of multiple commodities in one deposit; for example, nodules from the Clarion–Clipperton Zone contain Mn, Ni, Cu and Co.

  • Deep-ocean mining might avoid some of the environmental issues associated with terrestrial mining.

  • The development of societies towards a more sustainable future cannot proceed without critical metals. Deep-ocean mining can not only deliver the metals necessary for this transition but can do so with a low carbon footprint.

  • The precautionary approach, adaptive management and best environmental practices are essential to the development of a polymetallic nodule resource.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Global permissive areas for deep-ocean polymetallic nodule deposits.
Fig. 2: Small-scale distribution and structure of polymetallic nodules.
Fig. 3: Formation mechanisms and environments for polymetallic nodules.
Fig. 4: The components of a polymetallic-nodule-mining project.


  1. 1.

    Kuhn, T., Wegorzewski, A., Rühlemann, C. & Vink, A. in Deep-Sea Mining (ed. Sharma, R.) 23–63 (Springer, 2017). An in-depth discussion of the global composition, formation and occurrence of manganese nodules.

  2. 2.

    Glasby, G. P. in Marine Geochemistry (eds Schulz, H. D. & Zabel M.) 371–427 (Springer, 2006).

  3. 3.

    Kuhn, T., Rühlemann, C. & Wiedicke-Hombach, M. in Marine Minerals: Finding the Right Balance of Sustainable Development and Environmental Protection. Extended Abstracts Vol. 9 (eds Zhou, H. & Morgan, C. L.) (The Underwater Mining Institute, 2012).

  4. 4.

    Dymond, J. et al. Ferromanganese nodules from MANOP sites H, S, and R — control of mineralogical and chemical composition by multiple accretionary processes. Geochim. Cosmochim. Acta 48, 931–949 (1984).

    Google Scholar 

  5. 5.

    Knobloch, A. et al. in Deep-Sea Mining (ed. Sharma, R.) 189–212 (Springer, 2017).

  6. 6.

    Cronan, D. S. in Chemical Oceanography Vol. 5 (eds Riley, J. P. & Chester, R.) 217–263 (Academic, 1976).

  7. 7.

    International Seabed Authority. A geological model of polymetallic nodule deposits in the Clarion-Clipperton Fracture Zone. International Seabed Authority (2010).

  8. 8.

    Hein, J. R., Mizell, K., Koschinsky, A. & Conrad, T. A. Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: comparison with land-based resources. Ore Geol. Rev. 51, 1–14 (2013). Details the relationship between critical metals in deep-ocean mineral deposits to green energy and high-technology applications.

    Google Scholar 

  9. 9.

    Cronan, D. S. Deep-sea minerals. Geoscientist Online (2015).

  10. 10.

    Koschinsky, A. et al. Deep-sea mining: interdisciplinary research on potential environmental, legal, economic, and societal implications. Integr. Environ. Assess. Manag. 14, 672–691 (2018). A comprehensive, transdisciplinary discussion of the environmental and societal consequences and impacts of future mining of polymetallic nodules, crusts and sulfides.

    Google Scholar 

  11. 11.

    Sharma, R. & Smith, S. in Environmental Issues of Deep-Sea Mining (ed. Sharma, R.) 3–22 (Springer, 2019).

  12. 12.

    Thomson, C. W. & Murray, J. Report on the scientific results of the voyage of H.M.S. Challenger during the years 1872–76 (Printed for Her Majesty’s Government, 1895).

  13. 13.

    Murray, J. On the distribution of volcanic debris over the floor of the ocean. Proc. R. Soc. Edinb. 9, 247–261 (1878).

    Google Scholar 

  14. 14.

    von Gümbel, C. W. in Die am Grunde des Meeres Vorkommenden Manganknollen 189–209 (Bayerische Akademie der Wissenschaften, 1878).

  15. 15.

    Mero, J. L. Ocean-floor manganese nodules. Economic Geol. 57, 747–767 (1962).

    Google Scholar 

  16. 16.

    Mero, J. L. The Mineral Resources of the Sea 1–312 (Elsevier, 1965).

  17. 17.

    Buser, W. & Grütter, A. Über die Natur der Manganknollen. Schweiz. Mineral. Petrogr. Mitt. 36, 49–62 (1956).

    Google Scholar 

  18. 18.

    Goldberg, E. D. & Arrhenius, G. O. S. Chemistry of Pacific pelagic sediments. Geochim. Cosmochim. Acta 13, 153–212 (1958).

    Google Scholar 

  19. 19.

    Goldberg, E. D. & Picciotto, E. Thorium determinations in manganese nodules. Science 121, 613–614 (1955).

    Google Scholar 

  20. 20.

    Riley, J. P. & Sinhaseni, P. Chemical composition of three manganese nodules from the Pacific Ocean. J. Mar. Res. 17, 466–482 (1958).

    Google Scholar 

  21. 21.

    Sparenberg, O. A. A historical perspective on deep-sea mining for manganese nodules, 1965–2019. Extr. Ind. Soc. 6, 842–854 (2019).

    Google Scholar 

  22. 22.

    Morgan, C. L., Nichols, J. A., Selk, B. W., Toth, J. R. & Wallin, C. Preliminary analysis of exploration data from Pacific deposits of manganese nodules. Mar. Georesour. Geotechnol. 11, 1–25 (1993).

    Google Scholar 

  23. 23.

    National Oceanic and Atmospheric Administration. Deep seabed mining, draft environmental impact statement on issuing exploration licenses to Kennecott Consortium (US Department of Commerce, 1984).

  24. 24.

    Sharma, R. in Deep-Sea Mining 3–21 (Springer, 2017).

  25. 25.

    Bischoff, J. L. & Piper, D. Z. (eds) Marine Geology and Oceanography of the Pacific Manganese Nodule Province (Plenum, 1979).

  26. 26.

    von Stackelberg, U. & Marchig, V. Manganese nodule from the equatorial North Pacific Ocean. Geol. Jahrb. D87, 123–227 (1987).

    Google Scholar 

  27. 27.

    Horn, D. R. (ed.) Ferromanganese Deposits on the Ocean Floor Vol. 293 (National Science Foundation, 1972).

  28. 28.

    Glasby, G. P. Marine minerals in the Pacific. Oceanogr. Mar. Biol. Annu. Rev. 24, 11–64 (1986).

    Google Scholar 

  29. 29.

    Baturin, G. N. The Geochemistry of Manganese and Manganese Nodules in the Ocean (Springer, 1988).

  30. 30.

    Usui A. & Moritani T. in Geology and Offshore Mineral Resources of the Central Pacific Basin Vol. 14 (eds. Keating B. H. & Bolton B. R.) 205–223 (Springer, 1992).

  31. 31.

    Hein, J. R., Koschinsky, A. & Halliday, A. N. Global occurrence of tellurium-rich ferromanganese crusts and a model for the enrichment of tellurium. Geochim. Cosmochim. Acta 67, 1117–1127 (2003).

    Google Scholar 

  32. 32.

    Koschinsky, A. & Hein, J. R. Uptake of elements from seawater by ferromanganese crusts: solid-phase associations and seawater speciation. Mar. Geol. 198, 331–351 (2003).

    Google Scholar 

  33. 33.

    Wegorzewski, A. V. & Kuhn, T. The influence of suboxic diagenesis on the formation of manganese nodules in the Clarion Clipperton nodule belt of the Pacific Ocean. Mar. Geol. 357, 123–138 (2014).

    Google Scholar 

  34. 34.

    Wegorzewski, A. & Kuhn, T. in Economical, Technological and Environmental Aspects: Cooperative Solutions for Future Deep-Sea Mining (eds Weixler, L. & Goddon, R.) (Underwater Mining Conference, 2017).

  35. 35.

    Kashiwabara, T. et al. Chemical processes for the extreme enrichment of tellurium into marine ferromanganese oxides. Geochim. Cosmochim. Acta 131, 150–163 (2014). Unravels the surface chemistry and association of tellurium in ferromanganese deposits with both the Fe and Mn phases, the oxidation of the Te on the Mn phase and the process of co-precipitation.

    Google Scholar 

  36. 36.

    Koschinsky, A. & Hein, J. R. Marine ferromanganese encrustations: archives of changing oceans. Elements 13, 177–182 (2017).

    Google Scholar 

  37. 37.

    Jones, D. O. B. et al. Biological responses to disturbance from simulated deep-sea polymetallic nodule mining. PLOS ONE 12, e0171750 (2017).

    Google Scholar 

  38. 38.

    Heath, G. R. Burial rates, growth rates, and size distributions of deep-sea manganese nodules. Science 205, 903–904 (1979).

    Google Scholar 

  39. 39.

    Halbach, P., Hebisch, U. & Scherhag, C. Geochemical variations of ferromanganese nodules and crusts from different provinces of the Pacific Ocean and their genetic control. Chem. Geol. 34, 3–17 (1981).

    Google Scholar 

  40. 40.

    Mewes, K. et al. Diffusive transfer of oxygen from seamount basaltic crust into overlying sediments: an example from the Clarion-Clipperton fracture zone. Earth Planet. Sci. Lett. 433, 215–225 (2016).

    Google Scholar 

  41. 41.

    Bau, M. et al. Discriminating between different genetic types of marine ferro-manganese crusts and nodules based on rare earth elements and yttrium. Chem. Geol. 381, 1–9 (2014).

    Google Scholar 

  42. 42.

    Bau, M., Koschinsky, A., Dulski, P. & Hein, J. R. Comparison of the partitioning behaviours of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater. Geochim. Cosmochim. Acta 60, 1709–1725 (1996).

    Google Scholar 

  43. 43.

    Schmidt, K., Bau, M., Hein, J. R. & Koschinsky, A. Fractionation of the geochemical twins Zr–Hf and Nb–Ta during scavenging from seawater by hydrogenetic ferromanganese crusts. Geochim. Cosmochim. Acta 140, 468–487 (2014).

    Google Scholar 

  44. 44.

    Banakar, V. K., Pattan, J. N. & Jauhari, P. Size, surface texture, chemical composition and mineralogy interrelations in ferromanganese nodules of central Indian Ocean. Indian J. Mar. Sci. 18, 201–203 (1989).

    Google Scholar 

  45. 45.

    Kuhn, T., Uhlenkott, K., Vink, A., Rühlemann, C. & Martinez Arbizu, P. in Seafloor Geomorphology as Benthic Habitat 2nd edn Ch. 58 (eds Harris, P. & Baker, E.) 933–947 (Elsevier, 2019).

  46. 46.

    Halbach, P., Giovanoli, R. & von Borstel, D. Geochemical processes controlling the relationship between Co, Mn, and Fe in early diagenetic deep-sea nodules. Earth Planet. Sci. Lett. 60, 226–236 (1982).

    Google Scholar 

  47. 47.

    Halbach, P., Friedrich, G., & von Stackelberg, U. (eds) The Manganese Nodule Belt of the Pacific Ocean: Geological Environment, Nodule Formation and Mining Aspects (Ferdinand Enke, 1988). An early, in-depth evaluation of a variety of aspects related to polymetallic nodules and is still considered a benchmark book today.

  48. 48.

    Koschinsky, A. & Halbach, P. Sequential leaching of marine ferromanganese precipitates: genetic implications. Geochim. Cosmochim. Acta 59, 5113–5132 (1995).

    Google Scholar 

  49. 49.

    Usui, A., Mellin, T. A., Nohara, M. & Yuasa, M. Structural stability of marine 10 Å manganates from the Ogasawara (Bonin) Arc: implication for low-temperature hydrothermal activity. Mar. Geol. 86, 41–56 (1989).

    Google Scholar 

  50. 50.

    Giovanoli, R. & Arrhenius, G. in The Manganese Nodule Belt of the Pacific Ocean: Geological Environment, Nodule Formation and Mining Aspects (eds Halbach, P., Friedrich, G. & von Stackelberg, U.) 20–31 (Ferdinand Enke, 1988).

  51. 51.

    Kuhn, T. A., Wegorzewski, C. & Heller, C. R. in Harvesting Seabed Mineral Resources in Harmony with Nature Vol. 6 (eds Morgan, C. L. & Barriga, F. J. A. S.) (The Underwater Mining Institute, 2014).

  52. 52.

    Sanderson, B. How bioturbation supports manganese nodules at the sediment-water interface. Deep Sea Res. A 32, 1281–1285 (1985).

    Google Scholar 

  53. 53.

    Von Stackelberg, U. Significance of benthic organisms for the growth and movement of manganese nodules, Equatorial North Pacific. Geol. Mar. Lett. 4, 37–42 (1984).

    Google Scholar 

  54. 54.

    Glasby, G. P., Stoffers, P., Sioulas, A., Thijssen, T. & Friedrich, G. Manganese nodule formation in the Pacific Ocean: a general theory. Geo-Mar. Lett. 2, 47–53 (1982).

    Google Scholar 

  55. 55.

    Nishimura, A. in Geology and Offshore Mineral Resources of the Central Pacific Basin Vol. 14 (eds Keating B. H. & Bolton B. R.) 179–203 (Springer, 1992).

  56. 56.

    Mewes, K. et al. Impact of depositional and biogeochemical processes on small scale variations in nodule abundance in the Clarion-Clipperton Fracture Zone. Deep Sea Res. Part I 91, 125–141 (2014).

    Google Scholar 

  57. 57.

    von Stackelberg, U. & Beiersdorf, H. The formation of manganese nodules between the Clarion and Clipperton fracture zones southeast of Hawaii. Mar. Geol. 98, 411–423 (1991).

    Google Scholar 

  58. 58.

    Rühlemann, C. & Shipboard Scientific Party. MANGAN 2018: Geology, Biodiversity and Environment of the German License Area for the Exploration of Polymetallic Nodules in the Equatorial NE Pacific. Cruise Report of R/V SONNE cruise SO262 (Bundesanstalt für Geowissenschaften und Rohstoffe, 2019).

  59. 59.

    Heller, C., Kuhn, T., Versteegh, G. J. M., Wegorzewski, A. V. & Kasten, S. The geochemical behavior of metals during early diagenetic alteration of buried manganese nodules. Deep Sea Res. Part I 142, 16–33 (2018).

    Google Scholar 

  60. 60.

    Maeno, M. Y. et al. Sorption behavior of the Pt(II) complex anion on manganese dioxide (δ-MnO2): a model reaction to elucidate the mechanism by which Pt is concentrated into a marine ferromanganese crust. Miner. Deposita 51, 211–218 (2016).

    Google Scholar 

  61. 61.

    Takahashi, Y., Ariga, D., Fan, Q. & Kashiwabara, T. in Subseafloor Biosphere Linked to Hydrothermal Systems (eds Ishibashi, J., Okino, K. & Sunamura, M.) 39–48 (Springer, 2015).

  62. 62.

    Wasylenki, L. E. et al. The molecular mechanism of Mo isotope fractionation during adsorption to birnessite. Geochim. Cosmochim. Acta 5, 5019–5031 (2011).

    Google Scholar 

  63. 63.

    Manceau, A., Lanson, M. & Takahashi, Y. Mineralogy and crystal chemistry of Mn, Fe, Co, Ni, and Cu in a deep-sea Pacific polymetallic nodule. Am. Mineral. 99, 2068–2083 (2014).

    Google Scholar 

  64. 64.

    Peacock, C. L. & Moon, E. M. Oxidative scavenging of thallium by birnessite: Explanation for thallium enrichment and stable isotope fractionation in marine ferromanganese precipitates. Geochim. Cosmochim. Acta 84, 297–313 (2012).

    Google Scholar 

  65. 65.

    Koschinsky, A. et al. Platinum enrichment and phase associations in marine ferromanganese crusts and nodules based on a multi-method approach. Chem. Geol. (2019).

    Article  Google Scholar 

  66. 66.

    Hein, J. R., & Koschinsky, A. in Treatise on Geochemistry 2nd edn Vol. 13 Ch. 11 (eds Holland, H. D. & Turekian, K. K.) 273–291 (Elsevier, 2014).

  67. 67.

    Kuhn, T., Bau, M., Blum, N. & Halbach, P. Origin of negative Ce anomalies in mixed hydrothermal–hydrogenetic Fe–Mn crusts from the Central Indian Ridge. Earth Planet. Sci. Lett. 163, 207–220 (1998).

    Google Scholar 

  68. 68.

    Takahashi, Y., Manceau, A., Geoffroy, N., Matthew, A. M. & Usui, A. Chemical and structural control of the partitioning of Co, Ce, and Pb in marine ferromanganese oxides. Geochim. Cosmochim. Acta 71, 984–1008 (2007).

    Google Scholar 

  69. 69.

    Burns, V. M. & Burns, R. G. Authigenic todorokite and phillipsite inside deep-sea manganese nodules. Am. Mineral. 63, 827–831 (1978).

    Google Scholar 

  70. 70.

    Johnson, E. A. & Post, J. E. Water in the interlayer region of birnessite: importance in cation exchange and structural stability. Am. Mineral. 91, 609–618 (2006).

    Google Scholar 

  71. 71.

    Hein, J. R. et al. Critical metals in manganese nodules from the Cook Islands EEZ, abundances and distributions. Ore Geol. Rev. 68, 97–116 (2015).

    Google Scholar 

  72. 72.

    Hein, J. R., McIntyre, B. R. & Piper, D. Z. Marine mineral resources of Pacific Islands — a review of the exclusive economic zones of islands of U.S. affiliation, excluding the State of Hawaii. US Geological Survey (2005).

  73. 73.

    Petersen, S. et al. News from the seabed–Geological characteristics and resource potential of deep-sea mineral resources. Mar. Policy 70, 175–187 (2016).

    Google Scholar 

  74. 74.

    World Bank. Precautionary management of deep sea minerals (World Bank Group, 2017).

  75. 75.

    Al Barazi, S., Brandenburg, T., Kuhn, T., Schmidt, M. & Vetter, S. DERA Rohstoffinformationen 36. Kobalt (DERA, 2018).

  76. 76.

    Banerji, A. India plans deep dive for seabed minerals. Marine Technology Magazine (2018).

  77. 77.

    Tyagi, A., Sudhakar, M. & Chandvale, G. Bulk polymetallic nodule collection in Central Indian Basin — Implications of acoustic survey technologies for site selection and innovations to maximize nodule recovery. IJOPE (2009).

  78. 78.

    de Moustier, C. Inference of manganese nodule coverage from Sea Beam acoustic backscattering data. Geophysics 50, 989–1001 (1985).

    Google Scholar 

  79. 79.

    Weydert, M. M. P. Measurements of the acoustic backscatter of selected areas of the deep seafloor and some implications for the assessment of manganese nodule resources. J. Acoust. Soc. Am. 88, 350–366 (1990).

    Google Scholar 

  80. 80.

    Scanlon, K. M. & Masson, D. G. Fe–Mn nodule field indicated by GLORIA, north of the Puerto Rico Trench. Geo-Mar. Lett. 12, 208–213 (1992).

    Google Scholar 

  81. 81.

    Masson, D. G. & Scanlon, K. M. Comment on the mapping of iron-manganese nodule fields using reconnaissance sonars such as GLORIA. Geo-Mar. Lett. 13, 244–247 (1993).

    Google Scholar 

  82. 82.

    Peukert, A. et al. Understanding Mn-nodule distribution and evaluation of related deep-sea mining impacts using AUV-based hydroacoustic and optical data. Biogeosciences 15, 2525–2549 (2018).

    Google Scholar 

  83. 83.

    Gazis, I.-Z., Schoening, T., Alevizos, E. & Greinert, J. Quantitative mapping and predictive modeling of Mn nodules’ distribution from hydroacoustic and optical AUV data linked by random forests machine learning. Biogeosciences 15, 7347–7377 (2018).

    Google Scholar 

  84. 84.

    Gromoll, L. Geochemical types of Pacific polymetallic nodules: an application of multivariate analysis. Mar. Georesour. Geotechnol. 14, 361–379 (1996).

    Google Scholar 

  85. 85.

    Hari, V. N., Kalyan, B., Chitre, M. & Ganesan, V. Spatial modeling of deep-sea ferromanganese nodules with limited data using neural networks. IEEE J. Ocean. Eng. 43, 1–18 (2018).

    Google Scholar 

  86. 86.

    Kuhn, T., Rühlemann, C. & Knobloch, A. in Resource and Environmental Assessments for Seafloor Mining Development (ed. Hong, S.) (Underwater Mining Conference, 2016).

  87. 87.

    Lipton, I. T., Nimmo, M. J. & Parianos, J. M. NI 43-101 Technical report. TOML Clarion Clipperton Zone project, Pacific Ocean. Nautilus Minerals (2016).

  88. 88.

    Boomsma, W. Design of a subsea vehicle propulsion system for soft sediments. Presented at the Underwater Mining Conference (2017).

  89. 89.

    Dasselaar, S. Upscaling towards deep-sea mining by 130 meter vertical riser experiments. Presented at the Underwater Mining Conference (2018).

  90. 90.

    Hong, S. Technology achievements through 3rd pre-pilot mining test: lifting system. Presented at the Underwater Mining Conference (2016).

  91. 91.

    Hong, S. et al. in Environmental Issues of Deep-Sea Mining (ed. Sharma, R.) 95–143 (Springer, 2019).

  92. 92.

    Xiangyang, L. Progress of Chinese 1000m deep seabed nodule mining test project. Presented at the Underwater Mining Conference (2019).

  93. 93.

    Kuhn, T. et al. Tiefseeförderung von Manganknollen. Schiff & Hafen 5, 78–83 (2011).

    Google Scholar 

  94. 94.

    Atmanand, M. A. & Ramadass, G. A. in Deep-Sea Mining (ed. Sharma, R.) 305–343 (Springer, 2017).

  95. 95.

    van Wijk, J. M. Blue mining: breakthrough solutions for mineral extraction and processing in extreme environments (Blue Mining, 2018).

  96. 96.

    Kirchain, R., Roth, R., Field, R. R., III, Muñoz-Royo, C. & Peacock, T. Report to the International Seabed Authority on the development of an economic model and system of payments for the exploitation of polymetallic nodules in the Area (Massachusetts Institute of Technology, 2019).

  97. 97.

    Das, R. P. & Anand, S. in Deep-Sea Mining (ed. Sharma, R.) 365–394 (Springer, 2017). A recent overview of the different metallurgical extraction methods applied to Mn nodules.

  98. 98.

    Wegorzewski, A., Köpcke, M., Kuhn, T., Sitnikova, M. A. & Wotruba, H. Thermal pre-treatment of polymetallic nodules to create metal (Ni, Cu, Co)-rich individual particles for further processing. Minerals 8, 523 (2018).

    Google Scholar 

  99. 99.

    Sommerfeld, M., Friedmann, D., Kuhn, T. & Friedrich, B. “Zero-Waste”: a sustainable approach on pyrometallurgical processing of manganese nodule slags. Minerals 8, 544 (2018).

    Google Scholar 

  100. 100.

    Mehta, K. D. et al. Bio-dissolution of metals from activated nodules of Indian Ocean. Presented at the International Conference on Frontiers in Mechanochemistry and Mechanical Alloying (2008).

  101. 101.

    Mehta, K. D., Das, C. & Pandey, B. B. Leaching of copper, nickel and cobalt from Indian Ocean manganese nodules by Aspergillus niger. Hydrometallurgy 105, 89–95 (2010).

    Google Scholar 

  102. 102.

    Mohwinkel, D., Kleint, C. & Koschinsky, A. Phase associations and potential selective extraction methods for selected high-tech metals from ferromanganese nodules and crusts with siderophores. Appl. Geochem. 43, 13–21 (2014).

    Google Scholar 

  103. 103.

    Roche C. & Bice S. Anticipating Social and Community Impacts of Deep Sea Mining 59–80 (Secretariat of the Pacific Community, 2013).

  104. 104.

    Cronan, D. S. in Deep-Sea Polymetallic Nodule Exploration: Development of Environmental Guidelines 118–154 (International Seabed Authority, 1999).

  105. 105.

    Purser, A. et al. Association of deep-sea incirrate octopods with manganese crusts and nodule fields in the Pacific Ocean. Curr. Biol. 26, R1268–R1269 (2016).

    Google Scholar 

  106. 106.

    Thiel, H. Deep-sea environmental disturbance and recovery potential. Int. Rev. Gesamten Hydrobiol. Hydrograph. 77, 331–339 (1992).

    Google Scholar 

  107. 107.

    Borowski, C. & Thiel, H. Deep-sea macrofaunal impacts of a large-scale physical disturbance experiment in the Southeast Pacific. Deep Sea Res. Part II 45, 55–81 (1998).

    Google Scholar 

  108. 108.

    Jones, D. O. B., Amon, D. J. & Chapman, A. S. A. Mining deep-ocean mineral deposits: What are the ecological risks? Elements 14, 325–330 (2018).

    Google Scholar 

  109. 109.

    Paul, S. A. L., Gaye, B., Haeckel, M., Kasten, S. & Koschinsky, A. Biogeochemical regeneration of a nodule mining disturbance site: Trace metals, DOC and amino acids in deep-sea sediments and pore waters. Front. Mar. Sci. 5, 117 (2018).

    Google Scholar 

  110. 110.

    Hauton, C. et al. Identifying toxic impacts of metals potentially released during deep-sea mining — a synthesis of the challenges to quantifying risk. Front. Mar. Sci. 4, 368 (2017).

    Google Scholar 

  111. 111.

    Niner, H. J. et al. Deep-sea mining with no net loss of biodiversity — an impossible aim. Front. Mar. Sci. 5, 53 (2018).

    Google Scholar 

  112. 112.

    Jankowski, J. A. & Zielke, W. The mesoscale sediment transport due to technical activities in the deep sea. Deep Sea Res. Part II 48, 3487–3521 (2001).

    Google Scholar 

  113. 113.

    Rolinski, S., Segschneider, J. & Sündermann, J. Long-term propagation of tailings from deep-sea mining under variable conditions by means of numerical simulations. Deep Sea Res. Part II 48, 3469–3485 (2001).

    Google Scholar 

  114. 114.

    Gillard, B. et al. Physical and hydrodynamic properties of deep sea mining-generated, abyssal sediment plumes in the Clarion Clipperton Fracture Zone (eastern-central Pacific). Elementa 7, 5 (2019).

    Google Scholar 

  115. 115.

    Schriever, G. & Thiel, H. Tailings and their disposal in deep-sea mining. IJOPE (2013).

  116. 116.

    Chung, J. S., Schriever, G., Sharma, R., Yamazaki, T. Deep seabed mining environment: preliminary engineering and environmental assessment. IJOPE (2001).

  117. 117.

    Middelburg, J. et al. (eds) Special issue. Assessing environmental impacts of deep-sea mining–revisiting decade-old benthic disturbances in Pacific nodule areas. Biogeosciences (2019).

  118. 118.

    Simon-Lledό, E. et al. Biological effects 26 years after simulated deep-sea mining. Nat. Sci. Rep. 9, 8040 (2019).

    Google Scholar 

  119. 119.

    Volkmann, S. E. & Lehnen, F. Production key figures for planning the mining of manganese nodules. Mar. Georesour. Geotechnol. 36, 360–375 (2018).

    Google Scholar 

  120. 120.

    Veillette, J. et al. Ferromanganese nodule fauna in the Tropical North Pacific Ocean: Species richness, faunal cover and spatial distribution. Deep Sea Res. Part I 54, 1912–1935 (2007).

    Google Scholar 

  121. 121.

    De Smet, B. et al. The community structure of deep-sea macrofauna associated with polymetallic nodules in the eastern part of the Clarion-Clipperton Fracture Zone. Front. Mar. Sci. 4, 103 (2017).

    Google Scholar 

  122. 122.

    Christiansen, B., Denda, A. & Christiansen, S. Potential effects of deep seabed mining on pelagic and benthopelagic biota. Mar. Policy (2019).

    Article  Google Scholar 

  123. 123.

    Heinrich, L., Markus, T., Koschinsky, A. & Singh, P. Quantifying the fuel consumption, greenhouse gas emissions and air pollution of a potential commercial manganese nodule mining operation. Mar. Policy (2019).

    Article  Google Scholar 

  124. 124.

    Sen P. K. in Deep-Sea Mining (ed. Sharma R.) 395–422 (Springer, 2017).

  125. 125.

    Lodge, M. et al. Seabed mining: International Seabed Authority environmental management plan for the Clarion–Clipperton Zone. A partnership approach. Mar. Policy 49, 66–72 (2014).

    Google Scholar 

  126. 126.

    McLellan, B. et al. Critical minerals and energy — impacts and limitations of moving to unconventional resources. Resources 5, 19 (2016).

    Google Scholar 

  127. 127.

    Vidal, O., Rostom, F., Francois, C. & Giraud, G. Global trends in metal consumption and supply: The raw material–energy nexus. Elements 13, 319–324 (2017).

    Google Scholar 

  128. 128.

    Manceau, A., Marcus, M. A. & Grangeon, S. Determination of Mn valence states in mixed-valent manganates by XANES spectroscopy. Am. Mineral. 97, 816–827 (2012).

    Google Scholar 

  129. 129.

    US Geological Survey. Mineral commodity summaries 2009. US Geological Survey (2009).

  130. 130.

    US Geological Survey. Mineral commodity summaries 2019. US Geological Survey (2019).

Download references


The authors thank S. Whisman for technical help with the preparation of the figures and tables. T.K. is supported by partial funding from the Federal Institute for Geosciences and Natural Resources (BGR) under the grant A-0203002.A.

Author information




J.R.H. was responsible for the content, design and compilation of the manuscript. All authors contributed to the preparation and writing of this Review, including the text, figures and tables.

Corresponding author

Correspondence to James R. Hein.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Earth & Environment thanks R. Sharma, J. González and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hein, J.R., Koschinsky, A. & Kuhn, T. Deep-ocean polymetallic nodules as a resource for critical materials. Nat Rev Earth Environ 1, 158–169 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing