Abstract
West Antarctica has formed the tectonically active margin between East Antarctica and the Pacific Ocean for almost half a billion years, where it has recorded a dynamic history of magmatism, continental growth and fragmentation. Despite the scale and importance of West Antarctica, there has not been an integrated view of the geology and tectonic evolution of the region as a whole. In this Review, we identify three broad physiographic provinces and present their overlapping and interconnected tectonic, magmatic and sedimentary history. The Weddell Sea region, which lays furthest from the subducting margin, was most impacted by the Jurassic initiation of Gondwana break-up. Marie Byrd Land and the West Antarctic rift system developed as a broad Cretaceous to Cenozoic continental rift system, reworking a former convergent margin. Finally, the Antarctic Peninsula and Thurston Island preserve an almost complete magmatic arc system. We conclude by briefly summarizing the geologic history of the West Antarctic system as a whole, how it provides insight into continental margin evolution and what key topics must be addressed by future research.
Key points
-
West Antarctica is a geologically complex region that developed along the margin of Gondwana between the subducting Paleo-Pacific oceanic plate and the cratonic East Antarctic continent.
-
West Antarctica can be broken into three broad geological and physiographic provinces: the Weddell Sea sector; the West Antarctic rift system and Marie Byrd Land; and the Antarctic Peninsula and Thurston Island.
-
The Weddell Sea sector includes the oldest rocks in West Antarctica, was least affected by the marginal subduction system and its movement to its current position during the Jurassic initiation of Gondwana break-up was associated with back-arc extension in the Weddell Sea rift system.
-
The West Antarctic rift system and Marie Byrd Land region followed as an active subducting margin and magmatic arc outboard from the East Antarctic Ross orogen. Subduction ceased during the Cretaceous, associated with extreme crustal extension and resulting in a broad rift basin and, ultimately, New Zealand rifting away.
-
The Antarctic Peninsula and Thurston Island exemplify a continental margin magmatic arc, preserving a record of the flare-ups in magmatism. Arc magmatism ceased from south to north between 90 and 20 million years ago as the Phoenix oceanic spreading centre reached the continental margin trench.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Scars of tectonism promote ice-sheet nucleation from Hercules Dome into West Antarctica
Nature Geoscience Open Access 12 October 2023
-
Magnetic field map of the Wilhelm Archipelago shelf zone, West Antarctica
Acta Geophysica Open Access 11 October 2023
-
Eruptive history of Mason Spur, a Miocene—Pleistocene polygenetic volcanic complex in southern Victoria Land, West Antarctic Rift System, Antarctica
Bulletin of Volcanology Open Access 19 September 2022
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$99.00 per year
only $8.25 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Rey, P. F. & Müller, R. D. Fragmentation of active continental plate margins owing to the buoyancy of the mantle wedge. Nat. Geosci. 3, 257–261 (2010).
Storey, B. C. et al. West Antarctica in Gondwanaland: crustal blocks, reconstruction and breakup processes. Tectonophysics 155, 381–390 (1988).
Yakymchuk, C. et al. Paleozoic evolution of western Marie Byrd Land, Antarctica. Geol. Soc. Am. Bull. 127, 1464–1484 (2015). Uses isotope and age data to elucidate Paleozoic crustal evolution and reworking along the East Gondwana convergent plate margin, noting along-arc variations between regions.
Dalziel, I. & Lawver, L. in The West Antarctic Ice Sheet: Behavior and Environment Vol. 77 (eds Alley, R. B. and Bindschadle, R. A.) 29–44 (American Geophysical Union, 2001).
Curtis, M. L. Tectonic history of the Ellsworth Mountains, West Antarctica: reconciling a Gondwana enigma. Geol. Soc. Am. Bull. 113, 939–958 (2001). Reviews the geological and structural evolution of the Ellsworth Mountains sediments from Cambrian deposition through to Permo-Triassic deformation.
Randall, D. E. & MacNiocaill, C. Cambrian palaeomagnetic data confirm a Natal Embayment location for the Ellsworth–Whitmore Mountains, Antarctica, in Gondwana reconstructions. Geophys. J. Int. 157, 105–116 (2004).
Mortimer, N. et al. Late Cretaceous oceanic plate reorganization and the breakup of Zealandia and Gondwana. Gondwana Res. 65, 31–42 (2019).
Tulloch, A. J. et al. Reconnaissance basement geology and tectonics of South Zealandia. Tectonics 38, 516–551 (2019).
Nelson, D. A. & Cottle, J. M. The secular development of accretionary orogens: linking the Gondwana magmatic arc record of West Antarctica, Australia and South America. Gondwana Res. 63, 15–33 (2018). Uses zircon geochemistry and dating to characterize eastern MBL magmatism, and reveal fundamental contrasts along the Gondwanide margin.
Siddoway, C. S., Richard, S. M., Fanning, C. M. & Luyendyk, B. P. in Gneiss Domes in Orogeny Vol. 380 (eds Whitney, D. L. Teyssier, C. & Siddoway, C. S.) (Geological Society of America, 2004).
Burton-Johnson, A. & Riley, T. R. Autochthonous v. accreted terrane development of continental margins: a revised in situ tectonic history of the Antarctic Peninsula. J. Geol. Soc. 172, 822–835 (2015). Reviews the geotectonic evolution of the Antarctic Peninsula, interpreting it in terms of an evolving in situ continental arc, rather than as a series of accreted disparate terranes.
Bell, R. E. et al. Influence of subglacial geology on the onset of a West Antarctic ice stream from aerogeophysical observations. Nature 394, 58–62 (1998).
Pittard, M. L., Galton-Fenzi, B. K., Roberts, J. L. & Watson, C. S. Organization of ice flow by localized regions of elevated geothermal heat flux. Geophys. Res. Lett. 43, 3342–3350 (2016).
Spiegel, C. et al. Tectonomorphic evolution of Marie Byrd Land – implications for Cenozoic rifting activity and onset of West Antarctic glaciation. Glob. Planet. Change 145, 98–115 (2016).
Schroeder, D. M., Blankenship, D. D., Young, D. A. & Quartini, E. Evidence for elevated and spatially variable geothermal flux beneath the West Antarctic Ice Sheet. Proc. Natl Acad. Sci. USA 111, 9070–9072 (2014).
Millar, I. L. & Pankhurst, R. J. in Gondwana Six: Structure, Tectonics, and Geophysics Vol. 40 (ed. McKenzie, G. D.) 151–160 (American Geophysical Union, 1987).
Wareham, C. D. et al. Pb, Nd, and Sr isotope mapping of Grenville-age crustal provinces in Rodinia. J. Geol. 106, 647–660 (1998).
Garrett, S. W., Herrod, L. D. B. & Mantripp, D. R. in Gondwana Six: Structure, Tectonics and Geophysics Vol. 40 (ed. McKenzie, G. D.) 109–116 (American Geophysical Union, 1987).
Golynsky, A. V. et al. New magnetic anomaly map of the Antarctic. Geophys. Res. Lett. 45, 6437–6449 (2018).
Grantham, G. H., Storey, B. C., Thomas, R. J. & Jacobs, J. in The Antarctic Region: Geological Evolution and Processes (ed. Ricci, C. A.) 13–20 (Terra Antartica Publication, 1997).
Jacobs, J., Pisarevsky, S., Thomas, R. J. & Becker, T. The Kalahari Craton during the assembly and dispersal of Rodinia. Precambrian Res. 160, 142–158 (2008).
Dalziel, I. W. D. Neoproterozoic-Paleozoic geography and tectonics: review, hypothesis, environmental speculation. Geol. Soc. Am. Bull. 109, 16–42 (1997).
Jacobs, J. & Thomas, R. J. Himalayan-type indenter-escape tectonics model for the southern part of the late Neoproterozoic–early Paleozoic East African–Antarctic orogen. Geology 32, 721–724 (2004).
Dalziel, I. W. D. et al. in Continental Extensional Tectonics (eds. Coward, M. P., Dewey, J. F. & Hancock, P. L.) 433–441 (Geological Society of London, 1987).
Flowerdew, M. J. et al. Combined U-Pb geochronology and Hf isotope geochemistry of detrital zircons from early Paleozoic sedimentary rocks, Ellsworth-Whitmore Mountains block, Antarctica. Geol. Soc. Am. Bull. 119, 275–288 (2007).
Maslanyj, M. P. & Storey, B. C. Regional aeromagnetic anomalies in Ellsworth Land: crustal structure and Mesozoic microplate boundaries within West Antarctica. Tectonics 9, 1515–1532 (1990).
Webers, G. F. et al. in Geology and Paleontology of the Ellsworth Mountains, West Antarctica Vol. 170 Ch. 2 (eds. Webers, G. F., Craddock, C. & Splettstoesser, J. F.) (Geological Society of America, 1992).
Craddock, J. P., Fitzgerald, P., Konstantinou, A., Nereson, A. & Thomas, R. J. Detrital zircon provenance of upper Cambrian-Permian strata and tectonic evolution of the Ellsworth Mountains, West Antarctica. Gondwana Res. 45, 191–207 (2017).
Goodge, J.W. Geological and tectonic evolution of the Transantarctic Mountains, from ancient craton to recent enigma. Gondwana Res. 80, 50–122 (2020).
Castillo, P., Fanning, C. M., Fernandez, R., Poblete, F. & Hervé, F. Provenance and age constraints of Paleozoic siliciclastic rocks from the Ellsworth Mountains in West Antarctica, as determined by detrital zircon geochronology. Geol. Soc. Am. Bull. 129, 1568–1584 (2017).
Watts, D. R. & Bramall, A. M. Palaeomagnetic evidence for a displaced terrain in Western Antartica. Nature 293, 638–640 (1981).
Spörli, K. B. in Geology and Paleontology of the Ellsworth Mountains, West Antarctica Vol. 170 Ch. 3 (eds Webers, G. F., Craddock, C. & Splettstoesser, J. F.) (Geological Society of America, 1992).
Matsch, C. L. & Ojakangas, R. W. in Geology and Paleontology of the Ellsworth Mountains, West Antarctica. Vol. 170 (eds Webers, G. F., Craddock, C. & Splettstoesser, J. F.) 37–62 (Geological Society of America, 1992).
Stone, P. & Thompson, M. R. A. in Terrane Processes at the Margins of Gondwana (eds Vaughan, A. P. M., Leat, P. T. & Pankhurst, R. J.) 347–357 (Geological Society of London, 2005).
Schopf, J. M. Ellsworth Mountains: position in West Antarctica due to sea-floor spreading. Science 164, 63–66 (1969).
Collinson, J. W., Vavra, C. L. & Zawiskie, J. M. in Geology and Paleontology of the Ellsworth Mountains, West Antarctica Vol. 170 Ch. 5 (eds Webers, G. F., Craddock, C. & Splettstoesser, J. F.) (Geological Society of America, 1992).
Elliot, D. H., Fanning, C. M. & Hulett, S. R. W. Age provinces in the Antarctic craton: evidence from detrital zircons in Permian strata from the Beardmore Glacier region, Antarctica. Gondwana Res. 28, 152–164 (2015).
Curtis, M. L. Gondwanian age dextral transpression and spatial kinematic partitioning within the Heritage Range, Ellsworth Mountains, West Antarctica. Tectonics 16, 172–181 (1997).
Curtis, M. L. Palaeozoic to Mesozoic polyphase deformation of the Patuxent Range, Pensacola Mountains, Antarctica. Antarctic Sci. 14, 175–183 (2002).
Dalziel, I. W. D. & Elliot, D. H. West Antarctica: problem child of Gondwanaland. Tectonics 1, 3–19 (1982).
Dalziel, I. W. D. & Grunow, A. Late Gondwanide tectonic rotations within Gondwanaland. Tectonics 11, 603–606 (1992).
Johnston, S. T. The Cape Fold Belt and Syntaxis and the rotated Falkland Islands: dextral transpressional tectonics along the southwest margin of Gondwana. J. Afr. Earth Sci. 31, 51–63 (2000).
Jordan, T. A., Ferraccioli, F. & Leat, P. T. New geophysical compilations link crustal block motion to Jurassic extension and strike-slip faulting in the Weddell Sea Rift System of West Antarctica. Gondwana Res. 42, 29–48 (2017). Presents new compilations of magnetic and gravity data over the Weddell Sea province, providing an interpretation of the data consistent with both geological and geophysical observations.
Craddock, J. P. et al. Precise U-Pb zircon ages and geochemistry of Jurassic granites, Ellsworth-Whitmore terrane, central Antarctica. Geol. Soc. Am. Bull. 129, 118–136 (2016).
Svensen, H., Corfu, F., Polteau, S., Hammer, Ø. & Planke, S. Rapid magma emplacement in the Karoo large igneous province. Earth Planet. Sci. Lett. 325–326, 1–9 (2012).
Burgess, S. D., Bowring, S. A., Fleming, T. H. & Elliot, D. H. High-precision geochronology links the Ferrar large igneous province with early-Jurassic ocean anoxia and biotic crisis. Earth Planet. Sci. Lett. 415, 90–99 (2015).
Storey, B. C. & Kyle, P. R. An active mantle mechanism for Gondwana breakup. South African J. Geol. 100, 283–290 (1997).
Elliot, D. H. & Fleming, T. H. Weddell triple junction: the principal focus of Ferrar and Karoo magmatism during initial breakup of Gondwana. Geology 28, 539–542 (2000).
White, R. A. & McKenzie, D. P. Magmatism at rift zones: The generation of volcanic continental margins and flood basalts. J. Geophys. Res. 94, 7685–7729 (1989).
Choi, S. H. et al. Fossil subduction zone origin for magmas in the Ferrar Large Igneous Province, Antarctica: Evidence from PGE and Os isotope systematics in the Basement Sill of the McMurdo Dry Valleys. Earth Planet. Sci. Lett. 506, 507–519 (2019).
Hergt, J. M., Peate, D. W. & Hawkesworth, C. J. The petrogenesis of Mesozoic Gondwana low-Ti flood basalts. Earth Planet. Sci. Lett. 105, 134–148 (1991).
Storey, B. C., Hole, M. J., Pankhurst, R. J., Millar, I. L. & Vennum, W. Middle Jurassic within-plate granites in west Antarctica and their bearing on the break-up of Gondwanaland. J. Geol. Soc. 145, 999–1007 (1988).
Jordan, T. A. et al. Inland extent of the Weddell Sea Rift imaged by new aerogeophysical data. Tectonophysics 585, 137–160 (2013).
An, M. et al. S-velocity model and inferred Moho topography beneath the Antarctic Plate from Rayleigh waves. J. Geophys. Res. 120, 359–383 (2015).
Riley, T. R., Jordan, T. A., Leat, P. T., Curtis, M. L. & Millar, I. L. Magmatism of the Weddell Sea rift system in Antarctica: Implications for the age and mechanism of rifting and early stage Gondwana breakup. Gondwana Res. 79, 185–196 (2020).
Dalziel, I. W. D., Lawver, L., Norton, I. O. & Gahagan, L. M. The Scotia arc: genesis, evolution, global significance. Annu. Rev. Earth Planet. Sci. 41, 767–793 (2013).
Martin, A. K. Gondwana breakup via double-saloon-door rifting and seafloor spreading in a backarc basin during subduction rollback. Tectonophysics 445, 245–272 (2007).
Dalziel, I. W. D., Lawver, L. & Murphy, J. B. Plumes, orogenesis, and supercontinental fragmentation. Earth Planet. Sci. Lett. 178, 1–11 (2000).
Jokat, W., Fechner, N. & Studinger, M. in The Antarctic Region: Geological Evolution and Processes (ed. Ricci, C. A.) 453–459 (Terra Antartica Publication, 1997).
Jokat, W. & Herter, U. Jurassic failed rift system below the Filchner-Ronne-Shelf, Antarctica: new evidence from geophysical data. Tectonophysics 688, 65–83 (2016). Provides the most up-to-date reanalysis of the critical seismic refraction profile delineating the crustal structure of the outboard edge of the Weddell Sea rift system.
Kristoffersen, Y. & Haugland, K. Geophysical evidence for the East Antarctic plate boundary in the Weddell Sea. Nature 322, 538–541 (1986).
Studinger, M. & Miller, H. Crustal structure of the Filchner-Ronne Shelf and Coats Land, Antarctica, from gravity and magnetic data: implications for the breakup of Gondwana. J. Geophys. Res. 104, 20379–20394 (1999).
Jokat, W., Miller, H. & Hübscher, C. in Weddell Sea Tectonics and Gondwana Break-up (eds Storey, B. C., King, E. C. & Livermore, R. A.) 201–211 (Geological Society of London, 1996).
Leitchenkov, G. L. & Kudryavtzev, G. A. Structure and origin of the Earth’s crust in the Weddell Sea Embayment (beneath the front of the Filchner and Ronne Ice Shelves) from deep seismic sounding data. Polarforschung 67, 143–154 (1997).
Ferris, J. K., Vaughan, A. P. M. & Storey, B. C. Relics of a complex triple junction in the Weddell Sea embayment, Antarctica. Earth Planet. Sci. Lett. 178, 215–230 (2000).
Pankhurst, R. J., Weaver, S. D., Bradshaw, J. D., Storey, B. C. & Ireland, T. R. Geochronology and geochemistry of pre-Jurassic superterranes in Marie Byrd Land, Antarctica. J. Geophys. Res. 103, 2529–2547 (1998).
Mukasa, S. B. & Dalziel, I. W. D. Marie Byrd Land, West Antarctica: evolution of Gondwana’s Pacific margin constrained by zircon U-Pb geochronology and feldspar common-Pb isotopic compositions. Geol. Soc. Am. Bull. 112, 611–627 (2000).
LeMasurier, W. E. & Thomson, J. W. in Volcanoes of the Antarctic Plate and Southern Oceans (American Geophysical Union, 1990).
Bradshaw, J. D. in Antarctica: A Keystone in a Changing World – Online Proceedings for the 10th International Symposium on Antarctic Earth Sciences (eds Cooper, A. K., Raymond, C. & 10th ISAES Editorial Team) (US Geological Survey, 2007).
Handler, M. R., Wysoczanski, R. J. & Gamble, J. A. Proterozoic lithosphere in Marie Byrd Land, West Antarctica: Re–Os systematics of spinel peridotite xenoliths. Chem. Geol. 196, 131–145 (2003).
Chatzaras, V. et al. Axial-type olivine crystallographic preferred orientations: the effect of strain geometry on mantle texture. J. Geophys. Res. 121, 4895–4922 (2016).
Adams, C. J., Bradshaw, J. D. & Ireland, T. R. Provenance connections between late Neoproterozoic and early Palaeozoic sedimentary basins of the Ross Sea region, Antarctica, south-east Australia and southern Zealandia. Antarctic Sci. 26, 173–182 (2014).
Foden, J., Elburg, M. A., Dougherty-Page, J. & Burtt, A. The timing and duration of the Delamerian Orogeny: correlation with the Ross Orogen and implications for Gondwana assembly. J. Geol. 114, 189–210 (2006).
Siddoway, C. S. & Fanning, C. M. Paleozoic tectonism on the East Gondwana margin: evidence from SHRIMP U–Pb zircon geochronology of a migmatite–granite complex in West Antarctica. Tectonophysics 477, 262–277 (2009).
Nelson, D. A. & Cottle, J. M. Tracking voluminous Permian volcanism of the Choiyoi Province into central Antarctica. Lithosphere 11, 386–398 (2019).
Brown, M., Korhonen, F. J. & Siddoway, C. S. Organizing melt flow through the crust. Elements 7, 261–266 (2011).
Tinto, K. J. et al. Ross Ice Shelf response to climate driven by the tectonic imprint on seafloor bathymetry. Nat. Geosci. 12, 441–449 (2019). Uses new magnetic and gravity data to illuminate the lithospheric characteristics of the Ross Embayment and introduces a basis for interpreting the sub-sea extent of cratonic margin vs West Antarctic provinces.
Bialas, R. W., Buck, W. R., Studinger, M. & Fitzgerald, P. G. Plateau collapse model for the Transantarctic Mountains–West Antarctic Rift System: insights from numerical experiments. Geology 35, 687–690 (2007).
Divenere, V., Kent, D. V. & Dalziel, I. W. D. Summary of palaeomagnetic results from West Antarctica: implications for the tectonic evolution of the Pacific margin of Gondwana during the Mesozoic. Geol. Soc. London Spl. Publ. 108, 31–43 (1996).
Luyendyk, B., Cisowski, S., Smith, C., Richard, S. & Kimbrough, D. Paleomagnetic study of the northern Ford Ranges, western Marie Byrd Land, West Antarctica: motion between West and East Antarctica. Tectonics 15, 122–141 (1996).
Storey, B. C. et al. Mantle plumes and Antarctica-New Zealand rifting: evidence from mid-Cretaceous mafic dykes. J. Geol. Soc. 156, 659–671 (1999).
McFadden, R. R., Siddoway, C. S., Teyssier, C. & Fanning, C. M. Cretaceous oblique extensional deformation and magma accumulation in the Fosdick Mountains migmatite-cored gneiss dome, West Antarctica. Tectonics 29, TC4022 (2010).
Brown, C. R. et al. From source to sink: petrogenesis of Cretaceous anatectic granites from the Fosdick migmatite–granite complex, West Antarctica. J. Petrol. 57, 1241–1278 (2016).
Chaput, J. et al. The crustal thickness of West Antarctica. J. Geophys. Res. 119, 378–395 (2014).
Goodge, J. W. & Finn, C. A. Glimpses of East Antarctica: aeromagnetic and satellite magnetic view from the central Transantarctic Mountains of East Antarctica. J. Geophys. Res. 115, B09103 (2010).
Tessensohn, F. & Henjes-Kunst, F. Northern Victoria Land terranes, Antarctica: far-travelled or local products? Geol. Soc. London Spl. Publ. 246, 275–291 (2005).
Ferraccioli, F. et al. Magmatic and tectonic patterns over the Northern Victoria Land sector of the Transantarctic Mountains from new aeromagnetic imaging. Tectonophysics 487, 43–61 (2009).
Stump, E., Gootee, B. & Talarico, F. in Antarctica: Contributions to Global Earth Sciences (eds Fütterer, D. K., Damaske, D., Kleinschmidt, G., Miller, H. & Tessensohn, F.) 181–190 (Springer, 2006).
Larson, R. L. Geological consequences of superplumes. Geology 19, 963–966 (1991).
Sutherland, R. & Hollis, C. Cretaceous demise of the Moa plate and strike-slip motion at the Gondwana margin. Geology 29, 279–282 (2001).
Finn, C. A., Müller, R. D. & Panter, K. S. A Cenozoic diffuse alkaline magmatic province (DAMP) in the southwest Pacific without rift or plume origin. Geochem. Geophys. Geosyst. 6, 1–26 (2005).
Siddoway, C. S., Baldwin, S., Fitzgerald, P. G., Fanning, C. M. & Luyendyk, B. P. Ross Sea mylonites and the timing of intracontinental extension within the West Antarctic rift system. Geology 32, 57–60 (2004).
Bradshaw, J. D. Cretaceous geotectonic patterns in the New Zealand region. Tectonics 8, 803–820 (1989).
Luyendyk, B. P. Hypothesis for Cretaceous rifting of east Gondwana caused by subducted slab capture. Geology 23, 373–376 (1995).
Davy, B., Hoernle, K. & Werner, R. Hikurangi Plateau: Crustal structure, rifted formation, and Gondwana subduction history. Geochem. Geophys. Geosyst. 9, Q07004 (2008).
Lawver, L. A. & Gahagan, L. M. Constraints on timing of extension in the Ross Sea region. Terra Antartica 1, 545–552 (1994).
Siddoway, C. S. in Antarctica: A Keystone in a Changing World Ch. 9 (eds Cooper, A. K., Raymond, C. & 10th ISAES Editorial Team) 91–114 (The National Academies of Sciences, Engineering, and Medicine, 2008). Illuminates the Mesozoic tectonic evolution of Marie Byrd Land with evidence of the metamorphic conditions, kinematics and rapid development of transcurrent structures responsible for large-scale crustal thinning across the region.
Eagles, G., Gohl, K. & Larter, R. D. High-resolution animated tectonic reconstruction of the South Pacific and West Antarctic Margin. Geochem. Geophys. Geosyst. 5, Q07002 (2004).
Gaina, C., Müller, R. D., Roest, W. R. & Symonds, P. The opening of the Tasman Sea: a gravity anomaly animation. Earth Interact. 2, 1–23 (1998).
Granot, R., Cande, S. C., Stock, J. M. & Damaske, D. Revised Eocene-Oligocene kinematics for the West Antarctic rift system. Geophys. Res. Lett. 40, 279–284 (2013).
Granot, R. & Dyment, J. Late Cenozoic unification of East and West Antarctica. Nat. Commun. 9, 3189 (2018).
Cande, S. C., Stock, J. M., Müller, R. D. & Ishihara, T. Cenozoic motion between East and West Antarctica. Nature 404, 145–150 (2000).
Rocchi, S., LeMasurier, W. E. & Di Vincenzo, G. Oligocene to Holocene erosion and glacial history in Marie Byrd Land, West Antarctica, inferred from exhumation of the Dorrel Rock intrusive complex and from volcano morphologies. Geol. Soc. Am. Bull. 118, 991–1005 (2006).
LeMasurier, W. E. & Rex, D. C. in The Geology of Antarctica (ed. Tingey, R. J.) 249–284 (Clarendon, 1991).
LeMasurier, W. Shield volcanoes of Marie Byrd Land, West Antarctic rift: oceanic island similarities, continental signature, and tectonic controls. Bull. Volcanol. 75, 726 (2013).
Luyendyk, B. P., Wilson, D. S. & Siddoway, C. S. Eastern margin of the Ross Sea Rift in western Marie Byrd Land, Antarctica: crustal structure and tectonic development. Geochem. Geophys. Geosyst. 4, 1090 (2003).
van Wyk de Vries, M., Bingham, R. G. & Hein, A. S. A new volcanic province: an inventory of subglacial volcanoes in West Antarctica. Geol. Soc. London Spl. Publ. 461, (231–248 (2017).
Behrendt, J. C. Crustal and lithospheric structure of the West Antarctic Rift System from geophysical investigations: a review. Glob. Planet. Change 23, 25–44 (1999).
Heeszel, D. S. et al. Upper mantle structure of central and West Antarctica from array analysis of Rayleigh wave phase velocities. J. Geophys. Res. 121, 1758–1775 (2016).
Panter, K. S. et al. The origin of HIMU in the SW Pacific: evidence from intraplate volcanism in southern New Zealand and subantarctic islands. J. Petrol. 47, 1673–1704 (2006).
Wobbe, F., Lindeque, A. & Gohl, K. Anomalous South Pacific lithosphere dynamics derived from new total sediment thickness estimates off the West Antarctic margin. Glob. Planet. Change 123, 139–149 (2014).
LeMasurier, W. E. in Antarctica: Contributions to Global Earth Sciences (eds Fütterer, D. K., Damaske, D., Kleinschmidt, D., Miller, H. & Tessensohn, F.) 299–302 (Springer, 2006).
LeMasurier, W. E. & Landis, C. A. Mantle-plume activity recorded by low-relief erosion surfaces in West Antarctica and New Zealand. Geol. Soc. Am. Bull. 108, 1450–1466 (1996).
Wilson, D. & Luyendyk, B. P. in Antarctica: Contributions to Global Earth Sciences (eds Fütterer, D. K., Damaske, D., Kleinschmidt, D., Miller, H. & Tessensohn, F.) 123–128 (Springer, 2006).
Lloyd, A. J. et al. A seismic transect across West Antarctica: evidence for mantle thermal anomalies beneath the Bentley Subglacial Trench and the Marie Byrd Land Dome. J. Geophys. Res. 120, 8439–8460 (2015).
Vaughan, A. P. M. & Storey, B. C. The eastern Palmer Land shear zone: a new terrane accretion model for the Mesozoic development of the Antarctic Peninsula. J. Geol. Soc. 157, 1243–1256 (2000).
Riley, T. R. et al. A revised geochronology of Thurston Island, West Antarctica, and correlations along the proto-Pacific margin of Gondwana. Antarctic Sci. 29, 47–60 (2017).
Zundel, M. et al. Thurston Island (West Antarctica) between Gondwana subduction and continental separation: a multistage evolution revealed by apatite thermochronology. Tectonics 38, 878–897 (2019).
Riley, T. R., Flowerdew, M. J. & Whitehouse, M. J. U–Pb ion-microprobe zircon geochronology from the basement inliers of eastern Graham Land, Antarctic Peninsula. J. Geol. Soc. 169, 381–393 (2012).
Millar, I. L., Pankhurst, R. J. & Fanning, C. M. Basement chronology of the Antarctic Peninsula: recurrent magmatism and anatexis in the Palaeozoic Gondwana Margin. J. Geol. Soc. 159, 145–157 (2002).
Milne, A. J. & Millar, I. L. in Geological Evolution of Antarctica. Proceedings of the Fifth International Symposium on Antarctic Earth Sciences (eds Thomson, M. R. A., Crame, J. A. & Thomson, J. W.) 335–340 (Cambridge Univ. Press, 1991).
Pankhurst, R. J., Rapela, C. W., Fanning, C. M. & Márquez, M. Gondwanide continental collision and the origin of Patagonia. Earth Sci. Rev. 76, 235–257 (2006).
Bradshaw, J. D. et al. Permo-Carboniferous conglomerates in the Trinity Peninsula Group at View Point, Antarctic Peninsula: sedimentology, geochronology and isotope evidence for provenance and tectonic setting in Gondwana. Geol. Mag. 149, 626–644 (2012).
Trouw, R. A. J., Passchier, C. W., Simões, L. S. A., Andreis, R. R. & Valeriano, C. M. Mesozoic tectonic evolution of the South Orkney microcontinent, Scotia arc, Antarctica. Geol. Mag. 134, 383–401 (1997).
Elliot, D. H., Fanning, C. M. & Laudon, T. S. The Gondwana plate margin in the Weddell Sea sector: Zircon geochronology of upper Paleozoic (mainly Permian) strata from the Ellsworth Mountains and eastern Ellsworth Land, Antarctica. Gondwana Res. 29, 234–247 (2016). Uses detrital zircons to reveal the sources for sediments within the Ellsworth–Whitmore Mountains and provides a reconstruction of the Permian basin system along the margin of Gondwana.
Barbeau, D. L. et al. Detrital-zircon geochronology of the metasedimentary rocks of north-western Graham Land. Antarctic Sci. 22, 65–78 (2010).
Laudon, T. S. in Geological Evolution of Antarctica. Proceedings of the Fifth International Symposium on Antarctic Earth Sciences (eds Thomson, M. R. A., Crame, A. & Thomson, J. W.) 455–460 (Cambridge Univ. Press, 1991).
Sepúlveda, F. A., Palma-Heldt, S., Hervé, F. & Fanning, C. M. Permian depositional age of metaturbidites of the Duque de York Complex, southern Chile: U-Pb SHRIMP data and palynology. Andean Geol. 37, 375–397 (2010).
Campbell, M. J., Rosenbaum, G., Allen, C. M. & Mortimer, N. Origin of dispersed Permian–Triassic fore-arc basin terranes in New Zealand: insights from zircon petrochronology. Gondwana Res. 78, 210–227 (2019).
Flowerdew, M. J., Millar, I. L., Vaughan, A. P. M., Horstwood, M. S. A. & Fanning, C. M. The source of granitic gneisses and migmatites in the Antarctic Peninsula: a combined U–Pb SHRIMP and laser ablation Hf isotope study of complex zircons. Contrib. Mineral. Petrol. 151, 751–768 (2006).
Willan, R. C. R. Provenance of Triassic-Cretaceous sandstones in the Antarctic Peninsula: implications for terrane models during Gondwana breakup. J. Sediment. Res. 73, 1062–1077 (2003).
Mortimer, N. New Zealand’s geological foundations. Gondwana Res. 7, 261–272 (2004).
Pankhurst, R. J. et al. The Chon Aike province of Patagonia and related rocks in West Antarctica: a silicic large igneous province. J. Volcanol. Geotherm. Res. 81, 113–136 (1998).
Pankhurst, R. J., Riley, T. R., Fanning, C. M. & Kelley, S. P. Episodic silicic volcanism in Patagonia and the Antarctic Peninsula: chronology of magmatism associated with the break-up of Gondwana. J. Petrol. 41, 605–625 (2000). Gives ages and interpretation of the key Jurassic silicic volcanic large igneous province, which developed owing to crustal melting associated with arc extension and potential interaction with the margins of a mantle plume.
Riley, T. R. & Knight, K. B. Age of pre-break-up Gondwana magmatism. Antarctic Sci. 13, 99–110 (2001).
Riley, T. R. et al. Early Jurassic magmatism on the Antarctic Peninsula and potential correlation with the Subcordilleran plutonic belt of Patagonia. J. Geol. Soc. 174, 365–376 (2017).
Rapela, C. W., Pankhurst, R. J., Fanning, C. M. & Hervé, F. Pacific subduction coeval with the Karoo mantle plume: the Early Jurasssic Subcordilleran belt of northwestern Patagonia. Geol. Soc. London Spl. Publ. 246, 217–239 (2005).
Hathway, B. Continental rift to back-arc basin: Jurassic–Cretaceous stratigraphical and structural evolution of the Larsen Basin, Antarctic Peninsula. J. Geol. Soc. Lond. 157, 417–432 (2000).
Willan, R. C. R. & Hunter, M. A. Basin evolution during the transition from continental rifting to subduction: evidence from the lithofacies and modal petrology of the Jurassic Latady Group, Antarctic Peninsula. J. South. Am. Earth Sci. 20, 171–191 (2005).
Hunter, M. A. & Cantrill, D. J. A new stratigraphy for the Latady Basin, Antarctic Peninsula: Part 2, Latady Group and basin evolution. Geol. Mag. 143, 797–819 (2006).
Riley, T. R., Curtis, M. L., Flowerdew, M. J. & Whitehouse, M. J. Evolution of the Antarctic Peninsula lithosphere: evidence from Mesozoic mafic rocks. Lithos 244, 59–73 (2016).
Butterworth, P. J., Crame, J. A., Howlett, P. J. & Macdonald, D. I. M. Lithostratigraphy of Upper Jurassic-Lower Cretaceous strata of eastern Alexander Island, Antarctica. Cretac. Res. 9, 249–264 (1988).
Riley, T. R., Burton-Johnson, A., Flowerdew, M. J. & Whitehouse, M. J. Episodicity within a mid-Cretaceous magmatic flare-up in West Antarctica: U-Pb ages of the Lassiter Coast intrusive suite, Antarctic Peninsula, and correlations along the Gondwana margin. Geol. Soc. Am. Bull. 130, 1177–1196 (2018). Uses U-Pb dating to reveal the pattern of Cretaceous magmatic flare-ups along the Antarctic Peninsula.
Paterson, S. R. & Ducea, M. N. Arc magmatic tempos: gathering the evidence. Elements 11, 91–98 (2015).
Kipf, A. et al. Granitoids and dykes of the Pine Island Bay region, West Antarctica. Antarctic Sci. 24, 473–484 (2012).
Leat, P. T. et al. Zircon U-Pb dating of Mesozoic volcanic and tectonic events in north-west Palmer Land and south-west Graham Land, Antarctica. Antarctic Sci. 21, 633–641 (2009).
Leat, P. T. & Riley, T. R. in Antarctic Volcanism (eds Smellie, J. L. & Panter, K. S.) (Geological Society of London Memoirs, 2020).
Vaughan, A. P. M., Eagles, G. & Flowerdew, M. J. Evidence for a two-phase Palmer Land event from crosscutting structural relationships and emplacement timing of the Lassiter Coast Intrusive Suite, Antarctic Peninsula: implications for mid-Cretaceous Southern Ocean plate configuration. Tectonics 31, TC1010 (2012).
Ferraccioli, F., Jones, P. C., Vaughan, A. P. M. & Leat, P. T. New aerogeophysical view of the Antarctic Peninsula: more pieces, less puzzle. Geophys. Res. Lett. 33, L05310 (2006).
Hathway, B. & Lomas, S. A. The Jurassic–Lower Cretaceous Byers Group, South Shetland Islands, Antarctica: revised stratigraphy and regional correlations. Cretaceous Res. 19, 43–67 (1998).
Larter, R. D. & Barker, P. F. Effects of ridge crest-trench interaction on Antarctic-Phoenix spreading: forces on a young subducting plate. J. Geophys. Res. 96, 19583–19607 (1991).
Fretzdorff, S. et al. Magmatism in the Bransfield Basin: rifting of the South Shetland Arc? J. Geophys. Res. 109, B12208 (2004).
Eagles, G., Livermore, R. & Morris, P. Small basins in the Scotia Sea: the Eocene Drake passage gateway. Earth Planet. Sci. Lett. 242, 343–353 (2006).
Smellie, J. L. et al. Six million years of glacial history recorded in the James Ross Island Volcanic Group, Antarctic Peninsula. Palaeogeogr. Palaeoclimatol. Palaeoecol. 260, 122–148 (2008).
Hole, M. J., Saunders, A. D., Rogers, G. & Sykes, M. A. The relationship between alkaline magmatism, lithospheric extension and slab window formation along continental destructive plate margins. Geol. Soc. London Spl. Publ. 81, 265–285 (1994).
Davey, F. J. et al. Synchronous oceanic spreading and continental rifting in West Antarctica. Geophys. Res. Lett. 43, 6162–6169 (2016).
Fretwell, P. et al. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere 7, 375–393 (2013).
Golynsky, A. V. & Aleshkova, N. D. Regional magnetic anomalies of the Weddell Sea Region and their geological significance. Polarforschung 67, 101–117 (1997).
Garrett, S. W. Interpretation of reconnaissance gravity and aeromagnetic surveys of the Antarctic Peninsula. J. Geophys. Res. 95, 6759–6777 (1990).
Behrendt, J. C. et al. Patterns of late Cenozoic volcanic and tectonic activity in the West Antarctic rift system revealed by aeromagnetic surveys. Tectonics 15, 660–676 (1996).
Riley, T. R., Flowerdew, M. J., Hunter, M. A. & Whitehouse, M. J. Middle Jurassic rhyolite volcanism of eastern Graham Land, Antarctic Peninsula: age correlations and stratigraphic relationships. Geol. Mag. 147, 581–595 (2010).
Cox S. C., Smith Lyttle B. & the GeoMAP team. Geological dataset of Antarctica, GeoMAP.v.201907. GNS Science https://data.gns.cri.nz/ata_geomap/index.html?map=Antarctic (2019).
König, M. & Jokat, W. The Mesozoic breakup of the Weddell Sea. J. Geophys. Res. 111, B12102 (2006).
Lamb, S., Mortimer, N., Smith, E. & Turner, G. Focusing of relative plate motion at a continental transform fault: Cenozoic dextral displacement >700 km on New Zealand’s Alpine Fault, reversing >225 km of Late Cretaceous sinistral motion. Geochem. Geophys. Geosyst. 17, 1197–1213 (2016).
Acknowledgements
This paper was supported by the British Antarctic Survey Geology and Geophysics team (T.A.J. and T.R.R.), NSF Antarctic Integrated System Science award 1443497 and the Geology Department of Colorado College (C.S.S.).
Reviewer information
Nature Reviews Earth & Environment thanks John Bradshaw, Sergio Rocchi and Simon Harley for their contribution to the peer review of this work.
Author information
Authors and Affiliations
Contributions
The Weddell Sea province section was led by T.A.J., the Marie Byrd Land and West Antarctic rift system section was led by C.S.S. and the Antarctic Peninsula and Thurston Island section was led by T.R.R.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Glossary
- Nunataks
-
An isolated rock outcrop standing proud of the surrounding ice sheet, often used as a descriptive Antarctic place name.
- Grenvillian
-
The mountain-building event ~1,000 million years ago, seen in continents around the world, which led to the assembly of the supercontinent of Rodinia.
- Hf
-
(Hafnium). A geologically useful isotope, as its value is strongly controlled by its magmatic source, which is linked to tectonic setting.
- Zircons
-
Highly resistant silicate minerals formed by igneous and metamorphic processes; the isotopes they contain and/or exclude make them ideal for radiometric dating and geochemical analysis.
- Mantle extraction ages
-
Isotopically determined ages when the minerals making up a crustal rock were first extracted from the underlying mantle.
- Laurentian
-
Referring to a large continental craton, which, today, forms the core of North America, but which was likely positioned close to Antarctica within the supercontinent of Rodinia.
- Paleomagnetic data
-
The preserved orientation of magnetic minerals in rocks, which can be used to reconstruct where the rock was formed.
- U-Pb dating
-
Use of the relative abundances of isotopes of uranium (U) and lead (Pb) to determine the age that crystals formed within a magma or metamorphic rock.
- Nd isotopic data
-
The use of samarium–neodymium (Sm–Nd) isotope decay system to determine the age of formation and evolution of the continental crust.
- Leucogranites
-
Granites with a high proportion of light-coloured minerals compared with darker-coloured minerals; they are typically formed in continental collision settings.
- Plutonism
-
The formation of intrusive magmatic rocks beneath the Earth’s surface, in contrast to volcanism, where magmas are erupted onto the Earth’s surface.
- Calc-alkaline
-
Magmas that are typically hydrous and oxidized, and are generally found in arcs above subduction zones.
- Migmatite
-
A metamorphic rock where significant partial melting has begun.
- Molasse
-
Poorly sorted terrestrial and shallow marine deposits associated with erosion from a nearby active orogenic belt.
- Supra-subduction
-
Being in a position overlying the subducting slab in a subduction zone system.
- Transpressional
-
Having undergone simultaneous strike–slip and compressive deformation.
- Hyaloclastite
-
Volcaniclastic breccia emplaced in a submarine or subglacial setting.
Rights and permissions
About this article
Cite this article
Jordan, T.A., Riley, T.R. & Siddoway, C.S. The geological history and evolution of West Antarctica. Nat Rev Earth Environ 1, 117–133 (2020). https://doi.org/10.1038/s43017-019-0013-6
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s43017-019-0013-6
This article is cited by
-
Scars of tectonism promote ice-sheet nucleation from Hercules Dome into West Antarctica
Nature Geoscience (2023)
-
Sulfide minerals and chalcophile elements in The Pleiades Volcanic Field, Antarctica: implications for the distribution of chalcophile metals in continental intraplate alkaline magma systems
Contributions to Mineralogy and Petrology (2023)
-
Magnetic field map of the Wilhelm Archipelago shelf zone, West Antarctica
Acta Geophysica (2023)
-
Antarctic geothermal heat flow and its implications for tectonics and ice sheets
Nature Reviews Earth & Environment (2022)
-
Eruptive history of Mason Spur, a Miocene—Pleistocene polygenetic volcanic complex in southern Victoria Land, West Antarctic Rift System, Antarctica
Bulletin of Volcanology (2022)