Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Anthropogenic intensification of short-duration rainfall extremes

Abstract

Short-duration (1–3 h) rainfall extremes can cause serious damage to societies through rapidly developing (flash) flooding and are determined by complex, multifaceted processes that are altering as Earth’s climate warms. In this Review, we examine evidence from observational, theoretical and modelling studies for the intensification of these rainfall extremes, the drivers and the impact on flash flooding. Both short-duration and long-duration (>1 day) rainfall extremes are intensifying with warming at a rate consistent with the increase in atmospheric moisture (~7% K−1), while in some regions, increases in short-duration extreme rainfall intensities are stronger than expected from moisture increases alone. These stronger local increases are related to feedbacks in convective clouds, but their exact role is uncertain because of the very small scales involved. Future extreme rainfall intensification is also modulated by changes to temperature stratification and large-scale atmospheric circulation. The latter remains a major source of uncertainty. Intensification of short-duration extremes has likely increased the incidence of flash flooding at local scales, and this can further compound with an increase in storm spatial footprint to considerably increase total event rainfall. These findings call for urgent climate change adaptation measures to manage increasing flood risks.

Key points

  • Heavy rainfall extremes are intensifying with warming at a rate generally consistent with the increase in atmospheric moisture, for accumulation periods from hours to days.

  • In some regions, high-resolution modelling, observed trends and observed temperature dependencies indicate stronger increases in short-duration, sub-daily, extreme rainfall intensities, up to twice what would be expected from atmospheric moisture increases alone.

  • Stronger local increases in short-duration extreme rainfall intensities are related to convective cloud feedbacks, but their relevance to climate change is uncertain, owing to modulation by changes to temperature stratification and large-scale atmospheric circulation.

  • It is unclear whether storm size will increase or decrease with warming; however, increases in rainfall intensity and the spatial footprint of a storm can compound to substantially increase the total rainfall during an event.

  • Evidence is emerging that sub-daily rainfall intensification is related to an intensification of flash flooding, at least locally. This intensification will have serious implications for flash flooding globally and requires urgent climate change adaptation measures.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The Global Sub-Daily Rainfall data set.
Fig. 2: Temperature scaling of rainfall intensities.
Fig. 3: Influence of accounting for humidity effects and rain types on the apparent scaling of high-percentile extreme rainfall.
Fig. 4: Summary of existing knowledge of observed changes in the frequency and/or intensity of sub-daily rainfall extremes.
Fig. 5: Climate change-induced changes in extreme convective sub-daily precipitation processes.
Fig. 6: Important processes driving changes in sub-daily extreme precipitation and flooding.

References

  1. 1.

    Guerreiro, S. B. et al. Detection of continental-scale intensification of hourly rainfall extremes. Nat. Clim. Change 8, 803–807 (2018).

    Google Scholar 

  2. 2.

    Fischer, E. M. & Knutti, R. Observed heavy precipitation increase confirms theory and early models. Nat. Clim. Change 6, 986–991 (2016).

    Google Scholar 

  3. 3.

    Westra, S., Alexander, L. V. & Zwiers, F. W. Global increasing trends in annual maximum daily precipitation. J. Clim. 26, 3904–3918 (2013).

    Google Scholar 

  4. 4.

    Neelin, J. D., Sahany, S., Stechmann, S. N. & Bernstein, D. N. Global warming precipitation accumulation increases above the current-climate cutoff scale. Proc. Natl Acad. Sci. USA 114, 1258–1263 (2017).

    Google Scholar 

  5. 5.

    O’Gorman, P. A. & Muller, C. J. How closely do changes in surface and column water vapor follow Clausius–Clapeyron scaling in climate change simulations? Environ. Res. Lett. 5, 025207 (2010).

    Google Scholar 

  6. 6.

    Schneider, T., O’Gorman, P. A. & Levine, X. J. Water vapor and the dynamics of climate changes. Rev. Geophys. 48, RG3001 (2010).

    Google Scholar 

  7. 7.

    Trenberth, K. E., Dai, A., Rasmussen, R. M. & Parsons, D. B. The changing character of precipitation. Bull. Am. Meteorol. Soc. 84, 1205–1218 (2003).

    Google Scholar 

  8. 8.

    Westra, S. et al. Future changes to the intensity and frequency of short-duration extreme rainfall. Rev. Geophys. 52, 522–555 (2014).

    Google Scholar 

  9. 9.

    Scherrer, S. C. et al. Emerging trends in heavy precipitation and hot temperature extremes in Switzerland. J. Geophys. Res. Atmos. 121, 2626–2637 (2016).

    Google Scholar 

  10. 10.

    Rajczak, J. & Schär, C. Projections of future precipitation extremes over Europe: a multimodel assessment of climate simulations. J. Geophys. Res. Atmos. 122, 10773–10800 (2017).

    Google Scholar 

  11. 11.

    Ali, H., Fowler, H. J. & Mishra, V. Global observational evidence of strong linkage between dew point temperature and precipitation extremes. Geophys. Res. Lett. 45, 12320–12330 (2018).

    Google Scholar 

  12. 12.

    Lenderink, G. & Van Meijgaard, E. Linking increases in hourly precipitation extremes to atmospheric temperature and moisture changes. Environ. Res. Lett. 5, 025208 (2010).

    Google Scholar 

  13. 13.

    Lenderink, G., Mok, H. Y., Lee, T. C. & Van Oldenborgh, G. J. Scaling and trends of hourly precipitation extremes in two different climate zones - Hong Kong and the Netherlands. Hydrol. Earth Syst. Sci. 15, 3033–3041 (2011).

    Google Scholar 

  14. 14.

    Panthou, G., Mailhot, A., Laurence, E. & Talbot, G. Relationship between surface temperature and extreme rainfalls: a multi-time-scale and event-based analysis. J. Hydrometeorol. 15, 1999–2011 (2014).

    Google Scholar 

  15. 15.

    Berg, P., Moseley, C. & Haerter, J. O. Strong increase in convective precipitation in response to higher temperatures. Nat. Geosci. 6, 181–185 (2013).

    Google Scholar 

  16. 16.

    Park, I. H. & Min, S. K. Role of convective precipitation in the relationship between subdaily extreme precipitation and temperature. J. Clim. 30, 9527–9537 (2017).

    Google Scholar 

  17. 17.

    Loriaux, J. M., Lenderink, G., De Roode, S. R. & Siebesma, A. P. Understanding convective extreme precipitation scaling using observations and an entraining plume model. J. Atmos. Sci. 70, 3641–3655 (2013).

    Google Scholar 

  18. 18.

    Lenderink, G., Barbero, R., Loriaux, J. M. & Fowler, H. J. Super-Clausius–Clapeyron scaling of extreme hourly convective precipitation and its relation to large-scale atmospheric conditions. J. Clim. 30, 6037–6052 (2017).

    Google Scholar 

  19. 19.

    Haerter, J. O. & Schlemmer, L. Intensified cold pool dynamics under stronger surface heating. Geophys. Res. Lett. 45, 6299–6310 (2018).

    Google Scholar 

  20. 20.

    Nie, J., Sobel, A. H., Shaevitz, D. A. & Wang, S. Dynamic amplification of extreme precipitation sensitivity. Proc. Natl Acad. Sci. USA 115, 9467–9472 (2018).

    Google Scholar 

  21. 21.

    Kendon, E. J. et al. Heavier summer downpours with climate change revealed by weather forecast resolution model. Nat. Clim. Change 4, 570–576 (2014).

    Google Scholar 

  22. 22.

    Ban, N., Schmidli, J. & Schär, C. Heavy precipitation in a changing climate: does short-term summer precipitation increase faster? Geophys. Res. Lett. 42, 1165–1172 (2015).

    Google Scholar 

  23. 23.

    Prein, A. F. et al. The future intensification of hourly precipitation extremes. Nat. Clim. Change 7, 48–52 (2017).

    Google Scholar 

  24. 24.

    Kendon, E. J. et al. Enhanced future changes in wet and dry extremes over Africa at convection-permitting scale. Nat. Commun. 10, 1794 (2019).

    Google Scholar 

  25. 25.

    Formayer, H. & Fritz, A. Temperature dependency of hourly precipitation intensities – surface versus cloud layer temperature. Int. J. Climatol. 37, 1–10 (2017).

    Google Scholar 

  26. 26.

    Blenkinsop, S. et al. The INTENSE project: using observations and models to understand the past, present and future of sub-daily rainfall extremes. Adv. Sci. Res. 15, 117–126 (2018).

    Google Scholar 

  27. 27.

    Lewis, E. et al. GSDR: a global sub-daily rainfall dataset. J. Clim. 32, 4715–4729 (2019).

    Google Scholar 

  28. 28.

    Barbero, R. et al. A synthesis of hourly and daily precipitation extremes in different climatic regions. Weather Clim. Extremes 26, 100219 (2019).

    Google Scholar 

  29. 29.

    Li, X. F. et al. Global distribution of the intensity and frequency of hourly precipitation and their responses to ENSO. Clim. Dyn. 54, 4823–4839 (2020).

    Google Scholar 

  30. 30.

    Lochbihler, K., Lenderink, G. & Siebesma, A. P. The spatial extent of rainfall events and its relation to precipitation scaling. Geophys. Res. Lett. 44, 8629–8636 (2017).

    Google Scholar 

  31. 31.

    Ban, N., Schmidli, J. & Schär, C. Evaluation of the convection-resolving regional climate modeling approach in decade-long simulations. J. Geophys. Res. 119, 7889–7907 (2014).

    Google Scholar 

  32. 32.

    Chan, S. C., Kendon, E. J., Roberts, N. M., Fowler, H. J. & Blenkinsop, S. The characteristics of summer sub-hourly rainfall over the southern UK in a high-resolution convective permitting model. Environ. Res. Lett. 11, 094024 (2016).

    Google Scholar 

  33. 33.

    Liu, C. et al. Continental-scale convection-permitting modeling of the current and future climate of North America. Clim. Dyn. 49, 71–95 (2017).

    Google Scholar 

  34. 34.

    Kendon, E. J., Roberts, N. M., Senior, C. A. & Roberts, M. J. Realism of rainfall in a very high-resolution regional climate model. J. Clim. 25, 5791–5806 (2012).

    Google Scholar 

  35. 35.

    Prein, A. F. et al. Added value of convection permitting seasonal simulations. Clim. Dyn. 41, 2655–2677 (2013).

    Google Scholar 

  36. 36.

    Gentry, M. S. & Lackmann, G. M. Sensitivity of simulated tropical cyclone structure and intensity to horizontal resolution. Mon. Weather Rev. 138, 688–704 (2010).

    Google Scholar 

  37. 37.

    Colle, B. A., Mass, C. F., Colle, B. A. & Mass, C. F. The 5–9 February 1996 flooding event over the Pacific Northwest: sensitivity studies and evaluation of the MM5 precipitation forecasts. Mon. Weather Rev. 128, 593–617 (2000).

    Google Scholar 

  38. 38.

    Colle, B. A., Garvert, M. F., Wolfe, J. B., Mass, C. F. & Woods, C. P. The 13–14 December 2001 IMPROVE-2 event. Part III: Simulated microphysical budgets and sensitivity studies. J. Atmos. Sci. 62, 3535–3558 (2005).

    Google Scholar 

  39. 39.

    Bartsotas, N. S., Nikolopoulos, E. I., Anagnostou, E. N., Solomos, S. & Kallos, G. Moving toward subkilometer modeling grid spacings: Impacts on atmospheric and hydrological simulations of extreme flash flood–inducing storms. J. Hydrometeorol. 18, 209–226 (2017).

    Google Scholar 

  40. 40.

    Chan, S. C., Kendon, E. J., Roberts, N. M., Fowler, H. J. & Blenkinsop, S. Downturn in scaling of UK extreme rainfall with temperature for future hottest days. Nat. Geosci. 9, 24–28 (2016).

    Google Scholar 

  41. 41.

    Schär, C., Frei, C., Lüthi, D. & Davies, H. C. Surrogate climate-change scenarios for regional climate models. Geophys. Res. Lett. 23, 669–672 (1996).

    Google Scholar 

  42. 42.

    Kawase, H. et al. Intermodel variability of future changes in the Baiu rainband estimated by the pseudo global warming downscaling method. J. Geophys. Res. Atmos. 114, D24110 (2009).

    Google Scholar 

  43. 43.

    Rasmussen, R. et al. High-resolution coupled climate runoff simulations of seasonal snowfall over Colorado: a process study of current and warmer climate. J. Clim. 24, 3015–3048 (2011).

    Google Scholar 

  44. 44.

    Brogli, R., Kröner, N., Sørland, S. L., Lüthi, D. & Schär, C. The role of Hadley circulation and lapse-rate changes for the future European summer climate. J. Clim. 32, 385–404 (2019).

    Google Scholar 

  45. 45.

    Hentgen, L., Ban, N., Kröner, N., Leutwyler, D. & Schär, C. Clouds in convection-resolving climate simulations over Europe. J. Geophys. Res. Atmos. 124, 3849–3870 (2019).

    Google Scholar 

  46. 46.

    Mahoney, K., Alexander, M. A., Thompson, G., Barsugli, J. J. & Scott, J. D. Changes in hail and flood risk in high-resolution simulations over Colorado’s mountains. Nat. Clim. Change 2, 125–131 (2012).

    Google Scholar 

  47. 47.

    Wasko, C. & Sharma, A. Steeper temporal distribution of rain intensity at higher temperatures within Australian storms. Nat. Geosci. 8, 527–529 (2015).

    Google Scholar 

  48. 48.

    Archer, D. R. & Fowler, H. J. Characterising flash flood response to intense rainfall and impacts using historical information and gauged data in Britain. J. Flood Risk Manag. 11, S121–S133 (2018).

    Google Scholar 

  49. 49.

    Fadhel, S., Rico-Ramirez, M. A. & Han, D. Sensitivity of peak flow to the change of rainfall temporal pattern due to warmer climate. J. Hydrol. 560, 546–559 (2018).

    Google Scholar 

  50. 50.

    Arnbjerg-Nielsen, K. et al. Impacts of climate change on rainfall extremes and urban drainage systems: a review. Water Sci. Technol. 68, 16–28 (2013).

    Google Scholar 

  51. 51.

    Bao, J., Sherwood, S. C., Alexander, L. V. & Evans, J. P. Future increases in extreme precipitation exceed observed scaling rates. Nat. Clim. Change 7, 128–132 (2017).

    Google Scholar 

  52. 52.

    Lenderink, G. & Van Meijgaard, E. Increase in hourly precipitation extremes beyond expectations from temperature changes. Nat. Geosci. 1, 511–514 (2008).

    Google Scholar 

  53. 53.

    Hardwick Jones, R., Westra, S. & Sharma, A. Observed relationships between extreme sub-daily precipitation, surface temperature, and relative humidity. Geophys. Res. Lett. 37, L22805 (2010).

    Google Scholar 

  54. 54.

    Wasko, C. & Sharma, A. Quantile regression for investigating scaling of extreme precipitation with temperature. Water Resour. Res. 50, 3608–3614 (2014).

    Google Scholar 

  55. 55.

    Schär, C. et al. Percentile indices for assessing changes in heavy precipitation events. Clim. Change 137, 201–216 (2016).

    Google Scholar 

  56. 56.

    Wasko, C., Sharma, A. & Johnson, F. Does storm duration modulate the extreme precipitation-temperature scaling relationship? Geophys. Res. Lett. 42, 8783–8790 (2015).

    Google Scholar 

  57. 57.

    Wang, G. et al. The peak structure and future changes of the relationships between extreme precipitation and temperature. Nat. Clim. Change 7, 268–274 (2017).

    Google Scholar 

  58. 58.

    Drobinski, P. et al. Scaling precipitation extremes with temperature in the Mediterranean: past climate assessment and projection in anthropogenic scenarios. Clim. Dyn. 51, 1237–1257 (2018).

    Google Scholar 

  59. 59.

    Maeda, E. E., Utsumi, N. & Oki, T. Decreasing precipitation extremes at higher temperatures in tropical regions. Nat. Hazards 64, 935–941 (2012).

    Google Scholar 

  60. 60.

    Barbero, R., Westra, S., Lenderink, G. & Fowler, H. J. Temperature-extreme precipitation scaling: a two-way causality? Int. J. Climatol. 38, e1274–e1279 (2018).

    Google Scholar 

  61. 61.

    Lenderink, G., Barbero, R., Westra, S. & Fowler, H. J. Reply to comments on “Temperature-extreme precipitation scaling: a two-way causality?” Int. J. Climatol. 38, 4664–4666 (2018).

    Google Scholar 

  62. 62.

    Trenberth, K. E. & Shea, D. J. Relationships between precipitation and surface temperature. Geophys. Res. Lett. 32, L14703 (2005).

    Google Scholar 

  63. 63.

    Wasko, C., Lu, W. T. & Mehrotra, R. Relationship of extreme precipitation, dry-bulb temperature, and dew point temperature across Australia. Environ. Res. Lett. 13, 074031 (2018).

    Google Scholar 

  64. 64.

    Zhang, W., Villarini, G. & Wehner, M. Contrasting the responses of extreme precipitation to changes in surface air and dew point temperatures. Clim. Change 154, 257–271 (2019).

    Google Scholar 

  65. 65.

    Zhang, X., Zwiers, F. W., Li, G., Wan, H. & Cannon, A. J. Complexity in estimating past and future extreme short-duration rainfall. Nat. Geosci. 10, 255–259 (2017).

    Google Scholar 

  66. 66.

    Lenderink, G. et al. Scaling and responses of extreme hourly precipitation in three climate experiments with a convection-permitting model. Philos. Trans. R. Soc. A 379, 20190544 (2021).

    Google Scholar 

  67. 67.

    Lenderink, G. et al. Systematic increases in the thermodynamic response of hourly precipitation extremes in an idealized warming experiment with a convection-permitting climate model. Environ. Res. Lett. 14, 074012 (2019).

    Google Scholar 

  68. 68.

    Sun, Q., Zwiers, F., Zhang, X. & Li, G. A comparison of intra-annual and long-term trend scaling of extreme precipitation with temperature in a large-ensemble regional climate simulation. J. Clim. 33, 9233–9245 (2020).

    Google Scholar 

  69. 69.

    Haerter, J. O. & Berg, P. Unexpected rise in extreme precipitation caused by a shift in rain type? Nat. Geosci. 2, 372–373 (2009).

    Google Scholar 

  70. 70.

    Berg, P. et al. Seasonal characteristics of the relationship between daily precipitation intensity and surface temperature. J. Geophys. Res. Atmos. 114, D18102 (2009).

    Google Scholar 

  71. 71.

    Bao, J., Sherwood, S. C., Alexander, L. V. & Evans, J. P. Comments on “temperature-extreme precipitation scaling: A two-way causality?”. Int. J. Climatol. 38, 4661–4663 (2018).

    Google Scholar 

  72. 72.

    Pfahl, S., O’Gorman, P. A. & Fischer, E. M. Understanding the regional pattern of projected future changes in extreme precipitation. Nat. Clim. Change 7, 423–427 (2017).

    Google Scholar 

  73. 73.

    Li, Z. & O’Gorman, P. A. Response of vertical velocities in extratropical precipitation extremes to climate change. J. Clim. 33, 7125–7139 (2020).

    Google Scholar 

  74. 74.

    Xiao, C., Wu, P., Zhang, L. & Song, L. Robust increase in extreme summer rainfall intensity during the past four decades observed in China. Sci. Rep. 6, 38506 (2016).

    Google Scholar 

  75. 75.

    Syafrina, A. H., Zalina, M. D. & Juneng, L. Historical trend of hourly extreme rainfall in Peninsular Malaysia. Theor. Appl. Climatol. 120, 259–285 (2015).

    Google Scholar 

  76. 76.

    Arnone, E., Pumo, D., Viola, F., Noto, L. V. & La Loggia, G. Rainfall statistics changes in Sicily. Hydrol. Earth Syst. Sci. 17, 2449–2458 (2013).

    Google Scholar 

  77. 77.

    Madsen, H., Arnbjerg-Nielsen, K. & Mikkelsen, P. S. Update of regional intensity–duration–frequency curves in Denmark: tendency towards increased storm intensities. Atmos. Res. 92, 343–349 (2009).

    Google Scholar 

  78. 78.

    Barbero, R., Fowler, H. J., Lenderink, G. & Blenkinsop, S. Is the intensification of precipitation extremes with global warming better detected at hourly than daily resolutions? Geophys. Res. Lett. 44, 974–983 (2017).

    Google Scholar 

  79. 79.

    Blunden, J. & Arndt, D. S. State of the climate in 2018. Bull. Am. Meteorol. Soc. 100, Si–S306 (2019).

    Google Scholar 

  80. 80.

    Jun, C., Qin, X., Tung, Y. K. & De Michele, C. On the statistical analysis of rainstorm events between historical (1777–1907) and modern (1961–2010) periods in Seoul, Korea. Int. J. Climatol. 40, 2078–2090 (2019).

    Google Scholar 

  81. 81.

    Kendon, E. J., Blenkinsop, S. & Fowler, H. J. When will we detect changes in short-duration precipitation extremes? J. Clim. 31, 2945–2964 (2018).

    Google Scholar 

  82. 82.

    Guerreiro, S. B., Kilsby, C. G. & Serinaldi, F. Analysis of time variation of rainfall in transnational basins in Iberia: abrupt changes or trends? Int. J. Climatol. 34, 114–133 (2014).

    Google Scholar 

  83. 83.

    Serinaldi, F., Kilsby, C. G. & Lombardo, F. Untenable nonstationarity: an assessment of the fitness for purpose of trend tests in hydrology. Adv. Water Resour. 111, 132–155 (2018).

    Google Scholar 

  84. 84.

    Zhao, A. D., Stevenson, D. S. & Bollasina, M. A. The role of anthropogenic aerosols in future precipitation extremes over the Asian Monsoon Region. Clim. Dyn. 52, 6257–6278 (2019).

    Google Scholar 

  85. 85.

    Wu, M., Luo, Y., Chen, F. & Wong, W. K. Observed link of extreme hourly precipitation changes to urbanization over coastal South China. J. Appl. Meteorol. Climatol. 58, 1799–1819 (2019).

    Google Scholar 

  86. 86.

    Burdanowitz, J., Buehler, S. A., Bakan, S. & Klepp, C. The sensitivity of oceanic precipitation to sea surface temperature. Atmos. Chem. Phys. 19, 9241–9252 (2019).

    Google Scholar 

  87. 87.

    Zhou, Y., Luo, M. & Leung, Y. On the detection of precipitation dependence on temperature. Geophys. Res. Lett. 43, 4555–4565 (2016).

    Google Scholar 

  88. 88.

    Shastri, H., Paul, S., Ghosh, S. & Karmakar, S. Impacts of urbanization on Indian summer monsoon rainfall extremes. J. Geophys. Res. 120, 495–516 (2015).

    Google Scholar 

  89. 89.

    Lin, C.-Y., Chen, W.-C., hang, P.-L. & Sheng, Y.-F. Impact of the urban heat island effect on precipitation over a complex geographic environment in northern Taiwan. J. Appl. Meteorol. Climatol. 50, 339–353 (2011).

    Google Scholar 

  90. 90.

    Han, J. Y., Baik, J. J. & Lee, H. Urban impacts on precipitation. Asia-Pac. J. Atmos. Sci. 50, 17–30 (2014).

    Google Scholar 

  91. 91.

    Kendon, E. et al. UKCP Convection-permitting model projections: Science Report. Met Office https://www.metoffice.gov.uk/pub/data/weather/uk/ukcp18/science-reports/UKCP-Convection-permitting-model-projections-report.pdf (2019).

  92. 92.

    Saeed, S. et al. Multidecadal convection permitting climate simulations over Belgium: sensitivity of future precipitation extremes. Atmos. Sci. Lett. 18, 29–36 (2017).

    Google Scholar 

  93. 93.

    Ban, N., Rajczak, J., Schmidli, J. & Schär, C. Analysis of Alpine precipitation extremes using generalized extreme value theory in convection-resolving climate simulations. Clim. Dyn. 55, 61–75 (2018).

    Google Scholar 

  94. 94.

    Gutmann, E. D. et al. Changes in hurricanes from a 13-yr convection-permitting pseudo–global warming simulation. J. Clim. 31, 3643–3657 (2018).

    Google Scholar 

  95. 95.

    Helsen, S. et al. Consistent scale-dependency of future increases in hourly extreme precipitation in two convection-permitting climate models. Clim. Dyn. 54, 1267–1280 (2020).

    Google Scholar 

  96. 96.

    Hodnebrog, Ø. et al. Intensification of summer precipitation with shorter time-scales in Europe. Environ. Res. Lett. 14, 124050 (2019).

    Google Scholar 

  97. 97.

    Dai, A., Rasmussen, R. M., Liu, C., Ikeda, K. & Prein, A. F. A new mechanism for warm-season precipitation response to global warming based on convection-permitting simulations. Clim. Dyn. 55, 343–368 (2017).

    Google Scholar 

  98. 98.

    Prein, A. F. et al. Increased rainfall volume from future convective storms in the US. Nat. Clim. Change 7, 880–884 (2017).

    Google Scholar 

  99. 99.

    Rasmussen, K. L., Prein, A. F., Rasmussen, R. M., Ikeda, K. & Liu, C. Changes in the convective population and thermodynamic environments in convection-permitting regional climate simulations over the United States. Clim. Dyn. 55, 383–408 (2017).

    Google Scholar 

  100. 100.

    Allan, R. P. et al. Physically consistent responses of the global atmospheric hydrological cycle in models and observations. Surv. Geophys. 35, 533–552 (2014).

    Google Scholar 

  101. 101.

    Risser, M. D. & Wehner, M. F. Attributable human-induced changes in the likelihood and magnitude of the observed extreme precipitation during Hurricane Harvey. Geophys. Res. Lett. 44, 12457–12464 (2017).

    Google Scholar 

  102. 102.

    Kanada, S. et al. A multimodel intercomparison of an intense typhoon in future, warmer climates by four 5-km-mesh models. J. Clim. 30, 6017–6036 (2017).

    Google Scholar 

  103. 103.

    Patricola, C. M. & Wehner, M. F. Anthropogenic influences on major tropical cyclone events. Nature 563, 339–346 (2018).

    Google Scholar 

  104. 104.

    Wang, S.-Y. S., Zhao, L., Yoon, J.-H., Klotzbach, P. & Gillies, R. R. Quantitative attribution of climate effects on Hurricane Harvey’s extreme rainfall in Texas. Environ. Res. Lett. 13, 054014 (2018).

    Google Scholar 

  105. 105.

    van Oldenborgh, G. J. et al. Attribution of extreme rainfall from Hurricane Harvey, August 2017. Environ. Res. Lett. 12, 124009 (2017).

    Google Scholar 

  106. 106.

    Prein, A. F. et al. Simulating North American mesoscale convective systems with a convection-permitting climate model. Clim. Dyn. 55, 95–110 (2017).

    Google Scholar 

  107. 107.

    Lackmann, G. M. The south-central US flood of May 2010: present and future. J. Clim. 26, 4688–4709 (2013).

    Google Scholar 

  108. 108.

    Schumacher, R. S. & Rasmussen, K. L. The formation, character and changing nature of mesoscale convective systems. Nat. Rev. Earth Environ. 1, 300–314 (2020).

    Google Scholar 

  109. 109.

    Singleton, A. & Toumi, R. Super-Clausius–Clapeyron scaling of rainfall in a model squall line. Q. J. R. Meteorol. Soc. 139, 334–339 (2013).

    Google Scholar 

  110. 110.

    Attema, J. J., Loriaux, J. M. & Lenderink, G. Extreme precipitation response to climate perturbations in an atmospheric mesoscale model. Environ. Res. Lett. 9, 014003 (2014).

    Google Scholar 

  111. 111.

    Kendon, E. J. et al. Do convection-permitting regional climate models improve projections of future precipitation change? Bull. Am. Meteorol. Soc. 98, 79–93 (2017).

    Google Scholar 

  112. 112.

    Chan, S. C. et al. Europe-wide precipitation projections at convection permitting scale with the Unified Model. Clim. Dyn. 1, 409–428 (2020).

    Google Scholar 

  113. 113.

    Wasko, C., Sharma, A. & Westra, S. Reduced spatial extent of extreme storms at higher temperatures. Geophys. Res. Lett. 43, 4026–4032 (2016).

    Google Scholar 

  114. 114.

    Haerter, J. O., Berg, P. & Hagemann, S. Heavy rain intensity distributions on varying time scales and at different temperatures. J. Geophys. Res. Atmos. 115, D17102 (2010).

    Google Scholar 

  115. 115.

    Feng, Z. et al. Structure and evolution of mesoscale convective systems: sensitivity to cloud microphysics in convection-permitting simulations over the United States. J. Adv. Model. Earth Syst. 10, 1470–1494 (2018).

    Google Scholar 

  116. 116.

    Schumacher, R. S. & Johnson, R. H. Characteristics of US extreme rain events during 1999–2003. Weather Forecast. 21, 69–85 (2006).

    Google Scholar 

  117. 117.

    Haerter, J. O., Meyer, B. & Boye Nissen, S. Diurnal self-aggregation. NPJ Clim. Atmos. Sci. 3, 30 (2020).

    Google Scholar 

  118. 118.

    Trenberth, K. E. Changes in precipitation with climate change. Clim. Res. 47, 123–138 (2011).

    Google Scholar 

  119. 119.

    Lenderink, G. & Van Meijgaard, E. Unexpected rise in extreme precipitation caused by a shift in rain type? Nat. Geosci. 2, 372–373 (2009).

    Google Scholar 

  120. 120.

    Frierson, D. M. W. Robust increases in midlatitude static stability in simulations of global warming. Geophys. Res. Lett. 33, L24816 (2006).

    Google Scholar 

  121. 121.

    Muller, C., O’Gorman, P. & Back, L. Intensification of precipitation extremes with warming in a cloud-resolving model. J. Clim. 24, 2784–2800 (2011).

    Google Scholar 

  122. 122.

    Keller, M. et al. The sensitivity of Alpine summer convection to surrogate climate change: an intercomparison between convection-parameterizing and convection-resolving models. Atmos. Chem. Phys. 18, 5253–5264 (2018).

    Google Scholar 

  123. 123.

    Pendergrass, A. G. What precipitation is extreme? Science 360, 1072–1073 (2018).

    Google Scholar 

  124. 124.

    Chan, S. C., Kendon, E. J., Roberts, N., Blenkinsop, S. & Fowler, H. J. Large-scale predictors for extreme hourly precipitation events in convection-permitting climate simulations. J. Clim. 31, 2115–2131 (2018).

    Google Scholar 

  125. 125.

    Lenderink, G. & Attema, J. A simple scaling approach to produce climate scenarios of local precipitation extremes for the Netherlands. Environ. Res. Lett. 10, 085001 (2015).

    Google Scholar 

  126. 126.

    Lepore, C., Veneziano, D. & Molini, A. Temperature and CAPE dependence of rainfall extremes in the eastern United States. Geophys. Res. Lett. 42, 74–83 (2015).

    Google Scholar 

  127. 127.

    Diffenbaugh, N. S., Scherer, M. & Trapp, R. J. Robust increases in severe thunderstorm environments in response to greenhouse forcing. Proc. Natl Acad. Sci. USA 110, 16361–16366 (2013).

    Google Scholar 

  128. 128.

    Singh, M. S. & O’Gorman, P. A. Influence of entrainment on the thermal stratification in simulations of radiative-convective equilibrium. Geophys. Res. Lett. 40, 4398–4403 (2013).

    Google Scholar 

  129. 129.

    Romps, D. M. Clausius–Clapeyron scaling of CAPE from analytical solutions to RCE. J. Atmos. Sci. 73, 3719–3737 (2016).

    Google Scholar 

  130. 130.

    Agard, V. & Emanuel, K. Clausius–Clapeyron scaling of peak CAPE in continental convective storm environments. J. Atmos. Sci. 74, 3043–3054 (2017).

    Google Scholar 

  131. 131.

    Singh, M. S., Kuang, Z., Maloney, E. D., Hannah, W. M. & Wolding, B. O. Increasing potential for intense tropical and subtropical thunderstorms under global warming. Proc. Natl Acad. Sci. USA 114, 11657–11662 (2017).

    Google Scholar 

  132. 132.

    Romps, D. M. Response of tropical precipitation to global warming. J. Atmos. Sci. 68, 123–138 (2011).

    Google Scholar 

  133. 133.

    Ma, C., Yuan, W. & Ni, J. Responses of mean and extreme precipitation to different climate forcing under radiative-convective equilibrium. Adv. Atmos. Sci. 37, 377–386 (2020).

    Google Scholar 

  134. 134.

    Tan, J., Jakob, C., Rossow, W. B. & Tselioudis, G. Increases in tropical rainfall driven by changes in frequency of organized deep convection. Nature 519, 451–454 (2015).

    Google Scholar 

  135. 135.

    Li, Y. et al. Strong intensification of hourly rainfall extremes by urbanization. Geophys. Res. Lett. 47, e2020GL088758 (2020).

    Google Scholar 

  136. 136.

    Byrne, M. P. & O’Gorman, P. A. Understanding decreases in land relative humidity with global warming: conceptual model and GCM simulations. J. Clim. 29, 9045–9061 (2016).

    Google Scholar 

  137. 137.

    Chen, J., Dai, A., Zhang, Y. & Rasmussen, K. L. Changes in convective available potential energy and convective inhibition under global warming. J. Clim. 33, 2025–2050 (2020).

    Google Scholar 

  138. 138.

    Bryan, G. H. & Morrison, H. Sensitivity of a simulated squall line to horizontal resolution and parameterization of microphysics. Mon. Weather Rev. 140, 202–225 (2012).

    Google Scholar 

  139. 139.

    Varble, A. et al. Evaluation of cloud-resolving and limited area model intercomparison simulations using TWP-ICE observations: 1. Deep convective updraft properties. J. Geophys. Res. 119, 13891–13918 (2014).

    Google Scholar 

  140. 140.

    Fan, J., Ruby Leung, L., Rosenfeld, D. & Demott, P. J. Effects of cloud condensation nuclei and ice nucleating particles on precipitation processes and supercooled liquid in mixed-phase orographic clouds. Atmos. Chem. Phys. 17, 1017–1035 (2017).

    Google Scholar 

  141. 141.

    Lebo, Z. J. & Morrison, H. Effects of horizontal and vertical grid spacing on mixing in simulated squall lines and implications for convective strength and structure. Mon. Weather Rev. 143, 4355–4375 (2015).

    Google Scholar 

  142. 142.

    Grabowski, W. W. & Prein, A. F. Separating dynamic and thermodynamic impacts of climate change on daytime convective development over land. J. Clim. 32, 5213–5234 (2019).

    Google Scholar 

  143. 143.

    Prein, A. F. & Heymsfield, A. J. Increased melting level height impacts surface precipitation phase and intensity. Nat. Clim. Change 10, 771–776 (2020).

    Google Scholar 

  144. 144.

    Trapp, R. J., Hoogewind, K. A. & Lasher-Trapp, S. Future changes in hail occurrence in the United States determined through convection-permitting dynamical downscaling. J. Clim. 32, 5493–5509 (2019).

    Google Scholar 

  145. 145.

    Singh, M. S. & O’Gorman, P. A. Influence of microphysics on the scaling of precipitation extremes with temperature. Geophys. Res. Lett. 41, 6037–6044 (2014).

    Google Scholar 

  146. 146.

    Narsey, S. et al. Convective precipitation efficiency observed in the tropics. Geophys. Res. Lett. 46, 13574–13583 (2019).

    Google Scholar 

  147. 147.

    Lutsko, N. J. & Cronin, T. W. Increase in precipitation efficiency with surface warming in radiative-convective equilibrium. J. Adv. Model. Earth Syst. 10, 2992–3010 (2018).

    Google Scholar 

  148. 148.

    Tompkins, A. M. Organization of tropical convection in low vertical wind shears: the role of cold pools. J. Atmos. Sci. 58, 1650–1672 (2001).

    Google Scholar 

  149. 149.

    Droegemeier, K. K., Wilhelmson, R. B., Droegemeier, K. K. & Wilhelmson, R. B. Three-dimensional numerical modeling of convection produced by interacting thunderstorm outflows. Part I: Control simulation and low-level moisture variations. J. Atmos. Sci. 42, 2381–2403 (1985).

    Google Scholar 

  150. 150.

    Schlemmer, L. & Hohenegger, C. The formation of wider and deeper clouds as a result of cold-pool dynamics. J. Atmos. Sci. 71, 2842–2858 (2014).

    Google Scholar 

  151. 151.

    Haerter, J. O., Böing, S. J., Henneberg, O. & Nissen, S. B. Circling in on convective organization. Geophys. Res. Lett. 46, 7024–7034 (2019).

    Google Scholar 

  152. 152.

    Prein, A., Rasmussen, R. M., Wang, D. & Giangrande, S. E. Sensitivity of organized convective storms to model grid spacing in current and future climates. Phil. Trans. R. Soc. A. 379, 20190546 (2021).

    Google Scholar 

  153. 153.

    Weisman, M. L. & Rotunno, R. “A theory for strong long-lived squall lines” revisited. J. Atmos. Sci. 61, 361–382 (2004).

    Google Scholar 

  154. 154.

    Brooks, H. E. Severe thunderstorms and climate change. Atmos. Res. 123, 129–138 (2013).

    Google Scholar 

  155. 155.

    Vecchi, G. A. & Soden, B. J. Global warming and the weakening of the tropical circulation. J. Clim. 20, 4316–4340 (2007).

    Google Scholar 

  156. 156.

    Moseley, C., Hohenegger, C., Berg, P. & Haerter, J. O. Intensification of convective extremes driven by cloud–cloud interaction. Nat. Geosci. 9, 748–752 (2016).

    Google Scholar 

  157. 157.

    Glenn, I. B. & Krueger, S. K. Connections matter: updraft merging in organized tropical deep convection. Geophys. Res. Lett. 44, 7087–7094 (2017).

    Google Scholar 

  158. 158.

    Loriaux, J. M., Lenderink, G. & Pier Siebesma, A. Large-scale controls on extreme precipitation. J. Clim. 30, 955–968 (2017).

    Google Scholar 

  159. 159.

    Haerter, J. O., Berg, P. & Moseley, C. Precipitation onset as the temporal reference in convective self-organization. Geophys. Res. Lett. 44, 6450–6459 (2017).

    Google Scholar 

  160. 160.

    Molnar, P., Fatichi, S., Gaál, L., Szolgay, J. & Burlando, P. Storm type effects on super Clausius–Clapeyron scaling of intense rainstorm properties with air temperature. Hydrol. Earth Syst. Sci. 19, 1753–1766 (2015).

    Google Scholar 

  161. 161.

    Scoccimarro, E. et al. Projected changes in intense precipitation over Europe at the daily and subdaily time scales. J. Clim. 28, 6193–6203 (2015).

    Google Scholar 

  162. 162.

    Pendergrass, A. G., Reed, K. A. & Medeiros, B. The link between extreme precipitation and convective organization in a warming climate: global radiative-convective equilibrium simulations. Geophys. Res. Lett. 43, 11445–11452 (2016).

    Google Scholar 

  163. 163.

    Peleg, N. et al. Intensification of convective rain cells at warmer temperatures observed from high-resolution weather radar data. J. Hydrometeorol. 19, 715–726 (2018).

    Google Scholar 

  164. 164.

    Lochbihler, K., Lenderink, G. & Siebesma, A. P. Response of extreme precipitating cell structures to atmospheric warming. J. Geophys. Res. Atmos. 124, 6904–6918 (2019).

    Google Scholar 

  165. 165.

    Kröner, N. et al. Separating climate change signals into thermodynamic, lapse-rate and circulation effects: theory and application to the European summer climate. Clim. Dyn. 48, 3425–3440 (2017).

    Google Scholar 

  166. 166.

    Loriaux, J. M., Lenderink, G. & Pier Siebesma, A. Peak precipitation intensity in relation to atmospheric conditions and large-scale forcing at midlatitudes. J. Geophys. Res. 121, 5471–5487 (2016).

    Google Scholar 

  167. 167.

    Baker, H. S. et al. Higher CO2 concentrations increase extreme event risk in a 1.5 °C world. Nat. Clim. Change 8, 604–608 (2018).

    Google Scholar 

  168. 168.

    Fan, J. et al. Substantial convection and precipitation enhancements by ultrafine aerosol particles. Science 359, 411–418 (2018).

    Google Scholar 

  169. 169.

    Lin, L. et al. Changes in extreme rainfall over India and China attributed to regional aerosol-cloud interaction during the late 20th century rapid industrialization. Geophys. Res. Lett. 45, 7857–7865 (2018).

    Google Scholar 

  170. 170.

    Sillmann, J., Stjern, C. W., Myhre, G. & Forster, P. M. Slow and fast responses of mean and extreme precipitation to different forcing in CMIP5 simulations. Geophys. Res. Lett. 44, 6383–6390 (2017).

    Google Scholar 

  171. 171.

    Lee, S. S., Guo, J. & Li, Z. Delaying precipitation by air pollution over the Pearl River Delta: 2. Model simulations. J. Geophys. Res. 121, 11739–11760 (2016).

    Google Scholar 

  172. 172.

    Grabowski, W. W. Can the impact of aerosols on deep convection be isolated from meteorological effects in atmospheric observations? J. Atmos. Sci. 75, 3347–3363 (2018).

    Google Scholar 

  173. 173.

    Santer, B. D. et al. Contributions of anthropogenic and natural forcing to recent tropopause height changes. Science 301, 479–483 (2003).

    Google Scholar 

  174. 174.

    Finney, D. L. et al. Effects of explicit convection on future projections of mesoscale circulations, rainfall, and rainfall extremes over Eastern Africa. J. Clim. 33, 2701–2718 (2020).

    Google Scholar 

  175. 175.

    Gagin, A., Rosenfeld, D. & López, R. E. The relationship between height and precipitation characteristics of summertime convective cells in South Florida. J. Atmos. Sci. 42, 84–94 (1985).

    Google Scholar 

  176. 176.

    Berg, A. et al. Land–atmosphere feedbacks amplify aridity increase over land under global warming. Nat. Clim. Change 6, 869–874 (2016).

    Google Scholar 

  177. 177.

    Barbero, R., Abatzoglou, J. T. & Fowler, H. J. Contribution of large-scale midlatitude disturbances to hourly precipitation extremes in the United States. Clim. Dyn. 52, 197–208 (2019).

    Google Scholar 

  178. 178.

    Lamjiri, M. A., Dettinger, M. D., Ralph, F. M. & Guan, B. Hourly storm characteristics along the US West Coast: role of atmospheric rivers in extreme precipitation. Geophys. Res. Lett. 44, 7020–7028 (2017).

    Google Scholar 

  179. 179.

    Payne, A. E. et al. Responses and impacts of atmospheric rivers to climate change. Nat. Rev. Earth Environ. 1, 143–157 (2020).

    Google Scholar 

  180. 180.

    Moron, V., Barbero, R., Evans, J. P., Westra, S. & Fowler, H. J. Weather types and hourly to multiday rainfall characteristics in tropical Australia. J. Clim. 32, 3983–4011 (2019).

    Google Scholar 

  181. 181.

    Berghuijs, W. R., Harrigan, S., Molnar, P., Slater, L. J. & Kirchner, J. W. The relative importance of different flood-generating mechanisms across Europe. Water Resour. Res. 55, 4582–4593 (2019).

    Google Scholar 

  182. 182.

    Do, H. X., Westra, S., Leonard, M. & Gudmundsson, L. Global-scale prediction of flood timing using atmospheric reanalysis. Water Resour. Res. 56, e2019WR024945 (2020).

    Google Scholar 

  183. 183.

    Merz, R. & Blöschl, G. A process typology of regional floods. Water Resour. Res. 39, 1340 (2003).

    Google Scholar 

  184. 184.

    Tarasova, L. et al. Causative classification of river flood events. Wiley Interdiscip. Rev. Water 6, e1353 (2019).

    Google Scholar 

  185. 185.

    Lenggenhager, S., Croci-Maspoli, M., Brönnimann, S. & Martius, O. On the dynamical coupling between atmospheric blocks and heavy precipitation events: a discussion of the southern Alpine flood in October 2000. Q. J. R. Meteorol. Soc. 145, 530–545 (2019).

    Google Scholar 

  186. 186.

    Nikumbh, A. C., Chakraborty, A. & Bhat, G. S. Recent spatial aggregation tendency of rainfall extremes over India. Sci. Rep. 9, 10321 (2019).

    Google Scholar 

  187. 187.

    Zanardo, S., Nicotina, L., Hilberts, A. G. J. & Jewson, S. P. Modulation of economic losses from European floods by the North Atlantic Oscillation. Geophys. Res. Lett. 46, 2563–2572 (2019).

    Google Scholar 

  188. 188.

    Terti, G., Ruin, I., Anquetin, S. & Gourley, J. J. A situation-based analysis of flash flood fatalities in the United States. Bull. Am. Meteorol. Soc. 98, 333–345 (2017).

    Google Scholar 

  189. 189.

    Doswell, C. A. III, Brooks, H. E. & Maddox, R. A. Flash flood forecasting: an ingredients-based methodology. Weather Forecast. 11, 560–581 (1996).

    Google Scholar 

  190. 190.

    Hapuarachchi, H. A. P., Wang, Q. J. & Pagano, T. C. A review of advances in flash flood forecasting. Hydrol. Process. 25, 2771–2784 (2011).

    Google Scholar 

  191. 191.

    Johnson, F. et al. Natural hazards in Australia: floods. Clim. Change 139, 21–35 (2016).

    Google Scholar 

  192. 192.

    Eekhout, J. P. C., Hunink, J. E., Terink, W. & de Vente, J. Why increased extreme precipitation under climate change negatively affects water security. Hydrol. Earth Syst. Sci. 22, 5935–5946 (2018).

    Google Scholar 

  193. 193.

    Kirchner, J. W. Catchments as simple dynamical systems: catchment characterization, rainfall-runoff modeling, and doing hydrology backward. Water Resour. Res. 45, W02429 (2009).

    Google Scholar 

  194. 194.

    Blöschl, G. et al. Changing climate both increases and decreases European river floods. Nature 573, 108–111 (2019).

    Google Scholar 

  195. 195.

    Rajah, K. et al. Changes to the temporal distribution of daily precipitation. Geophys. Res. Lett. 41, 8887–8894 (2014).

    Google Scholar 

  196. 196.

    Bennett, B., Leonard, M., Deng, Y. & Westra, S. An empirical investigation into the effect of antecedent precipitation on flood volume. J. Hydrol. 567, 435–445 (2018).

    Google Scholar 

  197. 197.

    Sharma, A., Wasko, C. & Lettenmaier, D. P. If precipitation extremes are increasing, why aren’t floods? Water Resour. Res. 54, 8545–8551 (2018).

    Google Scholar 

  198. 198.

    Wasko, C. & Nathan, R. Influence of changes in rainfall and soil moisture on trends in flooding. J. Hydrol. 575, 432–441 (2019).

    Google Scholar 

  199. 199.

    Musselman, K. N. et al. Projected increases and shifts in rain-on-snow flood risk over western North America. Nat. Clim. Change 8, 808–812 (2018).

    Google Scholar 

  200. 200.

    Ward, P. J. et al. Dependence between high sea-level and high river discharge increases flood hazard in global deltas and estuaries. Environ. Res. Lett. 13, 084012 (2018).

    Google Scholar 

  201. 201.

    Wu, W. et al. Mapping dependence between extreme rainfall and storm surge. J. Geophys. Res. Oceans 123, 2461–2474 (2018).

    Google Scholar 

  202. 202.

    Bevacqua, E. et al. Higher probability of compound flooding from precipitation and storm surge in Europe under anthropogenic climate change. Sci. Adv. 5, eaaw5531 (2019).

    Google Scholar 

  203. 203.

    Leonard, M. et al. A compound event framework for understanding extreme impacts. Wiley Interdiscip. Rev. Clim. Change 5, 113–128 (2014).

    Google Scholar 

  204. 204.

    Zscheischler, J. et al. Future climate risk from compound events. Nat. Clim. Change 8, 469–477 (2018).

    Google Scholar 

  205. 205.

    Do, H. X., Westra, S. & Leonard, M. A global-scale investigation of trends in annual maximum streamflow. J. Hydrol. 552, 28–43 (2017).

    Google Scholar 

  206. 206.

    Erlingis, J. M., Gourley, J. J. & Basara, J. B. Diagnosing moisture sources for flash floods in the United States. Part II: Terrestrial and oceanic sources of moisture. J. Hydrometeorol. 20, 1511–1531 (2019).

    Google Scholar 

  207. 207.

    Do, H. X., Gudmundsson, L., Leonard, M. & Westra, S. The global streamflow indices and metadata archive - part 1: station catalog and catchment boundary. PANGAEA https://doi.org/10.1594/PANGAEA.887477 (2018).

    Article  Google Scholar 

  208. 208.

    Villarini, G. et al. Flood frequency analysis for nonstationary annual peak records in an urban drainage basin. Adv. Water Resour. 32, 1255–1266 (2009).

    Google Scholar 

  209. 209.

    Arnell, N. W. & Gosling, S. N. The impacts of climate change on river flood risk at the global scale. Clim. Change 134, 387–401 (2016).

    Google Scholar 

  210. 210.

    Dankers, R. et al. First look at changes in flood hazard in the Inter-Sectoral Impact Model Intercomparison Project ensemble. Proc. Natl Acad. Sci. USA 111, 3257–3261 (2014).

    Google Scholar 

  211. 211.

    Do, H. X. et al. Historical and future changes in global flood magnitude — evidence from a model–observation investigation. Hydrol. Earth Syst. Sci. Discuss. 24, 1543–1564 (2019).

    Google Scholar 

  212. 212.

    Hirabayashi, Y. et al. Global flood risk under climate change. Nat. Clim. Change 3, 816–821 (2013).

    Google Scholar 

  213. 213.

    Morrison, A., Villarini, G., Zhang, W. & Scoccimarro, E. Projected changes in extreme precipitation at sub-daily and daily time scales. Glob. Planet. Change 182, 103004 (2019).

    Google Scholar 

  214. 214.

    Döll, P., Douville, H., Güntner, A., Müller Schmied, H. & Wada, Y. Modelling freshwater resources at the global scale: challenges and prospects. Surv. Geophys. 37, 195–221 (2016).

    Google Scholar 

  215. 215.

    Wada, Y. et al. Human-water interface in hydrological modelling: current status and future directions. Hydrol. Earth Syst. Sci. 21, 4169–4193 (2017).

    Google Scholar 

  216. 216.

    Alexander, K., Hettiarachchi, S., Ou, Y. & Sharma, A. Can integrated green spaces and storage facilities absorb the increased risk of flooding due to climate change in developed urban environments? J. Hydrol. 579, 124201 (2019).

    Google Scholar 

  217. 217.

    Hettiarachchi, S., Wasko, C. & Sharma, A. Increase in flood risk resulting from climate change in a developed urban watershed – the role of storm temporal patterns. Hydrol. Earth Syst. Sci. 22, 2041–2056 (2018).

    Google Scholar 

  218. 218.

    Beck, H. E. et al. MSWEP: 3-hourly 0.25° global gridded precipitation (1979-2015) by merging gauge, satellite, and reanalysis data. Hydrol. Earth Syst. Sci. 21, 589–615 (2017).

    Google Scholar 

  219. 219.

    Beck, H. E. et al. MSWEP V2 global 3-hourly 0.1° precipitation: methodology and quantitative assessment. Bull. Am. Meteorol. Soc. 100, 473–500 (2019).

    Google Scholar 

  220. 220.

    Satoh, M. et al. Global cloud-resolving models. Curr. Clim. Change Rep. 5, 172–184 (2019).

    Google Scholar 

  221. 221.

    Coppola, E. et al. A first-of-its-kind multi-model convection permitting ensemble for investigating convective phenomena over Europe and the Mediterranean. Clim. Dyn. 55, 3–34 (2018).

    Google Scholar 

  222. 222.

    Meredith, E. P., Ulbrich, U. & Rust, H. W. The diurnal nature of future extreme precipitation intensification. Geophys. Res. Lett. 46, 7680–7689 (2019).

    Google Scholar 

  223. 223.

    Paquita, Z., Torri, G., Muller, C. & Chandra, A. A survey of precipitation-induced atmospheric cold pools over oceans and their interactions with the larger-scale environment. Surv. Geophys. 38, 1283–1305 (2017).

    Google Scholar 

  224. 224.

    Allan, R. P. et al. Advances in understanding large-scale responses of the water cycle to climate change. Ann. NY Acad. Sci. 1472, 49–75 (2020).

    Google Scholar 

Download references

Acknowledgements

H.J.F., G.L., R.B., S.B., S.G. and E.L. have been supported by the European Research Council (INTENSE; grant no. ERC-2013-CoG-617329). H.J.F. and S.B. are also supported by the UK Natural Environment Research Council (FUTURE-STORMS, NE/R01079X/1). H.J.F. is funded by the Wolfson Foundation and the Royal Society through a Royal Society Wolfson Research Merit Award (grant no. WM140025). The National Center for Atmospheric Research is sponsored by the US National Science Foundation. E.J.K. is supported by the Met Office Hadley Centre Climate Programme funded by the UK Department for Business, Energy & Industrial Strategy and the Department for Environment, Food & Rural Affairs (grant no. GA01101). R.P.A. acknowledges the ERA4CS INDECIS project funded by the European Union (grant no. 690462). J.O.H. gratefully acknowledges funding from the Villum Foundation (grant no. 13168), the European Research Council under the European Union’s Horizon 2020 Research and Innovation programme (grant no. 771859) and the Novo Nordisk Foundation Interdisciplinary Synergy Program (grant no. NNF19OC0057374). G.V. acknowledges funding from the US Army Corps of Engineers’ Institute for Water Resources (IWR).

Author information

Affiliations

Authors

Contributions

H.J.F. led the writing of the manuscript, the figure contributions and coordinated all contributions. G.L. led the section on temperature scaling and designed Fig. 2. A.F.P. led the review of convection-permitting modelling and designed Fig. 5. S.W. led the section on flood hazard. E.L. designed Fig. 1, R.P.A. designed Fig. 6, S.B. designed Fig. 4, and P.B. and J.O.H. designed Fig. 3. All authors discussed the content and contributed to the writing of the manuscript.

Corresponding author

Correspondence to Hayley J. Fowler.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Earth & Environment thanks J. Nie, S.-K. Min and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related Links

KNMI hourly data: http://projects.knmi.nl/klimatologie/uurgegevens/selectie.cgi

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fowler, H.J., Lenderink, G., Prein, A.F. et al. Anthropogenic intensification of short-duration rainfall extremes. Nat Rev Earth Environ 2, 107–122 (2021). https://doi.org/10.1038/s43017-020-00128-6

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing