Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

You are viewing this page in draft mode.

The emergence and evolution of Earth System Science

An Author Correction to this article was published on 03 September 2020

This article has been updated


Earth System Science (ESS) is a rapidly emerging transdisciplinary endeavour aimed at understanding the structure and functioning of the Earth as a complex, adaptive system. Here, we discuss the emergence and evolution of ESS, outlining the importance of these developments in advancing our understanding of global change. Inspired by early work on biosphere–geosphere interactions and by novel perspectives such as the Gaia hypothesis, ESS emerged in the 1980s following demands for a new ‘science of the Earth’. The International Geosphere-Biosphere Programme soon followed, leading to an unprecedented level of international commitment and disciplinary integration. ESS has produced new concepts and frameworks central to the global-change discourse, including the Anthropocene, tipping elements and planetary boundaries. Moving forward, the grand challenge for ESS is to achieve a deep integration of biophysical processes and human dynamics to build a truly unified understanding of the Earth System.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Timeline illustrating the development of Earth System Science from the mid-20th century.
Fig. 2: The NASA Bretherton diagram of the Earth System.
Fig. 3: An updated conceptual model of the Earth System.

Change history

  • 03 September 2020

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.


  1. 1.

    Vernadsky, V. I. La Géochimie (Librairie Félix Acan, 1924)

  2. 2.

    Vernadsky, V. I. The Biosphere (complete annotated edition: Foreword by Margulis, L. et al., Introduction by Grinevald, J., translated by Langmuir, D. B., revised and annotated by McMenamin, M. A. S.) (Springer, 1998)

  3. 3.

    Lovelock, J. Gaia: A New Look at Life on Earth (Oxford Univ. Press, 1979).

  4. 4.

    National Research Council. Earth System Science. Overview: A Program for Global Change (National Academies Press, 1986).

  5. 5.

    Dutreuil, S. Gaïa: Hypothèse, Programme de Recherche pour le Système Terre, ou Philosophie de la Nature? Thesis, Univ. Paris 1 Panthéon-Sorbonne (2016).

  6. 6.

    Lenton, T. M. Earth System Science. A Very Short Introduction (Oxford Univ. Press, 2016).

  7. 7.

    Grinevald, J. La Biosphère de l’Anthropocène: Climat et Pétrole, la Double Menace. Repères Transdisciplinaires (1824–2007) (Georg Editeur, 2007).

  8. 8.

    Oreskes, N. & Krige, J. Science and Technology in the Global Cold War (MIT Press, 2014).

  9. 9.

    Doel, R. E. Constituting the postwar earth sciences: the military’s influence on the environmental sciences in the USA after 1945. Soc. Stud. Sci. 33, 635–666 (2003).

    Google Scholar 

  10. 10.

    Turchetti, S. & Roberts, P. The Surveillance Imperative: Geosciences During the Cold War and Beyond (Palgrave MacMillan, 2014)

  11. 11.

    Hamblin, J. D. Arming Mother Nature: The Birth of Catastrophic Environmentalism (Oxford Univ. Press, 2013).

  12. 12.

    Beynon, W. J. G. (ed.) Annals of the International Geophysical Year (Pergamon Press, 1970).

  13. 13.

    Oreskes, N. & Doel, R. E. in The Cambridge History of Science. Volume 5, The Modern Physical and Mathematical Sciences (ed. Nye, M. J.) 538–557 (Cambridge Univ. Press, 2008).

  14. 14.

    Edwards, P. N. A Vast Machine: Computer Models, Climate Data, and the Politics of Global Warming (MIT Press, 2010).

  15. 15.

    Oreskes, N. The Rejection of Continental Drift: Theory and Method in American Earth Science (Oxford Univ. Press, 1999).

  16. 16.

    Warde, P., Robin, L. & Sörlin, S. The Environment. A History of the Idea (Johns Hopkins Univ. Press, 2018)

  17. 17.

    Aronova, E., Baker, K. S. & Oreskes, N. Big science and big data in biology: from the International Geophysical Year through the International Biological Program to the Long Term Ecological Research (LTER) network, 1957–present. Hist. Stud. Nat. Sci. 40, 183–224 (2010).

    Google Scholar 

  18. 18.

    Grinevald, J. in Gaia in Action: Science of the Living Earth (ed. Bunyard, P.) 34–53 (Floris Books, 1996).

  19. 19.

    Grinevald, J. in The Biosphere (ed. Vernadsky V. I.) 20–32 (Springer, 1998).

  20. 20.

    Kwa, C. Representations of nature mediating between ecology and science policy: the case of the International Biological Programme. Soc. Stud. Sci. 17, 413–442 (1987).

    Google Scholar 

  21. 21.

    Kwa, C. Modeling the grasslands. Hist. Stud. Phys. Biol. Sci. 24, 125–155 (1993).

    Google Scholar 

  22. 22.

    Carson, R. Silent Spring (Houghton Mifflin, 1962).

  23. 23.

    Farman, J. C., Gardiner, B. G. & Shanklin, J. D. Large losses of total ozone in Antarctica reveal seasonal interaction. Nature 315, 207–210 (1985).

    Google Scholar 

  24. 24.

    Besel, R. D. Accommodating climate change science: James Hansen and the rhetorical/political emergence of global warming. Sci. Cont. 26, 137–152 (2013).

    Google Scholar 

  25. 25.

    Meadows, D. H., Meadows, D. L., Randers, J. & Behrens III, W. W. Limits to Growth (Universe Books, 1972).

  26. 26.

    Vieille Blanchard, E. Les Limites à la Croissance dans un Monde Global: Modélisations, Prospectives, Refutations. Thesis, Ecole Hautes Etudes Sci. Soc. (2011).

  27. 27.

    Poole, R. Earthrise: How Man First Saw the Earth (Yale Univ. Press, 2008).

  28. 28.

    Grevsmühl, S. V. Images, imagination and the global environment: towards an interdisciplinary research agenda on global environmental images. Geo 3, e00020 (2016).

    Google Scholar 

  29. 29.

    Höhler, S. Spaceship Earth in the Environmental Age, 1960–1990 (Routledge, 2015).

  30. 30.

    Lovelock, J. & Margulis, L. Atmospheric homeostasis by and for the biosphere: the Gaia hypothesis. Tellus 26, 2–10 (1974).

    Google Scholar 

  31. 31.

    Doolittle, F. W. Is nature really motherly? Coevol. Q. 29, 58–63 (1982).

    Google Scholar 

  32. 32.

    Kirchner, J. The Gaia hypothesis: can it be tested? Rev. Geophys. 27, 223–235 (1989).

    Google Scholar 

  33. 33.

    Lovelock, J. & Whitfield, M. Life span of the biosphere. Nature 296, 561–563 (1982).

    Google Scholar 

  34. 34.

    Charlson, R. J., Lovelock, J. E., Andreae, M. O. & Warren, S. G. Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 326, 655–661 (1987).

    Google Scholar 

  35. 35.

    Dutreuil, S. in Dreamers, Visionaries and Revolutionaries in the Life Sciences (eds Dietrich, M. R. & Harman, O.) (Univ. Chicago Press, 2017).

  36. 36.

    Latour, B. Facing Gaia. Eight Lectures on the New Climatic Regime (Polity Press, 2017).

  37. 37.

    Waldrop, M. M. (1986) Washington embraces global earth sciences. Science 233, 1040–1042 (1986).

  38. 38.

    Edelson, E. Laying the foundation. MOSAIC 19, 4–11 (1988).

    Google Scholar 

  39. 39.

    Conway, E. M. Atmospheric Science at NASA: a History (John Hopkins Univ. Press, 2008).

  40. 40.

    Bretherton, F. P. Earth system science and remote sensing. Proc. IEEE 73, 1118–1127 (1985).

    Google Scholar 

  41. 41.

    Kwa, C. Local ecologies and global science: discourses and strategies of the International Geosphere-Biosphere Programme. Soc. Stud. Sci. 35, 923–950 (2005).

    Google Scholar 

  42. 42.

    Kwa, C. The programming of interdisciplinary research through informal science-policy interactions. Sci. Public Policy 33, 457–467 (2006).

    Google Scholar 

  43. 43.

    Uhrqvist, O. Seeing and Knowing the Earth as a System: An Effective History of Global Environmental Change Research as Scientific and Political Practice. Thesis, Linköping Univ. (2014).

  44. 44.

    Richardson, K. & Steffen, W. in Handbook of Science and Technology Convergence (Springer, 2014).

  45. 45.

    Brundtland Commission. Our Common Future: Report of the World Commission on Environment and Development (Oxford Univ. Press, 1987).

  46. 46.

    Roederer, J. G. ICSU gives green light to IGBP. Eos Trans. Am. Geophys. Union 67, 777–781 (1986).

    Google Scholar 

  47. 47.

    Lubchenco, J. et al. The sustainable biosphere initiative: an ecological research agenda. Ecology 72, 371–412 (1991).

    Google Scholar 

  48. 48.

    Huntley, B. J. et al. A sustainable biosphere: the global imperative. The International Sustainable Biosphere Initiative. Ecol. Int. 20, 1–14 (1991).

    Google Scholar 

  49. 49.

    Vitousek, P. M., Mooney, H. A., Lubchenco, J. & Melillo, J. M. Human domination of Earth’s ecosystems. Science 277, 494–499 (1997).

    Google Scholar 

  50. 50.

    Clark, W. C. & Munn, R. E. Sustainable Development of the Biosphere (Cambridge Univ. Press, 1986).

  51. 51.

    Kates, R. W. et al. Sustainability science. Science 292, 641–642 (2001).

    Google Scholar 

  52. 52.

    Schellnhuber, H. J. in Earth System Analysis. Integrating Science for Sustainability (eds Schellnhuber, H. J. & Wentzel, V.) 3–195 (Springer, 1998).

  53. 53.

    Schellnhuber, H. J. ‘Earth system’ analysis and the second Copernican revolution. Nature 402, C19–C23 (1999).

    Google Scholar 

  54. 54.

    Crutzen, P. J. M. in Nobel Lectures, Chemistry 1991–1995 (ed. Malmström, B. G.) 189–244 (World Scientific Publishing, 1997).

  55. 55.

    Steffen, W. et al. Global Change and the Earth System: A Planet Under Pressure (Springer, 2004).

  56. 56.

    Leemans, R. et al. Developing a common strategy for integrative global environmental change research and outreach: the Earth System Science Partnership (ESSP). Curr. Opin. Environ. Sust. 1, 4–13 (2009).

    Google Scholar 

  57. 57.

    Seitzinger, S. et al. International Geosphere–Biosphere Programme and Earth system science: three decades of co-evolution. Anthropocene 12, 3–16 (2015).

    Google Scholar 

  58. 58.

    Harris, D. C. Charles David Keeling and the story of atmospheric CO2 measurements. Anal. Chem. 82, 7865–7870 (2010).

    Google Scholar 

  59. 59.

    Le Quéré, C. et al. Global carbon budget 2018. Earth Syst. Sci. Data 10, 2141–2194 (2018).

    Google Scholar 

  60. 60.

    Conway, E. M. Drowning in data: Satellite oceanography and information overload in the Earth sciences. Hist. Stud. Phys. Biol. Sci. 37, 127–151 (2006).

    Google Scholar 

  61. 61.

    Toth, C. & Jóźków, G. Remote sensing platforms and sensors: a survey. ISPRS J. Photogr. Remote Sens. 115, 22–36 (2016).

    Google Scholar 

  62. 62.

    Silsbe, G. M., Behrenfeld, M. J., Halsey, K. H., Milligan, A. J. & Westberry, T. K. The CAFE model: A net production model for global ocean phytoplankton. Glob. Biogeochem. Cycles 30, 1756–1777 (2016).

    Google Scholar 

  63. 63.

    Yang, Y., Donohue, R. J. & McVicar, T. R. Global estimation of effective plant rooting depth: Implications for hydrological modeling. Water Resour. Res. 52, 8260–8276 (2016).

    Google Scholar 

  64. 64.

    Ramanathan, V., Crutzen, P. J., Mitra, A. P. & Sikka, D. The Indian Ocean experiment and the Asian brown cloud. Curr. Sci. 83, 947–955 (2002).

    Google Scholar 

  65. 65.

    Broecker, W. S., Takahashi, T., Simpson, H. J. & Peng, T.-H. Fate of fossil fuel carbon dioxide and the global carbon budget. Science 206, 409–418 (1979).

    Google Scholar 

  66. 66.

    Petit, J. R. et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–436 (1999).

    Google Scholar 

  67. 67.

    PAGES (Past Interglacial Working Group of Past Global Changes). Interglacials of the last 800,000 years. Rev. Geophys. 54, 162–219 (2016).

    Google Scholar 

  68. 68.

    Summerhayes, C. P. Earth’s Climate Evolution (Wiley, 2015).

  69. 69.

    McInerney, F. A. & Wing, S. L. The Paleocene-Eocene Thermal Maximum: a perturbation of carbon cycle, climate, and biosphere with implications for the future. Ann. Rev. Earth Planet. Sci. 39, 489–516 (2011).

    Google Scholar 

  70. 70.

    Williamson, P. et al. Ocean fertilization for geoengineering: a review of effectiveness, environmental impacts and emerging governance. Process Saf. Environ. Prot. 90, 475–488 (2012).

    Google Scholar 

  71. 71.

    Norby, R. J. & Zak, D. R. Ecological lessons from Free-Air CO2 Enrichment (FACE) experiments. Annu. Rev. Ecol. Evol. Syst. 42, 181–203 (2011).

    Google Scholar 

  72. 72.

    Aronson, E. & McNulty, S. G. Appropriate experimental ecosystem warming methods by ecosystem, objective, and practicality. Agric. For. Meteorol. 149, 1791–1799 (2009).

    Google Scholar 

  73. 73.

    Levin, S. Fragile Dominion: Complexity and The Commons (Helix Books, 1999).

  74. 74.

    Lenton, T. M. et al. Tipping elements in Earth’s climate system. Proc. Natl Acad. Sci. USA 105, 1786–1793 (2008).

    Google Scholar 

  75. 75.

    Scheffer, M. Critical Transitions in Nature and Society (Princeton Univ. Press, 2009).

  76. 76.

    Budyko, M. I. The effect of solar radiation variations on the climate of the Earth. Tellus 21, 611–619 (1969).

    Google Scholar 

  77. 77.

    Sellers, W. A climate model based on the energy balance of the earth-atmosphere system. J. Appl. Meteorol. 8, 392–400 (1969).

    Google Scholar 

  78. 78.

    Watson, A. & Lovelock, J. Biological homeostasis of the global environment: the parable of Daisyworld. Tellus B 35, 284–289 (1983).

    Google Scholar 

  79. 79.

    Dahan, A. Putting the Earth System in a numerical box? The evolution from climate modeling toward global change. Stud. Hist. Philos. Sci. B Stud. Hist. Philos. Mod. Phys. 41, 282–292 (2010).

    Google Scholar 

  80. 80.

    Flato, G. et al. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  81. 81.

    Kiehl, J. T. & Shields, C. A. Sensitivity of the Palaeocene–Eocene Thermal Maximum climate to cloud properties. Phil. Trans. R. Soc. A Math. Phys. Eng. Sci. 371, 20130093 (2013).

    Google Scholar 

  82. 82.

    Kump, L. R. & Pollard, D. Amplification of Cretaceous warmth by biological cloud feedbacks. Science 320, 195 (2008).

    Google Scholar 

  83. 83.

    Heymann, M. & Dahan Dalmedico, A. Epistemology and politics in Earth system modelling: historical perspectives. J. Adv. Model. Earth Syst. 11, 1139–1152 (2019).

    Google Scholar 

  84. 84.

    van Vuuren, D. P. et al. How well do integrated assessment models simulate climate change? Clim. Change 104, 255–285 (2011).

    Google Scholar 

  85. 85.

    Shaman, J., Solomon, S., Colwell, R. R. & Field, C. B. Fostering advances in interdisciplinary climate science. Proc. Natl Acad. Sci. USA 110, 3653–3656 (2013).

  86. 86.

    The Royal Society & National Academy of Sciences. Modeling Earth’s future: integrated assessments of linked human-natural systems (Royal Society, 2019).

  87. 87.

    Intergovernmental Panel on Climate Change. AR5 Climate Change 2014: mitigation of climate change (IPCC, 2014).

  88. 88.

    Prinn, R. et al. Integrated global system model for climate model assessment: feedbacks and sensitivity studies. Clim. Change 41, 469–546 (1999).

    Google Scholar 

  89. 89.

    Prinn, R. Development and application of earth system models. Proc. Natl Acad. Sci. USA 110, 3673–3680 (2012).

    Google Scholar 

  90. 90.

    Claussen, M. et al. Earth system models of intermediate complexity: closing the gap in the spectrum of climate system models. Clim. Dyn. 18, 579–586 (2002).

    Google Scholar 

  91. 91.

    Ganopolski, A., Winkelmann, R. & Schellnhuber, H. J. Critical insolation–CO2 relation for diagnosing past and future glacial inception. Nature 529, 200–203 (2016).

    Google Scholar 

  92. 92.

    Clark, P. U. et al. Consequences of twenty-first-century policy for multi-millennial climate and sea-level change. Nat. Clim. Change 6, 360–369 (2016).

    Google Scholar 

  93. 93.

    IPCC (Intergovernmental Panel on Climate Change) Special Report on Global Warming of 1.5 °C. (2018).

  94. 94.

    Intergovernmental Panel on Climate Change. Special report on the ocean and cryosphere in a changing climate (IPCC, 2019).

  95. 95.

    Hoegh-Guldberg, O., Northrop, E. & Lubchenco, J. The ocean is key to achieving climate and societal goals. Science 365, 1372–1374 (2019).

    Google Scholar 

  96. 96.

    Reid, W. V. & Mooney, H. A. The millennium ecosystem assessment: testing the limits of interdisciplinary and multi-scale science. Curr. Opin. Environ. Sust. 19, 40–46 (2016).

    Google Scholar 

  97. 97.

    Walker, B., Steffen, W., Canadell, J. & Ingram, J. The Terrestrial Biosphere and Global Change (Cambridge Univ. Press, 1999).

  98. 98.

    Crossland, C. J. et al. (eds) Coastal Fluxes in the Anthropocene (Springer, 2005).

  99. 99.

    Fasham, M. J. R. Ocean Biogeochemistry (Springer, 2003).

  100. 100.

    Kabat, P. et al. (eds) Vegetation, Water, Humans and the Climate: A New Perspective on an Interactive System (Springer, 2004).

  101. 101.

    Alverson, K. D., Bradley, R. S. & Pedersen, T. F. Paleoclimate, Global Change and the Future (Springer, 2003).

  102. 102.

    Brasseur, G. P., Prinn, R. G. & Pszenny, A. A. P. Atmospheric Chemistry in a Changing World (Springer, 2003).

  103. 103.

    Lambin, E. F. & Geist, H. J. Land-Use and Land-Cover Change (Springer, 2006).

  104. 104.

    Brondizio, E. S. et al. Re-conceptualizing the Anthropocene: a call for collaboration. Glob. Environ. Change 39, 318–327 (2016).

    Google Scholar 

  105. 105.

    Dube, O. P. & Sivakumar, M. Global environmental change and vulnerability of Least Developed Countries to extreme events: Editorial on the special issue. Weather Clim. Extremes 7, 2–7 (2015).

    Google Scholar 

  106. 106.

    Palsson, G. et al. Reconceptualizing the ‘Anthropos’ in the Anthropocene: Integrating the social sciences and humanities in global environmental change research. Environ. Sci. Policy 28, 3–13 (2013).

    Google Scholar 

  107. 107.

    Biermann, F. et al. Down to Earth: contextualizing the Anthropocene. Glob. Environ. Change 39, 341–350 (2015).

    Google Scholar 

  108. 108.

    Malm, A. & Hornborg, A. The geology of mankind? A critique of the Anthropocene narrative. Anthrop. Rev. 1, 62–69 (2014).

    Google Scholar 

  109. 109.

    Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O. & Ludwig, C. The trajectory of the Anthropocene: the Great Acceleration. Anthrop. Rev. 2, 81–98 (2015).

    Google Scholar 

  110. 110.

    Lövbrand, E., Stripple, J. & Wiman, B. Earth system governmentality: reflections on science in the Anthropocene. Glob. Environ. Change 19, 7–13 (2009).

    Google Scholar 

  111. 111.

    Steffen, W. et al. The Anthropocene: from global change to planetary stewardship. Ambio 40, 739 (2011).

    Google Scholar 

  112. 112.

    Schellnhuber, H. J. & Held, H. in The Eleventh Linacre Lectures (eds Briden, J. C. & Downing, T.) (Oxford Univ. Press, 2002).

  113. 113.

    Kriegler, E., Hall, J. W., Held, H., Dawson, R. & Schellnhuber, H. J. Imprecise probability assessment of tipping points in the climate system. Proc. Natl Acad. Sci. USA 106, 5041–5046 (2009).

    Google Scholar 

  114. 114.

    Schellnhuber, H. J., Rahmstorf, S. & Winkelmann, R. Why the right climate target was agreed in Paris. Nat. Clim. Change 6, 649–653 (2016).

    Google Scholar 

  115. 115.

    Cai, Y., Lenton, T. M. & Lontzek, T. S. Risk of multiple interacting tipping points should encourage rapid CO2 emission reduction. Nat. Clim. Change 6, 520–525 (2016).

    Google Scholar 

  116. 116.

    Hansen, J. et al. Ice melt, sea level rise and superstorms: evidence from paleoclimate data, climate modeling, and modern observations that 2°C global warming could be dangerous. Atmos. Chem. Phys. 16, 3761–3812 (2016).

    Google Scholar 

  117. 117.

    Steffen, W. et al. Trajectories of the Earth System in the Anthropocene. Proc. Natl Acad. Sci. USA 115, 8252–8259 (2018).

    Google Scholar 

  118. 118.

    Aykut, S. Les “limites” du changement climatique. Cités 63, 193–236 (2015).

    Google Scholar 

  119. 119.

    Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).

    Google Scholar 

  120. 120.

    Drijfhout, S. et al. Catalogue of abrupt shifts in Intergovernmental Panel on Climate Change climate models. Proc. Natl Acad. Sci. USA 112, E5777–E5786 (2015).

    Google Scholar 

  121. 121.

    Rocha, J. C., Peterson, G., Bodin, Ö. & Levin, S. Cascading regime shifts within and across scales. Science 362, 1379–1383 (2018).

    Google Scholar 

  122. 122.

    Lenton, T. M. et al. Climate tipping points — too risky to bet against. Nature 575, 592–595 (2019).

    Google Scholar 

  123. 123.

    Alvaredo, F., Chancel, L., Piketty, T., Saez, E. & Zucman, G. World Inequality Report 2018 (Belknap Press, 2018).

  124. 124.

    Levin, S. et al. Social-ecological systems as complex adaptive systems: modeling and policy implications. Environ. Dev. Econ. 18, 111–132 (2013).

    Google Scholar 

  125. 125.

    Lubchenco, J., Cerny-Chipman, E. B., Reimer, J. N. & Levin, S. A. The right incentives enable ocean sustainability successes and provide hope for the future. Proc. Natl Acad. Sci. USA 113, 14507–14514 (2016).

    Google Scholar 

  126. 126.

    Folke, C., Biggs, R., Norström, A. V., Reyers, B. & Rockström, J. Social-ecological resilience and biosphere-based sustainability science. Ecol. Soc. 21, 41 (2016).

    Google Scholar 

  127. 127.

    Carpenter, S. R., Folke, C., Scheffer, M. & Westley, F. R. Dancing on the volcano: social exploration in times of discontent. Ecol. Soc. 24, 23 (2019).

    Google Scholar 

  128. 128.

    Haff, P. Humans and technology in the Anthropocene: Six rules. Anthrop. Rev. 1, 126–136 (2014).

    Google Scholar 

  129. 129.

    Picketty, T. Capital in the Twenty-First Century (Harvard Univ. Press, 2014).

  130. 130.

    Magalhães, P., Steffen, W., Bosselmann, K., Aragão, A. & Soromenho-Marques, V. The Safe Operating Space Treaty: A New Approach to Managing our Use of the Earth System (Cambridge Scholars Publishing, 2016).

  131. 131.

    Rockström, J. & Klum, M. Big World, Small Planet: Abundance within Planetary Boundaries (Yale Univ. Press, 2015).

  132. 132.

    Crutzen, P. J. & Stoermer, E. F. The “Anthropocene”. IGBP Newsl. 41, 17–18 (2000).

    Google Scholar 

  133. 133.

    Crutzen, P. J. Geology of mankind—the Anthropocene. Nature 415, 23 (2002).

    Google Scholar 

  134. 134.

    Steffen, W. et al. Stratigraphic and Earth System approaches to defining the Anthropocene. Earths Future 4, 324–345 (2016).

    Google Scholar 

  135. 135.

    Steffen, W., Crutzen, P. J. & McNeill, J. R. The Anthropocene: are humans now overwhelming the great forces of Nature? AMBIO 36, 614–621 (2007).

    Google Scholar 

  136. 136.

    McNeill, J. R. Something New Under the Sun (W.W. Norton, 2000).

  137. 137.

    Waters, C. N. et al. The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science 351, aad2622 (2016).

    Google Scholar 

  138. 138.

    Zalasiewicz, J. et al. When did the Anthropocene begin? A mid-twentieth century boundary level is stratigraphically optimal. Quat. Int. 383, 196–203 (2015).

    Google Scholar 

  139. 139.

    Malhi, Y. The concept of the Anthropocene. Annu. Rev. Environ. Resour. 42, 77–99 (2017).

    Google Scholar 

  140. 140.

    Bonneuil, C. & Fressoz, J. B. The Shock of the Anthropocene: The Earth, History and Us (Verso, 2016).

  141. 141.

    Bai, X. et al. (2016) Plausible and desirable futures in the Anthropocene: a new research agenda. Glob. Environ. Change 39, 351–362 (2016).

    Google Scholar 

Download references


JR was supported for this work by the European Research Council under the European Union’s Horizon 2020 research and innovation programme (Earth Resilience in the Anthropocene, grant no. ERC-2016-ADG 743080).

Author information




All authors contributed to the design and writing of the article. S.D. provided essential inputs on the history of ESS. T.M.L. helped W.S. to structure the article. W.S. drafted Figure 3.

Corresponding author

Correspondence to Will Steffen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Earth & Environment thanks Sybil Seitzinger and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Steffen, W., Richardson, K., Rockström, J. et al. The emergence and evolution of Earth System Science. Nat Rev Earth Environ 1, 54–63 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing