Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Measuring, modelling and projecting coastal land subsidence

A Publisher Correction to this article was published on 17 December 2020

This article has been updated


Coastal subsidence contributes to relative sea-level rise and exacerbates flooding hazards, with the at-risk population expected to triple by 2070. Natural processes of vertical land motion, such as tectonics, glacial isostatic adjustment and sediment compaction, as well as anthropogenic processes, such as fluid extraction, lead to globally variable subsidence rates. In this Review, we discuss the key physical processes driving vertical land motion in coastal areas. Use of space-borne and land-based techniques and the associated uncertainties for monitoring subsidence are examined, as are physics-based models used to explain contemporary subsidence rates and to obtain future projections. Steady and comparatively low rates of subsidence and uplift owing to tectonic processes and glacial isostatic adjustment can be assumed for the twenty-first century. By contrast, much higher and variable subsidence rates occur owing to compaction associated with sediment loading and fluid extraction, as well as large earthquakes. These rates can be up to two orders of magnitude higher than the present-day rate of global sea-level rise. Multi-objective predictive models are required to account for the underlying physical processes and socio-economic factors that drive subsidence.

Key points

  • Realistic estimates of the impact of sea-level rise on coastal communities require knowledge of coastal subsidence.

  • Subsidence rates due to glacial isostatic adjustment and basin tectonics are steady, except in places that experience contemporary ice loss.

  • Processes such as natural sediment compaction, organic-matter oxidation, aquifer-system and hydrocarbon-reservoir compaction, and large earthquakes cause coastal-subsidence rates that are highly variable in space and time.

  • Human effects in the coastal zone can accelerate subsidence, with rates up to two orders of magnitude higher than present-day rates of geocentric sea-level rise.

  • State-of-the-art, physics-based numerical models enable quantification of present and prediction of future coastal subsidence for a range of different natural and anthropogenic processes.

  • Coastal subsidence is a highly complex problem with large spatio-temporal variability owing to multiple processes, requiring multidisciplinary approaches to characterize the driving mechanisms and to elucidate their individual contributions, as well as to enable predictions.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Conceptual model of mechanisms causing land subsidence in the coastal zone.
Fig. 2: Measuring coastal land subsidence.
Fig. 3: Worldwide observations of coastal land subsidence.
Fig. 4: Modelling vertical land motion.
Fig. 5: Observed, modelled and predicted aquifer-system compaction and vertical land motion due to earthquake cycle.
Fig. 6: Impact of land subsidence on coastal inundation.

Change history

  • 17 December 2020

    A correction to this paper has been published:


  1. 1.

    Hauer, M. E. et al. Sea-level rise and human migration. Nat. Rev. Earth Environ. 1, 28–39 (2020).

    Article  Google Scholar 

  2. 2.

    Neumann, B., Vafeidis, A. T., Zimmermann, J. & Nicholls, R. J. Future coastal population growth and exposure to sea-level rise and coastal flooding-a global assessment. PLoS ONE 10, e0118571 (2015).

    Article  Google Scholar 

  3. 3.

    Milliman, J. & Haq, B. U. Sea-Level Rise and Coastal Subsidence: Causes, Consequences, and Strategies Vol. 2 (Springer, 1996). A comprehensive overview that highlights the fact that coastal subsidence is commonly human-induced.

  4. 4.

    Hanson, S. et al. A global ranking of port cities with high exposure to climate extremes. Clim. Change 104, 89–111 (2011).

    Article  Google Scholar 

  5. 5.

    Kulp, S. A. & Strauss, B. H. New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding. Nat. Commun. 10, 4844 (2019).

    Article  Google Scholar 

  6. 6.

    Cazenave, A. et al. Global sea-level budget 1993–present. Earth Syst. Sci. Data 10, 1551–1590 (2018).

    Article  Google Scholar 

  7. 7.

    Frederikse, T. et al. The causes of sea-level rise since 1900. Nature 584, 393–397 (2020).

    Article  Google Scholar 

  8. 8.

    Gregory, J. M. et al. Concepts and terminology for sea level: mean, variability and change, both local and global. Surv. Geophys. 40, 1251–1289 (2019). Community paper that standardizes sea-level terminology, including VLM, in a mathematically rigorous way.

    Article  Google Scholar 

  9. 9.

    Khan, N. S. et al. Inception of a global atlas of sea levels since the Last Glacial Maximum. Quat. Sci. Rev. 220, 359–371 (2019).

    Article  Google Scholar 

  10. 10.

    Syvitski, J. P. et al. Sinking deltas due to human activities. Nat. Geosci. 2, 681–686 (2009).

    Article  Google Scholar 

  11. 11.

    Farrell, W. & Clark, J. A. On postglacial sea level. Geophys. J. Int. 46, 647–667 (1976).

    Article  Google Scholar 

  12. 12.

    Kendall, R. A., Mitrovica, J. X. & Milne, G. A. On post-glacial sea level–II. Numerical formulation and comparative results on spherically symmetric models. Geophys. J. Int. 161, 679–706 (2005).

    Article  Google Scholar 

  13. 13.

    Peltier, W. Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE. Annu. Rev. Earth Planet. Sci. 32, 111–149 (2004).

    Article  Google Scholar 

  14. 14.

    Atwater, B. F. Evidence for great Holocene earthquakes along the outer coast of Washington State. Science 236, 942–944 (1987).

    Article  Google Scholar 

  15. 15.

    Nelson, A. R., Shennan, I. & Long, A. J. Identifying coseismic subsidence in tidal-wetland stratigraphic sequences at the Cascadia subduction zone of western North America. J. Geophys. Res. Solid Earth 101, 6115–6135 (1996).

    Article  Google Scholar 

  16. 16.

    Cahoon, D. R., Reed, D. J. & Day, J. W. Jr. Estimating shallow subsidence in microtidal salt marshes of the southeastern United States: Kaye and Barghoorn revisited. Mar. Geol. 128, 1–9 (1995). Pioneering study that shows how the RSET method can be used to calculate subsidence rates within the shallowest subsurface of coastal wetlands.

    Article  Google Scholar 

  17. 17.

    Kaye, C. A. & Barghoorn, E. S. Late Quaternary sea-level change and crustal rise at Boston, Massachusetts, with notes on the autocompaction of peat. Geol. Soc. Am. Bull. 75, 63–80 (1964).

    Article  Google Scholar 

  18. 18.

    Van Asselen, S., Stouthamer, E. & Van Asch, T. W. Effects of peat compaction on delta evolution: a review on processes, responses, measuring and modeling. Earth Sci. Rev. 92, 35–51 (2009).

    Article  Google Scholar 

  19. 19.

    Zoccarato, C., Minderhoud, P. S. & Teatini, P. The role of sedimentation and natural compaction in a prograding delta: insights from the mega Mekong delta, Vietnam. Sci. Rep. 8, 11437 (2018).

    Article  Google Scholar 

  20. 20.

    Gambolati, G. et al. Peat land oxidation enhances subsidence in the Venice watershed. Eos Trans. Am. Geophys. Union 86, 217–220 (2005).

    Article  Google Scholar 

  21. 21.

    Hooijer, A. et al. Subsidence and carbon loss in drained tropical peatlands. Biogeosciences 9, 1053–1071 (2012).

    Article  Google Scholar 

  22. 22.

    Koster, K. et al. Three-dimensional distribution of organic matter in coastal-deltaic peat: implications for subsidence and carbon dioxide emissions by human-induced peat oxidation. Anthropocene 22, 1–9 (2018).

    Article  Google Scholar 

  23. 23.

    Schothorst, C. Subsidence of low moor peat soils in the western Netherlands. Geoderma 17, 265–291 (1977).

    Article  Google Scholar 

  24. 24.

    van Asselen, S. et al. The relative contribution of peat compaction and oxidation to subsidence in built-up areas in the Rhine-Meuse delta, The Netherlands. Sci. Total Environ. 636, 177–191 (2018).

    Article  Google Scholar 

  25. 25.

    Galloway, D. L. & Burbey, T. J. Review: regional land subsidence accompanying groundwater extraction. Hydrol. J. 19, 1459–1486 (2011).

    Google Scholar 

  26. 26.

    Ingebritsen, S. E. & Galloway, D. L. Coastal subsidence and relative sea level rise. Environ. Res. Lett. 9, 091002 (2014).

    Article  Google Scholar 

  27. 27.

    Tosi, L., Teatini, P., Carbognin, L. & Brancolini, G. Using high resolution data to reveal depth-dependent mechanisms that drive land subsidence: the Venice coast, Italy. Tectonophysics 274, 271–284 (2009).

    Article  Google Scholar 

  28. 28.

    DeConto, R. M. & Pollard, D. Contribution of Antarctica to past and future sea-level rise. Nature 531, 591–597 (2016).

    Article  Google Scholar 

  29. 29.

    Oppenheimer, M. et al. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate Ch. 4 (eds Pörtner, H.-O. et al.) 321–445 (IPCC, 2019).

  30. 30.

    Bierkens, M. F. & Wada, Y. Non-renewable groundwater use and groundwater depletion: a review. Environ. Res. Lett. 14, 063002 (2019).

    Article  Google Scholar 

  31. 31.

    Rehrl, T. & Friedrich, R. Modelling long-term oil price and extraction with a Hubbert approach: the LOPEX model. Energy Policy 34, 2413–2428 (2006).

    Article  Google Scholar 

  32. 32.

    Bertrand, S. et al. Sedimentary record of coseismic subsidence in Hersek coastal lagoon (Izmit Bay, Turkey) and the late Holocene activity of the North Anatolian Fault. Geochem. Geophys. Geosyst. 12, Q06002 (2011).

    Article  Google Scholar 

  33. 33.

    Hawkes, A. D., Horton, B., Nelson, A., Vane, C. & Sawai, Y. Coastal subsidence in Oregon, USA, during the giant Cascadia earthquake of AD 1700. Quat. Sci. Rev. 30, 364–376 (2011).

    Article  Google Scholar 

  34. 34.

    Jankowski, K. L., Törnqvist, T. E. & Fernandes, A. M. Vulnerability of Louisiana’s coastal wetlands to present-day rates of relative sea-level rise. Nat. Commun. 8, 14792 (2017).

    Article  Google Scholar 

  35. 35.

    Brown, S. & Nicholls, R. Subsidence and human influences in mega deltas: the case of the Ganges–Brahmaputra–Meghna. Sci. Total Environ. 527, 362–374 (2015).

    Article  Google Scholar 

  36. 36.

    Dixon, T. H. et al. Space geodesy: subsidence and flooding in New Orleans. Nature 441, 587–588 (2006).

    Article  Google Scholar 

  37. 37.

    Mazzotti, S., Lambert, A., Van der Kooij, M. & Mainville, A. Impact of anthropogenic subsidence on relative sea-level rise in the Fraser River delta. Geology 37, 771–774 (2009).

    Article  Google Scholar 

  38. 38.

    Minderhoud, P., Middelkoop, H., Erkens, G. & Stouthamer, E. Groundwater extraction may drown mega-delta: projections of extraction-induced subsidence and elevation of the Mekong delta for the 21st century. Environ. Res. Commun. 2, 011005 (2020). Modelling approach to capture uncertainty of future human-induced subsidence and its effect on RSL rise using extraction scenarios.

    Article  Google Scholar 

  39. 39.

    Aerts, J. C. J. H. et al. Evaluating flood resilience strategies for coastal megacities. Science 344, 472–474 (2014).

    Article  Google Scholar 

  40. 40.

    Morris, E. P., Gomez-Enri, J. & van der Wal, D. Copernicus downstream service supports nature-based flood defense use of sentinel earth observation satellites for coastal needs. Sea Technol. 56, 23–26 (2015).

    Google Scholar 

  41. 41.

    Brain, M. J. Past, present and future perspectives of sediment compaction as a driver of relative sea level and coastal change. Curr. Clim. Change Rep. 2, 75–85 (2016).

    Article  Google Scholar 

  42. 42.

    Higgins, S. A. Advances in delta-subsidence research using satellite methods. Hydrogeol. J. 24, 587–600 (2016).

    Article  Google Scholar 

  43. 43.

    Wöppelmann, G. & Marcos, M. Vertical land motion as a key to understanding sea level change and variability. Rev. Geophys 54, 64–92 (2016).

    Article  Google Scholar 

  44. 44.

    Allen, M. B., Macdonald, D. I., Xun, Z., Vincent, S. J. & Brouet-Menzies, C. Early Cenozoic two-phase extension and late Cenozoic thermal subsidence and inversion of the Bohai Basin, northern China. Mar. Pet. Geol. 14, 951–972 (1997).

    Article  Google Scholar 

  45. 45.

    Sclater, J. G., Taupart, C. & Galson, D. The heat flow through oceanic and continental crust and the heat loss of the Earth. Rev. Geophys. Space Phys. 18, 269–311 (1980).

    Article  Google Scholar 

  46. 46.

    Leeper, R. et al. Evidence for coseismic subsidence events in a southern California coastal saltmarsh. Sci. Rep. 7, 44615 (2017).

    Article  Google Scholar 

  47. 47.

    Milker, Y. et al. Differences in coastal subsidence in southern Oregon (USA) during at least six prehistoric megathrust earthquakes. Quat. Sci. Rev. 142, 143–163 (2016).

    Article  Google Scholar 

  48. 48.

    Segall, P. Earthquake and Volcano Deformation. Ch. 2 & Ch. 3 (Princeton Univ. Press, 2010).

  49. 49.

    Dura, T. et al. Coastal evidence for Holocene subduction-zone earthquakes and tsunamis in central Chile. Quat. Sci. Rev. 113, 93–111 (2015).

    Article  Google Scholar 

  50. 50.

    Dura, T. et al. Subduction zone slip variability during the last millennium, south-central Chile. Quat. Sci. Rev. 175, 112–137 (2017). A multi-proxy paleoseismic study from the overlap of the 1960 and 2010 Chilean earthquakes that documents a mixed coseismic uplift and subsidence history of the coastline.

    Article  Google Scholar 

  51. 51.

    Fujiwara, O., Fujino, S., Komatsubara, J., Morita, Y. & Namegaya, Y. Paleoecological evidence for coastal subsidence during five great earthquakes in the past 1500 years along the northern onshore continuation of the Nankai subduction zone. Quat. Int. 397, 523–540 (2016).

    Article  Google Scholar 

  52. 52.

    Govers, R., Furlong, K. P., Van de Wiel, L., Herman, M. & Broerse, T. The geodetic signature of the earthquake cycle at subduction zones: model constraints on the deep processes. Rev. Geophys. 56, 6–49 (2018).

    Article  Google Scholar 

  53. 53.

    Sawai, Y. et al. Transient uplift after a 17th-century earthquake along the Kuril subduction zone. Science 306, 1918–1920 (2004).

    Article  Google Scholar 

  54. 54.

    Satirapod, C., Trisirisatayawong, I., Fleitout, L., Garaud, J. & Simons, W. Vertical motions in Thailand after the 2004 Sumatra–Andaman Earthquake from GPS observations and its geophysical modelling. Adv. Space Res. 51, 1565–1571 (2013).

    Article  Google Scholar 

  55. 55.

    Brown, L. F. Jr, Loucks, R. G., Trevino, R. H. & Hammes, U. Understanding growth-faulted, intraslope subbasins by applying sequence-stratigraphic principles: Examples from the south Texas Oligocene Frio Formation. AAPG Bull. 88, 1501–1523 (2004).

    Article  Google Scholar 

  56. 56.

    Karegar, M. A., Dixon, T. H. & Malservisi, R. A three-dimensional surface velocity field for the Mississippi Delta: implications for coastal restoration and flood potential. Geology 43, 519–522 (2015).

    Article  Google Scholar 

  57. 57.

    McClay, K., Dooley, T., Ferguson, A. & Poblet, J. Tectonic evolution of the Sanga Sanga Block, Mahakam Delta, Kalimantan, Indonesia. AAPG Bull. 84, 765–786 (2000).

    Google Scholar 

  58. 58.

    Shen, Z. et al. Mechanisms of Late Quaternary fault throw-rate variability along the north central Gulf of Mexico coast: implications for coastal subsidence. Basin Res. 29, 557–570 (2017).

    Article  Google Scholar 

  59. 59.

    Edwards, M. B. Growth faults in upper Triassic deltaic sediments, Svalbard. AAPG Bull. 60, 341–355 (1976).

    Google Scholar 

  60. 60.

    Morley, C. K. & Guerin, G. Comparison of gravity-driven deformation styles and behavior associated with mobile shales and salt. Tectonics 15, 1154–1170 (1996).

    Article  Google Scholar 

  61. 61.

    Thorsen, C. E. Age of growth faulting in southeast Louisiana. GCAGS Trans. 13, 103–110 (1963).

    Google Scholar 

  62. 62.

    Vendeville, B. Mechanisms generating normal fault curvature: a review illustrated by physical models. Geol. Soc. London Spec. Publ. 56, 241–249 (1991).

    Article  Google Scholar 

  63. 63.

    Crans, W., Mandl, G. & Haremboure, J. On the theory of growth faulting*: a geomechanical delta model based on gravity sliding. J. Pet. Geol. 2, 265–307 (1980).

    Article  Google Scholar 

  64. 64.

    White, N., Jackson, J. & McKenzie, D. The relationship between the geometry of normal faults and that of the sedimentary layers in their hanging walls. J. Struct. Geol. 8, 897–909 (1986).

    Article  Google Scholar 

  65. 65.

    Back, S., Höcker, C., Brundiers, M. & Kukla, P. Three-dimensional-seismic coherency signature of Niger Delta growth faults: integrating sedimentology and tectonics. Basin Res. 18, 323–337 (2006).

    Article  Google Scholar 

  66. 66.

    Dokka, R. K. The role of deep processes in late 20th century subsidence of New Orleans and coastal areas of southern Louisiana and Mississippi. J. Geophys. Res. Solid Earth 116, B06403 (2011).

    Article  Google Scholar 

  67. 67.

    Frederick, B. C., Blum, M., Fillon, R. & Roberts, H. Resolving the contributing factors to Mississippi Delta subsidence: past and present. Basin Res. 31, 171–190 (2019). An assessment of long-term subsidence patterns and rates based on an unprecedented analysis of >80,000 industry wells.

    Article  Google Scholar 

  68. 68.

    Conrad, C. P. & Hager, B. H. Spatial variations in the rate of sea level rise caused by the present-day melting of glaciers and ice sheets. Geophys. Res. Lett. 24, 1503–1506 (1997).

    Article  Google Scholar 

  69. 69.

    Milne, G. A. & Mitrovica, J. X. Postglacial sea-level change on a rotating Earth. Geophys. J. Int. 133, 1–19 (1998).

    Article  Google Scholar 

  70. 70.

    Mitrovica, J. X. & Peltier, W. R. On postglacial geoid subsidence over the equatorial oceans. J. Geophys. Res. Solid Earth 96, 20053–20071 (1991).

    Article  Google Scholar 

  71. 71.

    Spada, G. in Integrative Study of the Mean Sea Level and Its Components 155–187 (Springer, 2017).

  72. 72.

    Whitehouse, P. L. Glacial isostatic adjustment modelling: historical perspectives, recent advances, and future directions. Earth Surf. Dyn. 6, 401–429 (2018).

    Article  Google Scholar 

  73. 73.

    Lidberg, M., Johansson, J. M., Scherneck, H.-G. & Milne, G. A. Recent results based on continuous GPS observations of the GIA process in Fennoscandia from BIFROST. J. Geodyn. 50, 8–18 (2010).

    Article  Google Scholar 

  74. 74.

    Sella, G. F. et al. Observation of glacial isostatic adjustment in “stable” North America with GPS. Geophys. Res. Lett. 34, L02306 (2007).

    Article  Google Scholar 

  75. 75.

    Barletta, V. R. et al. Observed rapid bedrock uplift in Amundsen Sea Embayment promotes ice-sheet stability. Science 360, 1335–1339 (2018).

    Article  Google Scholar 

  76. 76.

    Khan, S. A., Wahr, J., Bevis, M., Velicogna, I. & Kendrick, E. Spread of ice mass loss into northwest Greenland observed by GRACE and GPS. Geophys. Res. Lett. 37, L06501 (2010).

    Article  Google Scholar 

  77. 77.

    Larsen, C. F., Motyka, R. J., Freymueller, J. T., Echelmeyer, K. A. & Ivins, E. R. Rapid viscoelastic uplift in southeast Alaska caused by post-Little Ice Age glacial retreat. Earth Planet. Sci. Lett. 237, 548–560 (2005).

    Article  Google Scholar 

  78. 78.

    Sasgen, I. et al. Altimetry, gravimetry, GPS and viscoelastic modeling data for the joint inversion for glacial isostatic adjustment in Antarctica (ESA STSE Project REGINA). Earth Syst. Sci. Data 10, 493–523 (2018).

    Article  Google Scholar 

  79. 79.

    Blum, M. D., Tomkin, J. H., Purcell, A. & Lancaster, R. R. Ups and downs of the Mississippi Delta. Geology 36, 675–678 (2008).

    Article  Google Scholar 

  80. 80.

    Wolstencroft, M., Shen, Z., Törnqvist, T. E., Milne, G. A. & Kulp, M. Understanding subsidence in the Mississippi Delta region due to sediment, ice, and ocean loading: insights from geophysical modeling. J. Geophys. Res. Solid Earth 119, 3838–3856 (2014).

    Article  Google Scholar 

  81. 81.

    Yu, S.-Y., Törnqvist, T. E. & Hu, P. Quantifying Holocene lithospheric subsidence rates underneath the Mississippi Delta. Earth Planet. Sci. Lett. 331, 21–30 (2012).

    Article  Google Scholar 

  82. 82.

    Grall, C. et al. A base-level stratigraphic approach to determining Holocene subsidence of the Ganges–Meghna–Brahmaputra Delta plain. Earth Planet. Sci. Lett. 499, 23–36 (2018).

    Article  Google Scholar 

  83. 83.

    Karpytchev, M. et al. Contributions of a strengthened early Holocene monsoon and sediment loading to present-day subsidence of the Ganges–Brahmaputra delta. Geophys. Res. Lett. 45, 1433–1442 (2018).

    Article  Google Scholar 

  84. 84.

    Watts, A. B. Isostasy and Flexure of the Lithosphere (Cambridge Univ. Press, 2001).

  85. 85.

    Farrell, W. E. Deformation of the Earth by surface loads. Rev. Geophys. Space Phys. 10, 761–797 (1972).

    Article  Google Scholar 

  86. 86.

    Steckler, M. S. et al. Modeling Earth deformation from monsoonal flooding in Bangladesh using hydrographic, GPS, and Gravity Recovery and Climate Experiment (GRACE) data. J. Geophys. Res. Solid Earth 115, B08407 (2010).

    Article  Google Scholar 

  87. 87.

    Keogh, M. E. & Törnqvist, T. E. Measuring rates of present-day relative sea-level rise in low-elevation coastal zones: a critical evaluation. Ocean Sci. 15, 61–73 (2019). Presents an alternative approach to tide gauges to more accurately determine the rate of RSL rise in coastal wetlands.

    Article  Google Scholar 

  88. 88.

    Liu, C.-W., Lin, W.-S., Shang, C. & Liu, S.-H. The effect of clay dehydration on land subsidence in the Yun-Lin coastal area, Taiwan. Environ. Geol. 40, 518–527 (2001).

    Article  Google Scholar 

  89. 89.

    Teatini, P., Tosi, L. & Strozzi, T. Quantitative evidence that compaction of Holocene sediments drives the present land subsidence of the Po Delta, Italy. J. Geophys. Res. Solid Earth 116, B08407 (2011).

    Article  Google Scholar 

  90. 90.

    Törnqvist, T. E. et al. Mississippi Delta subsidence primarily caused by compaction of Holocene strata. Nat. Geosci. 1, 173–176 (2008).

    Article  Google Scholar 

  91. 91.

    Audet, D. & Fowler, A. A mathematical model for compaction in sedimentary basins. Geophys. J. Int. 110, 577–590 (1992).

    Article  Google Scholar 

  92. 92.

    Fowler, A. C. & Yang, X.-S. Fast and slow compaction in sedimentary basins. SIAM J. Appl. Math. 59, 365–385 (1998).

    Article  Google Scholar 

  93. 93.

    Kooi, H. & De Vries, J. Land subsidence and hydrodynamic compaction of sedimentary basins. Hydrol. Earth Syst. Sci. Discuss. 2, 159–171 (1998). Applied a 1D model to investigate the compaction of basin sediments in response to sediment loading.

    Article  Google Scholar 

  94. 94.

    Meckel, T. A., ten Brink, U. S. & Williams, S. J. Current subsidence rates due to compaction of Holocene sediments in southern Louisiana. Geophys. Res. Lett. 33, L1140 (2006).

    Article  Google Scholar 

  95. 95.

    Spasojević, S., Liu, L., Gurnis, M. & Müller, R. D. The case for dynamic subsidence of the US east coast since the Eocene. Geophys. Res. Lett. 35, L08305 (2008).

    Article  Google Scholar 

  96. 96.

    Nienhuis, J. H., Törnqvist, T. E., Jankowski, K. L., Fernandes, A. M. & Keogh, M. E. A new subsidence map for coastal Louisiana. GSA Today 27, 58–59 (2017).

    Google Scholar 

  97. 97.

    Shirzaei, M. & Bürgmann, R. Global climate change and local land subsidence exacerbate inundation risk to the San Francisco Bay Area. Sci. Adv. 4, eaap9234 (2018).

    Article  Google Scholar 

  98. 98.

    Lovelock, C. E. et al. The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Nature 526, 559–563 (2015).

    Article  Google Scholar 

  99. 99.

    Chang, C., Mallman, E. & Zoback, M. Time-dependent subsidence associated with drainage-induced compaction in Gulf of Mexico shales bounding a severely depleted gas reservoir. AAPG Bull. 98, 1145–1159 (2014).

    Article  Google Scholar 

  100. 100.

    Chaussard, E., Bürgmann, R., Shirzaei, M., Fielding, E. J. & Baker, B. Predictability of hydraulic head changes and basin-wide aquifer and fault characterization from InSAR-derived ground deformation. J. Geophys. Res. Solid Earth 119, 6572–6590 (2014).

    Article  Google Scholar 

  101. 101.

    Gambolati, G. & Teatini, P. Geomechanics of subsurface water withdrawal and injection. Water Resour. Res. 51, 3922–3955 (2015).

    Article  Google Scholar 

  102. 102.

    Miller, M. M. & Shirzaei, M. Spatiotemporal characterization of land subsidence and uplift in Phoenix using InSAR time series and wavelet transforms. J. Geophys. Res. Solid Earth 120, 5822–5842 (2015).

    Article  Google Scholar 

  103. 103.

    Miller, M. M., Shirzaei, M. & Argus, D. Aquifer mechanical properties and decelerated compaction in Tucson, Arizona. J. Geophys. Res. Solid Earth 122, 8402–8416 (2017).

    Article  Google Scholar 

  104. 104.

    Ojha, C., Shirzaei, M., Werth, S., Argus, D. F. & Farr, T. G. Sustained groundwater loss in California’s Central Valley exacerbated by intense drought periods. Water Resour. Res. 54, 4449–4460 (2018).

    Article  Google Scholar 

  105. 105.

    Ojha, C., Werth, S. & Shirzaei, M. Recovery of aquifer-systems in Southwest US following 2012–2015 drought: evidence from InSAR, GRACE and groundwater level data. J. Hydrol. 587, 124943 (2020).

    Article  Google Scholar 

  106. 106.

    Teatini, P., Baú, D. & Gambolati, G. Water–gas dynamics and coastal land subsidence over Chioggia Mare field, northern Adriatic Sea. Hydrol. J. 8, 462–479 (2000).

    Google Scholar 

  107. 107.

    Biot, M. & Willis, D. The elastic coefficients of the theory of consolidation. J. Appl. Mech. 24, 594–601 (1957).

    Google Scholar 

  108. 108.

    Hoffmann, J., Galloway, D. L. & Zebker, H. A. Inverse modeling of interbed storage parameters using land subsidence observations, Antelope Valley, California. Water Resour. Res. 39, 1031 (2003).

    Article  Google Scholar 

  109. 109.

    Terzaghi, K. Theoretical Soil Mechanics 528 (Wiley, 1943).

  110. 110.

    Wang, H. F. Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology (Princeton Univ. Press, 2000).

  111. 111.

    Terzaghi, K. Principles of soil mechanics, IV—Settlement and consolidation of clay. Eng. News Record 95, 874–878 (1925).

    Google Scholar 

  112. 112.

    Galloway, D. L., Jones, D. R. & Ingebritsen, S. E. Land Subsidence in the United States Circular 1182 (US Geological Survey, 1999).

  113. 113.

    Chaussard, E. & Farr, T. G. A new method for isolating elastic from inelastic deformation in aquifer systems: application to the San Joaquin Valley, CA. Geophys. Res. Lett. 46, 10800–10809 (2019).

    Article  Google Scholar 

  114. 114.

    Ojha, C., Werth, S. & Shirzaei, M. Groundwater loss and aquifer system compaction in San Joaquin Valley during 2012–2015 drought. J. Geophys. Res. Solid Earth 124, 3127–3143 (2019).

    Article  Google Scholar 

  115. 115.

    Shirzaei, M., Ojha, C., Werth, S., Carlson, G. & Vivoni, E. R. Comment on “Short-lived pause in Central California subsidence after heavy winter precipitation of 2017” by K. D. Murray and R. B. Lohman. Sci. Adv. 5, eaav8038 (2019).

    Article  Google Scholar 

  116. 116.

    Smith, R. G. et al. Estimating the permanent loss of groundwater storage in the southern San Joaquin Valley, California. Water Resour. Res. 53, 2133–2148 (2017).

    Article  Google Scholar 

  117. 117.

    Scanlon, B. R. et al. Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proc. Natl Acad. Sci. USA 109, 9320–9325 (2012).

    Article  Google Scholar 

  118. 118.

    Taylor, R. G. et al. Ground water and climate change. Nat. Clim. Change 3, 322–329 (2013).

    Article  Google Scholar 

  119. 119.

    Minderhoud, P. S. et al. Impacts of 25 years of groundwater extraction on subsidence in the Mekong delta, Vietnam. Environ. Res. Lett. 12, 064006 (2017).

    Article  Google Scholar 

  120. 120.

    Erban, L. E., Gorelick, S. M. & Zebker, H. A. Groundwater extraction, land subsidence, and sea-level rise in the Mekong Delta, Vietnam. Environ. Res. Lett. 9, 084010 (2014).

    Article  Google Scholar 

  121. 121.

    Minderhoud, P. S. J., Hlavacova, I., Kolomaznik, J. & Neussner, O. Towards unraveling total subsidence of a mega-delta–the potential of new PS InSAR data for the Mekong delta. Proc. Int. Assoc. Hydrol. Sci. 382, 327–332 (2020).

    Google Scholar 

  122. 122.

    Morton, R. A., Bernier, J. C. & Barras, J. A. Evidence of regional subsidence and associated interior wetland loss induced by hydrocarbon production, Gulf Coast region, USA. Environ. Geol. 50, 261 (2006).

    Article  Google Scholar 

  123. 123.

    Qu, F. et al. Mapping ground deformation over Houston–Galveston, Texas using multi-temporal InSAR. Remote Sens. Environ. 169, 290–306 (2015).

    Article  Google Scholar 

  124. 124.

    Minderhoud, P. et al. The relation between land use and subsidence in the Vietnamese Mekong delta. Sci. Total Environ. 634, 715–726 (2018).

    Article  Google Scholar 

  125. 125.

    Hoogland, T., Van den Akker, J. & Brus, D. Modeling the subsidence of peat soils in the Dutch coastal area. Geoderma 171, 92–97 (2012).

    Article  Google Scholar 

  126. 126.

    Koster, K., Stafleu, J. & Stouthamer, E. Differential subsidence in the urbanised coastal-deltaic plain of the Netherlands. Neth. J. Geosci. 97, 215–227 (2018).

    Google Scholar 

  127. 127.

    Murray-Wallace, C. V. & Woodroffe, C. D. Quaternary Sea-Level Changes: A Global Perspective (Cambridge Univ. Press, 2014).

  128. 128.

    Shennan, I., Long, A. J. & Horton, B. P. Handbook of Sea-Level Research (Wiley, 2015).

  129. 129.

    Shennan, I. Flandrian sea-level changes in the Fenland. II: Tendencies of sea-level movement, altitudinal changes, and local and regional factors. J. Quat. Sci. 1, 155–179 (1986).

    Article  Google Scholar 

  130. 130.

    Barlow, N. L. et al. Salt marshes as late Holocene tide gauges. Glob. Planet. Change 106, 90–110 (2013).

    Article  Google Scholar 

  131. 131.

    Kiden, P. Holocene relative sea-level change and crustal movement in the southwestern Netherlands. Mar. Geol. 124, 21–41 (1995).

    Article  Google Scholar 

  132. 132.

    Engelhart, S. E., Horton, B. P., Douglas, B. C., Peltier, W. R. & Törnqvist, T. E. Spatial variability of late Holocene and 20th century sea-level rise along the Atlantic coast of the United States. Geology 37, 1115–1118 (2009).

    Article  Google Scholar 

  133. 133.

    Kemp, A., Horton, B. & Engelhart, S. in Encyclopedia of Quaternary Science 2nd edn 489–494 (Elsevier, 2013).

  134. 134.

    Garrett, E. et al. Reconstructing paleoseismic deformation, 2: 1000 years of great earthquakes at Chucalén, south central Chile. Quat. Sci. Rev. 113, 112–122 (2015).

    Article  Google Scholar 

  135. 135.

    Wang, K. & Tréhu, A. M. Invited review paper: Some outstanding issues in the study of great megathrust earthquakes—The Cascadia example. J. Geodyn. 98, 1–18 (2016).

    Article  Google Scholar 

  136. 136.

    Burgette, R. J., Weldon, R. J. & Schmidt, D. A. Interseismic uplift rates for western Oregon and along-strike variation in locking on the Cascadia subduction zone. J. Geophys. Res. Solid Earth 114, B01408 (2009).

    Article  Google Scholar 

  137. 137.

    Goldfinger, C. et al. The importance of site selection, sediment supply, and hydrodynamics: a case study of submarine paleoseismology on the northern Cascadia margin, Washington USA. Mar. Geol. 384, 4–46 (2017).

    Article  Google Scholar 

  138. 138.

    Tanaka, H. et al. Coastal and estuarine morphology changes induced by the 2011 Great East Japan Earthquake Tsunami. Coast. Eng. J. 54, 1250010 (2012).

    Article  Google Scholar 

  139. 139.

    Dzurisin, D. Volcano Deformation - New Geodetic Monitoring Techniques (Springer, 2006).

  140. 140.

    Vaníček, P. & Krakiwsky, E. Geodesy: The Concepts 237 (North-Holland, 1982).

  141. 141.

    Dzurisin, D. Geodetic leveling as a tool for studying restless in Monitoring Volcanoes; Techniques and Strategies Used by the Staff of the Cascades Volcano Observatory, 1980–90 125–134 (US Geological Survey, 1992).

  142. 142.

    Vanicek, P., Castle, R. O. & Balazs, E. I. Geodetic leveling and its applications. Rev. Geophys. 18, 505–524 (1980).

    Article  Google Scholar 

  143. 143.

    Lofgren, B. E. Measurement of compaction of aquifer systems in areas of land subsidence. US Geol. Surv. Prof. Pap. 424-B, 49–52 (1961).

    Google Scholar 

  144. 144.

    Riley, F. S. in Land Subsidence. Proceedings of the Third International Symposium on Land Subsidence 169–186 (International Association of Hydrological Sciences, 1986).

  145. 145.

    Burbey, T. J. Extensometer forensics: what can the data really tell us? Hydrol. J. 28, 637–655 (2020).

    Google Scholar 

  146. 146.

    Hung, W.-C. et al. Multiple sensors applied to monitorland subsidence in Central Taiwan. Proc. Int. Assoc. Hydrol. Sci. 372, 385–391 (2015).

    Google Scholar 

  147. 147.

    Boumans, R. M. & Day, J. W. High precision measurements of sediment elevation in shallow coastal areas using a sedimentation-erosion table. Estuaries 16, 375–380 (1993).

    Article  Google Scholar 

  148. 148.

    Cahoon, D. R. et al. High-precision measurements of wetland sediment elevation: II. The rod surface elevation table. J. Sediment. Res. 72, 734–739 (2002).

    Article  Google Scholar 

  149. 149.

    Webb, E. L. et al. A global standard for monitoring coastal wetland vulnerability to accelerated sea-level rise. Nat. Clim. Change 3, 458–465 (2013).

    Article  Google Scholar 

  150. 150.

    Cahoon, D. R. Estimating relative sea-level rise and submergence potential at a coastal wetland. Estuaries Coasts 38, 1077–1084 (2015).

    Article  Google Scholar 

  151. 151.

    Cahoon, D. R., Lynch, J. C. & Knaus, R. M. Improved cryogenic coring device for sampling wetland soils. J. Sediment. Res. 66, 1025–1027 (1996).

    Article  Google Scholar 

  152. 152.

    Dou, S. et al. Distributed acoustic sensing for seismic monitoring of the near surface: a traffic-noise interferometry case study. Sci. Rep. 7, 11620 (2017).

    Article  Google Scholar 

  153. 153.

    Jousset, P. et al. Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features. Nat. Commun. 9, 2509 (2018).

    Article  Google Scholar 

  154. 154.

    Lindsey, N. J. et al. Fiber-optic network observations of earthquake wavefields. Geophys. Res. Lett. 44, 11792–11799 (2017).

    Article  Google Scholar 

  155. 155.

    López-Higuera, J. M., Cobo, L. R., Incera, A. Q. & Cobo, A. Fiber optic sensors in structural health monitoring. J. Lightwave Technol. 29, 587–608 (2011).

    Article  Google Scholar 

  156. 156.

    Sun, Y.-j. et al. Distributed acquisition, characterization and process analysis of multi-field information in slopes. Eng. Geol. 182, 49–62 (2014).

    Article  Google Scholar 

  157. 157.

    Zhang, C. C. et al. Vertically distributed sensing of deformation using fiber optic sensing. Geophys. Res. Lett. 45, 11732–11741 (2018).

    Article  Google Scholar 

  158. 158.

    Habel, W. R. & Krebber, K. Fiber-optic sensor applications in civil and geotechnical engineering. Photonic Sens. 1, 268–280 (2011).

    Article  Google Scholar 

  159. 159.

    Gu, K. et al. Investigation of land subsidence with the combination of distributed fiber optic sensing techniques and microstructure analysis of soils. Eng. Geol. 240, 34–47 (2018).

    Article  Google Scholar 

  160. 160.

    DeWolf, S., Wyatt, F. K., Zumberge, M. A. & Hatfield, W. Improved vertical optical fiber borehole strainmeter design for measuring Earth strain. Rev. Sci. Instrum. 86, 114502 (2015).

    Article  Google Scholar 

  161. 161.

    Bock, Y. & Melgar, D. Physical applications of GPS geodesy: a review. Rep. Prog. Phys. 79, 106801 (2016).

    Article  Google Scholar 

  162. 162.

    Hofmann-Wellenhof, B., Lichtenegger, H. & Collins, J. Global Positioning System: Theory and Practice 5th edn (Springer, 2000).

  163. 163.

    Bossler, J. D., Goad, C. C. & Bender, P. L. Using the Global Positioning System (GPS) for geodetic positioning. Bull. Géodesique 54, 553 (1980).

    Article  Google Scholar 

  164. 164.

    Remondi, B. W. Performing centimeter-level surveys in seconds with GPS carrier phase: initial results. Navigation 32, 386–400 (1985).

    Article  Google Scholar 

  165. 165.

    Blewitt, G., Hammond, W. & Kreemer, C. Harnessing the GPS data explosion for interdisciplinary science. Eos 99, 1–2 (2018).

    Article  Google Scholar 

  166. 166.

    Karegar, M. A., Larson, K. M., Kusche, J. & Dixon, T. H. Novel quantification of shallow sediment compaction by GPS interferometric reflectometry and implications for flood susceptibility. Geophys. Res. Lett. 47, e2020GL087807 (2020). Use GPS interferometric reflectometry to estimate shallow sediment compaction rates in the Mississippi Delta and the North Sea’s eastern margin.

    Google Scholar 

  167. 167.

    Berardino, P., Fornaro, G., Lanari, R. & Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 40, 2375–2383 (2002).

    Article  Google Scholar 

  168. 168.

    Ferretti, A. et al. A new algorithm for processing interferometric data-stacks: SqueeSAR. IEEE Trans. Geosci. Remote Sens. 49, 3460–3470 (2011).

    Article  Google Scholar 

  169. 169.

    Ferretti, A., Prati, C. & Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 39, 8–20 (2001).

    Article  Google Scholar 

  170. 170.

    Hooper, A., Zebker, H., Segall, P. & Kampes, B. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys. Res. Lett. 31, L23611 (2004).

    Article  Google Scholar 

  171. 171.

    Massonnet, D. et al. The displacement field of the Landers earthquake mapped by radar interferometry. Nature 364, 138–142 (1993).

    Article  Google Scholar 

  172. 172.

    Bürgmann, R., Rosen, P. A. & Fielding, E. J. Synthetic aperture radar interferometry to measure Earth’s surface topography and its deformation. Annu. Rev. Earth Planet. Sci. 28, 169–209 (2000).

    Article  Google Scholar 

  173. 173.

    Hanssen, R. F. Radar Interferometry: Data Interpretation and Error Analysis (Kluwer, 2001).

  174. 174.

    Moreira, A. et al. A tutorial on synthetic aperture radar. IEEE Geosci. Remote Sens. Mag. 1, 6–43 (2013).

    Article  Google Scholar 

  175. 175.

    Franceschetti, G. & Lanari, R. Synthetic Aperture Radar Processing 328 (CRC Press, 1999).

  176. 176.

    Zebker, H. & Villasenor, J. Decorrelation in interferometric radar echoes. IEEE Trans. Geosci. Remote Sens. 30, 950–959 (1992).

    Article  Google Scholar 

  177. 177.

    Ferretti, A., Monti-Guarnieri, A., Prati, C., Rocca, F. & Massonnet, D. InSAR Principles: Guidelines for SAR Interferometry Processing and Interpretation (ed. Fletcher, K.) 48 (ESA Publications, 2007).

  178. 178.

    Altamimi, Z., Rebischung, P., Métivier, L. & Collilieux, X. ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions. J. Geophys. Res. Solid Earth 121, 6109–6131 (2016).

    Article  Google Scholar 

  179. 179.

    Allison, M. et al. Global risks and research priorities for coastal subsidence. Eos 97, 22–27 (2016).

    Article  Google Scholar 

  180. 180.

    Blackwell, E., Shirzaei, M., Ojha, C. & Werth, S. Tracking California’s sinking coast from space: implications for relative sea-level rise. Sci. Adv. 6, eaba4551 (2020). Obtains the first high-resolution map of VLM along California’s coast by combining InSAR and GNSS data.

    Article  Google Scholar 

  181. 181.

    Okada, Y. Surface deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am. 75, 1135–1154 (1985).

    Google Scholar 

  182. 182.

    Okada, Y. Internal deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am. 82, 1018–1040 (1992).

    Google Scholar 

  183. 183.

    Bürgmann, R. & Dresen, G. Rheology of the lower crust and upper mantle: evidence from rock mechanics, geodesy, and field observations. Annu. Rev. Earth Planet. Sci. 36, 531–567 (2008).

    Article  Google Scholar 

  184. 184.

    Schmalzle, G. M., McCaffrey, R. & Creager, K. C. Central Cascadia subduction zone creep. Geochem. Geophys. Geosyst. 15, 1515–1532 (2014).

    Article  Google Scholar 

  185. 185.

    Wang, P. L. et al. Heterogeneous rupture in the great Cascadia earthquake of 1700 inferred from coastal subsidence estimates. J. Geophys. Res. Solid Earth 118, 2460–2473 (2013).

    Article  Google Scholar 

  186. 186.

    Briggs, R. W. et al. Uplift and subsidence reveal a nonpersistent megathrust rupture boundary (Sitkinak Island, Alaska). Geophys. Res. Lett. 41, 2289–2296 (2014).

    Article  Google Scholar 

  187. 187.

    Sieh, K. et al. Earthquake supercycles inferred from sea-level changes recorded in the corals of west Sumatra. Science 322, 1674–1678 (2008).

    Article  Google Scholar 

  188. 188.

    Leonard, L. J., Hyndman, R. D. & Mazzotti, S. Coseismic subsidence in the 1700 great Cascadia earthquake: coastal estimates versus elastic dislocation models. Geol. Soc. Am. Bull. 116, 655–670 (2004).

    Article  Google Scholar 

  189. 189.

    Savage, J. C. A dislocation model of strain accumulation and release at a subduction zone. J. Geophys. Res. 88, 4984–4996 (1983).

    Article  Google Scholar 

  190. 190.

    Plafker, G. Alaskan earthquake of 1964 and Chilean earthquake of 1960: implications for arc tectonics. J. Geophys. Res. 77, 901–925 (1972).

    Article  Google Scholar 

  191. 191.

    Ely, L. L., Cisternas, M., Wesson, R. L. & Dura, T. Five centuries of tsunamis and land-level changes in the overlapping rupture area of the 1960 and 2010 Chilean earthquakes. Geology 42, 995–998 (2014).

    Article  Google Scholar 

  192. 192.

    Garrett, E., Shennan, I., Watcham, E. & Woodroffe, S. Reconstructing paleoseismic deformation, 1: modern analogues from the 1960 and 2010 Chilean great earthquakes. Quat. Sci. Rev. 75, 11–21 (2013).

    Article  Google Scholar 

  193. 193.

    Feng, L. et al. Active deformation near the Nicoya Peninsula, northwestern Costa Rica, between 1996 and 2010: interseismic megathrust coupling. J. Geophys. Res. Solid Earth 117, B06407 (2012).

    Article  Google Scholar 

  194. 194.

    Protti, M. et al. Nicoya earthquake rupture anticipated by geodetic measurement of the locked plate interface. Nat. Geosci. 7, 117–121 (2014).

    Article  Google Scholar 

  195. 195.

    Muto, J. et al. Coupled afterslip and transient mantle flow after the 2011 Tohoku earthquake. Sci. Adv. 5, eaaw1164 (2019).

    Article  Google Scholar 

  196. 196.

    Suito, H. & Freymueller, J. T. A viscoelastic and afterslip postseismic deformation model for the 1964 Alaska earthquake. J. Geophys. Res. Solid Earth 114, B11404 (2009).

    Article  Google Scholar 

  197. 197.

    Peltier, W. R., Argus, D. F. & Drummond, R. Space geodesy constrains ice age terminal deglaciation: the global ICE-6G_C (VM5a) model. J. Geophys. Res. Solid Earth 120, 450–487 (2015).

    Article  Google Scholar 

  198. 198.

    Shennan, I. et al. Late Devensian and Holocene records of relative sea-level changes in northwest Scotland and their implications for glacio-hydro-isostatic modelling. Quat. Sci. Rev. 19, 1103–1135 (2000).

    Article  Google Scholar 

  199. 199.

    Kuchar, J., Milne, G. & Latychev, K. The importance of lateral Earth structure for North American glacial isostatic adjustment. Earth Planet. Sci. Lett. 512, 236–245 (2019).

    Article  Google Scholar 

  200. 200.

    Love, R. et al. The contribution of glacial isostatic adjustment to projections of sea-level change along the Atlantic and Gulf coasts of North America. Earth’s Future 4, 440–464 (2016). One of the most rigorous comparisons of GIA model and RSL data to date, partly based on 3D Earth models.

    Article  Google Scholar 

  201. 201.

    Wu, P. & van der Wal, W. Postglacial sealevels on a spherical, self-gravitating viscoelastic earth: effects of lateral viscosity variations in the upper mantle on the inference of viscosity contrasts in the lower mantle. Earth Planet. Sci. Lett. 211, 57–68 (2003).

    Article  Google Scholar 

  202. 202.

    Tarasov, L., Dyke, A. S., Neal, R. M. & Peltier, W. R. A data-calibrated distribution of deglacial chronologies for the North American ice complex from glaciological modeling. Earth Planet. Sci. Lett. 315, 30–40 (2012).

    Article  Google Scholar 

  203. 203.

    Hu, Y. & Freymueller, J. T. Geodetic observations of time-variable glacial isostatic adjustment in southeast Alaska and its implications for Earth rheology. J. Geophys. Res. Solid Earth 124, 9870–9889 (2019).

    Article  Google Scholar 

  204. 204.

    Ivins, E. R. & James, T. S. Bedrock response to Llanquihue Holocene and present-day glaciation in southernmost South America. Geophys. Res. Lett. 31, L24613 (2004).

    Article  Google Scholar 

  205. 205.

    Richter, A. et al. Crustal deformation across the Southern Patagonian Icefield observed by GNSS. Earth Planet. Sci. Lett. 452, 206–215 (2016).

    Article  Google Scholar 

  206. 206.

    Auriac, A. et al. Iceland rising: Solid Earth response to ice retreat inferred from satellite radar interferometry and visocelastic modeling. J. Geophys. Res. Solid Earth 118, 1331–1344 (2013).

    Article  Google Scholar 

  207. 207.

    Nield, G. A. et al. Rapid bedrock uplift in the Antarctic Peninsula explained by viscoelastic response to recent ice unloading. Earth Planet. Sci. Lett. 397, 32–41 (2014).

    Article  Google Scholar 

  208. 208.

    Ortega-Guerrero, A., Rudolph, D. L. & Cherry, J. A. Analysis of long-term land subsidence near Mexico City: field investigations and predictive modeling. Water Resour. Res. 35, 3327–3341 (1999).

    Article  Google Scholar 

  209. 209.

    Zhang, Y., Xue, Y., Wu, J., Wang, H. & He, J. Mechanical modeling of aquifer sands under long-term groundwater withdrawal. Eng. Geol. 125, 74–80 (2012).

    Article  Google Scholar 

  210. 210.

    Zhang, Y., Xue, Y., Wu, J. & Wang, Z. Compaction of aquifer units under complex patterns of changing groundwater level. Environ. Earth Sci. 73, 1537–1544 (2015).

    Article  Google Scholar 

  211. 211.

    Burbey, T. J. Effects of horizontal strain in estimating specific storage and compaction in confined and leaky aquifer systems. Hydrol. J. 7, 521–532 (1999).

    Google Scholar 

  212. 212.

    Gambolati, G. A three-dimensional model to compute land subsidence. Hydrol. Sci. J. 17, 219–226 (1972).

    Article  Google Scholar 

  213. 213.

    Geertsma, J. in Proceedings of the 1st ISRM Congress (International Society for Rock Mechanics and Rock Engineering, 1966).

  214. 214.

    Biot, M. A. General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941).

    Article  Google Scholar 

  215. 215.

    Biot, M. A. Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys. 26, 182–185 (1955).

    Article  Google Scholar 

  216. 216.

    Rice, J. R. & Cleary, M. P. Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents. Rev. Geophys. Space Phys. 14, 227–241 (1976).

    Article  Google Scholar 

  217. 217.

    Gambolati, G. & Freeze, R. A. Mathematical simulation of the subsidence of Venice: 1. Theory. Water Resour. Res. 9, 721–733 (1973). The first regional numerical model to simulate and predict coastal subsidence following groundwater extraction.

    Article  Google Scholar 

  218. 218.

    Gambolati, G., Gatto, P. & Freeze, R. A. Mathematical simulation of the subsidence of Venice: 2. Results. Water Resour. Res. 10, 563–577 (1974).

    Article  Google Scholar 

  219. 219.

    Helm, D. C. One-dimensional simulation of aquifer system compaction near Pixley, California: 1. Constant parameters. Water Resour. Res. 11, 465–478 (1975).

    Article  Google Scholar 

  220. 220.

    Helm, D. C. One-dimensional simulation of aquifer system compaction near Pixley, California: 2. Stress-dependent parameters. Water Resour. Res. 12, 375–391 (1976).

    Article  Google Scholar 

  221. 221.

    Leake, S. Interbed storage changes and compaction in models of regional groundwater flow. Water Resour. Res. 26, 1939–1950 (1990).

    Article  Google Scholar 

  222. 222.

    Corapcioglu, M. Y. & Brutsaert, W. Viscoelastic aquifer model applied to subsidence due to pumping. Water Resour. Res. 13, 597–604 (1977).

    Article  Google Scholar 

  223. 223.

    Darcy, H. The Public Fountains of the City of Dijon. 647 (Kendall Hunt, 1856).

  224. 224.

    Shirzaei, M., Ellsworth, W. L., Tiampo, K. F., González, P. J. & Manga, M. Surface uplift and time-dependent seismic hazard due to fluid injection in eastern Texas. Science 353, 1416–1419 (2016).

    Article  Google Scholar 

  225. 225.

    Bjerrum, L. Engineering geology of Norwegian normally-consolidated marine clays as related to settlements of buildings. Geotechnique 17, 83–118 (1967).

    Article  Google Scholar 

  226. 226.

    Buisman, A. in Proceedings of the 1st International Conference on Soil Mechanics and Foundation Engineering 103–106 (Cambridge, 1936).

  227. 227.

    Gray, H. in Proceedings of the 1st International Conference on Soil Mechanics and Foundation Engineering 138–141 (Cambridge, 1936).

  228. 228.

    Zhang, Y., Wang, Z., Xue, Y. & Wu, J. Visco-elasto-plastic compaction of aquitards due to groundwater withdrawal in Shanghai, China. Environ. Earth Sci. 74, 1611–1624 (2015).

    Article  Google Scholar 

  229. 229.

    Comola, F. et al. Efficient global optimization of reservoir geomechanical parameters based on synthetic aperture radar-derived ground displacements. Geophysics 81, M23–M33 (2016).

    Article  Google Scholar 

  230. 230.

    Kihm, J.-H., Kim, J.-M., Song, S.-H. & Lee, G.-S. Three-dimensional numerical simulation of fully coupled groundwater flow and land deformation due to groundwater pumping in an unsaturated fluvial aquifer system. J. Hydrol. 335, 1–14 (2007).

    Article  Google Scholar 

  231. 231.

    Rutqvist, J., Vasco, D. W. & Myer, L. Coupled reservoir-geomechanical analysis of CO2 injection and ground deformations at In Salah, Algeria. Int. J. Greenh. Gas Control. 4, 225–230 (2010).

    Article  Google Scholar 

  232. 232.

    Shirzaei, M., Manga, M. & Zhai, G. Hydraulic properties of injection formations constrained by surface deformation. Earth Planet. Sci. Lett. 515, 125–134 (2019).

    Article  Google Scholar 

  233. 233.

    Teatini, P., Ferronato, M., Gambolati, G. & Gonella, M. Groundwater pumping and land subsidence in the Emilia-Romagna coastland, Italy: modeling the past occurrence and the future trend. Water Resour. Res. 42, W01406 (2006).

    Article  Google Scholar 

  234. 234.

    Teatini, P., Gambolati, G., Ferronato, M., Settari, A. T. & Walters, D. Land uplift due to subsurface fluid injection. J. Geodyn. 51, 1–16 (2011).

    Article  Google Scholar 

  235. 235.

    Ye, S. et al. Three-dimensional numerical modeling of land subsidence in Shanghai, China. Hydrol. J. 24, 695–709 (2016).

    Google Scholar 

  236. 236.

    Bethke, C. M. A numerical model of compaction-driven groundwater flow and heat transfer and its application to the paleohydrology of intracratonic sedimentary basins. J. Geophys. Res. Solid Earth 90, 6817–6828 (1985).

    Article  Google Scholar 

  237. 237.

    Ungerer, P., Burrus, J., Doligez, B., Chenet, P. & Bessis, F. Basin evaluation by integrated two-dimensional modeling of heat transfer, fluid flow, hydrocarbon generation, and migration (1). AAPG Bull. 74, 309–335 (1990).

    Google Scholar 

  238. 238.

    Zoccarato, C. & Teatini, P. Numerical simulations of Holocene salt-marsh dynamics under the hypothesis of large soil deformations. Adv. Water Res. 110, 107–119 (2017). A novel approach to modelling sediment deposition and shallow compaction in coastal wetlands that accounts for large deformations and changing soil properties.

    Article  Google Scholar 

  239. 239.

    Kolker, A. S., Allison, M. A. & Hameed, S. An evaluation of subsidence rates and sea-level variability in the northern Gulf of Mexico. Geophys. Res. Lett. 38, L21404 (2011).

    Article  Google Scholar 

  240. 240.

    Texas General Land Office. Texas coastal Resiliency Master Plan. Texas General Land Office (2017).

  241. 241.

    National Research Council. Sea-Level Rise for the Coasts of California, Oregon, and Washington: Past, Present, and Future (The National Academies Press, 2012).

  242. 242.

    Nordhaus, W. D. The economics of hurricanes and implications of global warming. Clim. Change Econ. 1, 1–20 (2010).

    Article  Google Scholar 

  243. 243.

    Coastal Protection and Restoration Authority of Louisiana. Louisiana’s Comprehensive Master Plan for a Sustainable Coast (Coastal Protection and Restoration Authority of Louisiana, 2017).

  244. 244.

    Bekaert, D., Hamlington, B., Buzzanga, B. & Jones, C. Spaceborne synthetic aperture radar survey of subsidence in Hampton Roads, Virginia (USA). Sci. Rep. 7, 14752 (2017).

    Article  Google Scholar 

  245. 245.

    Karegar, M. A., Dixon, T. H. & Engelhart, S. E. Subsidence along the Atlantic Coast of North America: insights from GPS and late Holocene relative sea level data. Geophys. Res. Lett. 43, 3126–3133 (2016). Integration of subsidence observations over short and long timescales that elucidates the role of fluid extraction.

    Article  Google Scholar 

  246. 246.

    Ng, A. H.-M. et al. Mapping land subsidence in Jakarta, Indonesia using persistent scatterer interferometry (PSI) technique with ALOS PALSAR. Int. J. Appl. Earth Obs. Geoinf. 18, 232–242 (2012).

    Article  Google Scholar 

  247. 247.

    Raucoules, D. et al. High nonlinear urban ground motion in Manila (Philippines) from 1993 to 2010 observed by DInSAR: implications for sea-level measurement. Remote Sens. Environ. 139, 386–397 (2013).

    Article  Google Scholar 

  248. 248.

    Miller, M. M. & Shirzaei, M. Land subsidence in Houston correlated with flooding from Hurricane Harvey. Remote Sens. Environ. 225, 368–378 (2019). Shows that Houston flooding following Hurricane Harvey correlates with long-term coastal subsidence.

    Article  Google Scholar 

  249. 249.

    Gao, X. & Wang, K. L. Strength of stick-slip and creeping subduction megathrusts from heat flow observations. Science 345, 1038–1041 (2014).

    Article  Google Scholar 

  250. 250.

    Khoshmanesh, M., Shirzaei, M. & Uchida, N. Deep slow-slip events promote seismicity in northeastern Japan megathrust. Earth Planet. Sci. Lett. 540, 116261 (2020).

    Article  Google Scholar 

  251. 251.

    Carpenter, B. M., Marone, C. & Saffer, D. M. Weakness of the San Andreas Fault revealed by samples from the active fault zone. Nat. Geosci. 4, 251–254 (2011).

    Article  Google Scholar 

  252. 252.

    Lockner, D. A., Morrow, C., Moore, D. & Hickman, S. Low strength of deep San Andreas fault gouge from SAFOD core. Nature 472, 82–85 (2011).

    Article  Google Scholar 

  253. 253.

    Sibson, R. H. Fault zone models, heat flow, and the depth distribution of earthquakes in the continental crust of the United States. Bull. Seismol. Soc. Am. 72, 151–163 (1982).

    Google Scholar 

  254. 254.

    Khoshmanesh, M. & Shirzaei, M. Episodic creep events on the San Andreas Fault caused by pore pressure variations. Nat. Geosci. 11, 610–614 (2018).

    Article  Google Scholar 

  255. 255.

    Kodaira, S. et al. High pore fluid pressure may cause silent slip in the Nankai trough. Science 304, 1295–1298 (2004).

    Article  Google Scholar 

  256. 256.

    Rice, J. R. in Fault Mechanics and Transport Properties of Rocks (eds Evans, B. & Wong, T.-F.) 475–503 (Academic, 1992).

  257. 257.

    Kemp, A. C., Cahill, N., Engelhart, S. E., Hawkes, A. D. & Wang, K. Revising estimates of spatially variable subsidence during the AD 1700 Cascadia earthquake using a Bayesian foraminiferal transfer function. Bull. Seismol. Soc. Am. 108, 654–673 (2018).

    Article  Google Scholar 

  258. 258.

    Yousefi, M., Milne, G., Li, S., Wang, K. & Bartholet, A. Constraining interseismic deformation of the Cascadia subduction zone: new insights from estimates of vertical land motion over different timescales. J. Geophys. Res. Solid Earth 125, e2019JB018248 (2020). Constrains megathrust locking models of the Cascadia subduction zone using RSL observations and GPS data.

    Article  Google Scholar 

  259. 259.

    Bevis, M. et al. Accelerating changes in ice mass within Greenland, and the ice sheet’s sensitivity to atmospheric forcing. Proc. Natl Acad. Sci. USA 116, 1934–1939 (2019).

    Article  Google Scholar 

  260. 260.

    Harig, C. & Simons, F. J. Mapping Greenland’s mass loss in space and time. Proc. Natl Acad. Sci. USA 109, 19934–19937 (2012).

    Article  Google Scholar 

  261. 261.

    Mouginot, J. et al. Forty-six years of Greenland ice sheet mass balance from 1972 to 2018. Proc. Natl Acad. Sci. USA 116, 9239–9244 (2019).

    Article  Google Scholar 

  262. 262.

    Shepherd, A. et al. Mass balance of the Greenland Ice Sheet from 1992 to 2018. Nature 579, 233–239 (2019).

    Google Scholar 

  263. 263.

    Eriyagama, N., Muthuwatta, L. & Thilakarathne, M. in Proceedings of the Disaster Management Conference: The future we want- Safer Sri Lanka, Colombo, Sri Lanka 379–381 (Ministry of Disaster Management, 2014).

  264. 264.

    Higgins, S., Overeem, I., Tanaka, A. & Syvitski, J. P. Land subsidence at aquaculture facilities in the Yellow River delta, China. Geophys. Res. Lett. 40, 3898–3902 (2013).

    Article  Google Scholar 

  265. 265.

    Riel, B., Simons, M., Ponti, D., Agram, P. & Jolivet, R. Quantifying ground deformation in the Los Angeles and Santa Ana Coastal Basins due to groundwater withdrawal. Water Resour. Res. 54, 3557–3582 (2018).

    Article  Google Scholar 

  266. 266.

    Wang, R. & Kümpel, H.-J. Poroelasticity: efficient modelling of strongly coupled, slow deformation processes in a multilayered half-space. Geophysics 68, 705–717 (2003).

    Article  Google Scholar 

  267. 267.

    Wang, S.-J., Lee, C.-H. & Hsu, K.-C. A technique for quantifying groundwater pumping and land subsidence using a nonlinear stochastic poroelastic model. Environ. Earth Sci. 73, 8111–8124 (2015).

    Article  Google Scholar 

  268. 268.

    Diffenbaugh, N. S., Swain, D. L. & Touma, D. Anthropogenic warming has increased drought risk in California. Proc. Natl Acad. Sci. USA 112, 3931–3936 (2015).

    Article  Google Scholar 

  269. 269.

    Meixner, T. et al. Implications of projected climate change for groundwater recharge in the western United States. J. Hydrol. 534, 124–138 (2016).

    Article  Google Scholar 

  270. 270.

    Niraula, R. et al. How might recharge change under projected climate change in the western US? Geophys. Res. Lett. 44, 10,407–410,418 (2017).

    Article  Google Scholar 

  271. 271.

    Smerdon, B. D. A synopsis of climate change effects on groundwater recharge. J. Hydrol. 555, 125–128 (2017).

    Article  Google Scholar 

  272. 272.

    Tillman, F. D., Gangopadhyay, S. & Pruitt, T. Changes in groundwater recharge under projected climate in the upper Colorado River basin. Geophys. Res. Lett. 43, 6968–6974 (2016).

    Article  Google Scholar 

  273. 273.

    Vitousek, S. et al. Doubling of coastal flooding frequency within decades due to sea-level rise. Sci. Rep. 7, 1399 (2017).

    Article  Google Scholar 

  274. 274.

    Knowles, N. Potential inundation due to rising sea levels in the San Francisco Bay Region. San Franc. Estuary Watershed Sci. (2010).

    Article  Google Scholar 

  275. 275.

    Barnard, P. L., Schoellhamer, D. H., Jaffe, B. E. & McKee, L. J. Sediment transport in the San Francisco Bay coastal system: an overview. Mar. Geol. 345, 3–17 (2013).

    Article  Google Scholar 

  276. 276.

    Dragert, H., Hyndman, R. D., Rogers, G. C. & Wang, K. Current deformation and the width of the seismogenic zone of the northern Cascadia subduction thrust. J. Geophys. Res. 99, 653–668 (1994).

    Article  Google Scholar 

  277. 277.

    Rocca, F., Rucci, A., Ferretti, A. & Bohane, A. Advanced InSAR interferometry for reservoir monitoring. First Break 31, 77–85 (2013).

    Google Scholar 

  278. 278.

    Pfeffer, J. & Allemand, P. The key role of vertical land motions in coastal sea level variations: a global synthesis of multisatellite altimetry, tide gauge data and GPS measurements. Earth Planet. Sci. Lett. 439, 39–47 (2016).

    Article  Google Scholar 

  279. 279.

    Wang, R. J. & Kumpel, H. J. Poroelasticity: efficient modeling of strongly coupled, slow deformation processes in a multilayered half-space. Geophysics 68, 705–717 (2003).

    Article  Google Scholar 

  280. 280.

    Horton, B. P. et al. Mapping sea-level change in time, space, and probability. Annu. Rev. Environ. Resour. 43, 481–521 (2018).

    Article  Google Scholar 

  281. 281.

    Griggs, G. et al. Rising Seas in California: An Update on Sea-Level Rise Science (California Ocean Science Trust, 2017).

  282. 282.

    Strozzi, T., Teatini, P., Tosi, L., Wegmüller, U. & Werner, C. Land subsidence of natural transitional environments by satellite radar interferometry on artificial reflectors. J. Geophys. Res. Earth Surf. 118, 1177–1191 (2013).

    Article  Google Scholar 

  283. 283.

    Da Lio, C., Teatini, P., Strozzi, T. & Tosi, L. Understanding land subsidence in salt marshes of the Venice Lagoon from SAR Interferometry and ground-based investigations. Remote Sens. Environ. 205, 56–70 (2018).

    Article  Google Scholar 

  284. 284.

    Fiaschi, S. & Wdowinski, S. Local land subsidence in Miami Beach (FL) and Norfolk (VA) and its contribution to flooding hazard in coastal communities along the US Atlantic coast. Ocean Coast. Manag. 187, 105078 (2020).

    Article  Google Scholar 

  285. 285.

    Shirzaei, M. A wavelet-based multitemporal DInSAR algorithm for monitoring ground surface motion. IEEE Geosci. Remote Sens. Lett. 10, 456–460 (2013).

    Article  Google Scholar 

  286. 286.

    Hooper, A., Segall, P. & Zebker, H. Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. J. Geophys. Res. Solid Earth 112, B07407 (2007).

    Article  Google Scholar 

  287. 287.

    Jolivet, R., Grandin, R., Lasserre, C., Doin, M. P. & Peltzer, G. Systematic InSAR tropospheric phase delay corrections from global meteorological reanalysis data. Geophys. Res. Lett. 38, L17311 (2011).

    Article  Google Scholar 

  288. 288.

    Yu, C., Li, Z., Penna, N. T. & Crippa, P. Generic atmospheric correction model for Interferometric Synthetic Aperture Radar observations. J. Geophys. Res. Solid Earth 123, 9202–9222 (2018).

    Article  Google Scholar 

  289. 289.

    Yu, C., Penna, N. T. & Li, Z. Generation of real-time mode high-resolution water vapor fields from GPS observations. J. Geophys. Res. Atmos. 122, 2008–2025 (2017).

    Article  Google Scholar 

  290. 290.

    Hu, J. et al. Resolving three-dimensional surface displacements from InSAR measurements: a review. Earth Sci. Rev. 133, 1–17 (2014).

    Article  Google Scholar 

  291. 291.

    Fialko, Y., Sandwell, D., Simons, M. & Rosen, P. Three-dimensional deformation caused by the Bam, Iran, earthquake and the origin of shallow slip deficit. Nature 435, 295–299 (2005).

    Article  Google Scholar 

  292. 292.

    Jung, H.-S., Lu, Z., Won, J.-S., Poland, M. P. & Miklius, A. Mapping three-dimensional surface deformation by combining multiple-aperture interferometry and conventional interferometry: Application to the June 2007 eruption of Kilauea volcano, Hawaii. IEEE Geosci. Remote Sens. Lett. 8, 34–38 (2010).

    Article  Google Scholar 

  293. 293.

    Wright, T. J., Parsons, B. E. & Lu, Z. Toward mapping surface deformation in three dimensions using InSAR. Geophys. Res. Lett. 31, L01607 (2004).

    Article  Google Scholar 

  294. 294.

    Joughin, I. R., Kwok, R. & Fahnestock, M. A. Interferometric estimation of three-dimensional ice-flow using ascending and descending passes. IEEE Trans. Geosci. Remote Sens. 36, 25–37 (1998).

    Article  Google Scholar 

  295. 295.

    Mohr, J. J., Reeh, N. & Madsen, S. N. Three-dimensional glacial flow and surface elevation measured with radar interferometry. Nature 391, 273–276 (1998).

    Article  Google Scholar 

  296. 296.

    Tymofyeyeva, E. & Fialko, Y. Geodetic evidence for a blind fault segment at the southern end of the San Jacinto fault zone. J. Geophys. Res. Solid Earth 123, 878–891 (2018).

    Article  Google Scholar 

  297. 297.

    Guglielmino, F., Nunnari, G., Puglisi, G. & Spata, A. Simultaneous and integrated strain tensor estimation from geodetic and satellite deformation measurements to obtain three-dimensional displacement maps. IEEE Trans. Geosci. Remote Sens. 49, 1815–1826 (2011).

    Article  Google Scholar 

  298. 298.

    Samsonov, S. & Tiampo, K. Analytical optimization of a DInSAR and GPS dataset for derivation of three-dimensional surface motion. IEEE Geosci. Remote Sens. Lett. 3, 107–111 (2006).

    Article  Google Scholar 

Download references


The authors thank the reviewers for providing insightful comments and suggestions and J. Flocks for providing constructive comments on the manuscript. M.S. is supported by the US National Aeronautics and Space Administration (grant no. 80NSSC170567) and the US National Science Foundation (grant no. EAR-1735630). J.F. is supported by the US National Aeronautics and Space Administration (grant no. 80NSSC17K0566). T.E.T. has been supported by the US National Science Foundation (grant no. EAR-1349311). T.D. is supported by the US National Science Foundation (grant nos. EAR-1624795 and EAR-1624533). P.S.J.M. is supported by an EU Marie Skłodowska-Curie Individual Fellowship (grant no. 894476 — InSPiRED — H2020-MSCA-IF-2019). This work is a contribution to the PALSEA programme and International Geoscience Programme (IGCP) project 639. Any use of trade, firm or product names is for descriptive purposes only and does not imply endorsement by the US Government.

Author information




M.S. and J.F. wrote the manuscript. All authors contributed to the discussion of content and edited the manuscript prior to submission.

Corresponding author

Correspondence to Manoochehr Shirzaei.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Earth & Environment thanks S. Wdowinski, M. Karegar and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Harris–Galveston Subsidence District:

Nevada Geodetic Laboratory:

P403 station:



Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shirzaei, M., Freymueller, J., Törnqvist, T.E. et al. Measuring, modelling and projecting coastal land subsidence. Nat Rev Earth Environ 2, 40–58 (2021).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing