Sea-level rise and human migration

Abstract

Anthropogenic sea-level rise (SLR) is predicted to impact, and, in many cases, displace, a large proportion of the population via inundation and heightened SLR-related hazards. With the global coastal population projected to surpass one billion people this century, SLR might be among the most costly and permanent future consequences of climate change. In this Review, we synthesize the rapidly expanding knowledge of human mobility and migration responses to SLR, providing a coherent roadmap for future SLR research and associated policy. While it is often assumed that direct inundation forces a migration, we discuss how mobility responses are instead driven by a diversity of socioeconomic and demographic factors, which, in some cases, do not result in a migration response. We link SLR hazards with potential mechanisms of migration and the associated governmental or institutional policies that operate as obstacles or facilitators for that migration. Specific examples from the USA, Bangladesh and atoll island nations are used to contextualize these concepts. However, further research is needed on the fundamental mechanisms underlying SLR migration, tipping points, thresholds and feedbacks, risk perception and migration to fully understand migration responses to SLR.

Key points

  • A large proportion of the global population presently reside in coastal regions where sea-level rise (SLR) impacts are expected and, in many cases, may influence the migration of millions of people.

  • Migration from SLR is multifaceted, influenced by environmental hazards and political, demographic, economic and social factors embedded within policy incentives to encourage or obstruct migration — not just SLR itself.

  • Evidence suggests that there are strong economic, social and cultural reasons for households to resist migrating away from areas exposed to SLR until migration is the only remaining option.

  • Estimating the number of migrants is difficult because future exposure to SLR is dependent on choices about carbon emissions today, as well as the coastal-adaptation choices we make over time.

  • Policies addressing SLR migration via protection and accommodation are well developed but policies addressing relocation are still too abstract and lack guidance on ensuring equity.

  • Future research on thresholds related to SLR migration and the interplay between physical and social processes will be critical for informing climate-migration policies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Migration outcomes under conditions of SLR.
Fig. 2: Responses to SLR hazards.
Fig. 3: At-risk populations in the LECZ.

References

  1. 1.

    Rahmstorf, S. A semi-empirical approach to projecting future sea-level rise. Science 315, 368–370 (2007).

    Google Scholar 

  2. 2.

    Stocker, T. et al. Climate Change 2013: The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2013).

  3. 3.

    Jevrejeva, S., Moore, J. C. & Grinsted, A. Sea level projections to AD2500 with a new generation of climate change scenarios. Glob. Planet. Change 80, 14–20 (2012).

    Google Scholar 

  4. 4.

    Sweet, W. V. et al. Global and Regional Sea Level Rise Scenarios for the United States (National Oceanic and Atmospheric Administration, 2017).

  5. 5.

    Kopp, R. E. et al. Probabilistic 21st and 22nd century sea-level projections at a global network of tide-gauge sites. Earths Future 2, 383–406 (2014).

    Google Scholar 

  6. 6.

    Bamber, J. L., Oppenheimer, M., Kopp, R. E., Aspinall, W. P. & Cooke, R. M. Ice sheet contributions to future sea-level rise from structured expert judgment. Proc. Natl Acad. Sci. USA 116, 11195–11200 (2019).

    Google Scholar 

  7. 7.

    Dangendorf, S. et al. Persistent acceleration in global sea-level rise since the 1960s. Nat. Clim. Change 9, 705–710 (2019).

    Google Scholar 

  8. 8.

    Neumann, B., Vafeidis, A. T., Zimmermann, J. & Nicholls, R. J. Future coastal population growth and exposure to sea-level rise and coastal flooding — a global assessment. PLOS ONE 10, e0118571 (2015). A global assessment of the populations living in the LECZ and in the 100-year floodplain.

    Google Scholar 

  9. 9.

    Nicholls, R. J. et al. Sea-level rise and its possible impacts given a ‘beyond 4°C world’ in the twenty-first century. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 369, 161–181 (2011).

    Google Scholar 

  10. 10.

    Hauer, M. E., Evans, J. M. & Mishra, D. R. Millions projected to be at risk from sea-level rise in the continental United States. Nat. Clim. Change 6, 691–695 (2016).

    Google Scholar 

  11. 11.

    McGranahan, G., Balk, D. & Anderson, B. The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones. Environ. Urban. 19, 17–37 (2007).

    Google Scholar 

  12. 12.

    Strauss, B. H., Kulp, S. & Levermann, A. Carbon choices determine US cities committed to futures below sea level. Proc. Natl Acad. Sci. USA 112, 13508–13513 (2015).

    Google Scholar 

  13. 13.

    Field, C. B. et al. Climate Change 2014: Impacts, Adaptation and Vulnerability: Regional Aspects. Working Group II Contribution to the IPCC Fifth Assessment Report (Cambridge Univ. Press, 2014).

  14. 14.

    Desmet, K. et al. Evaluating the economic cost of coastal flooding. NBER Work. Pap. https://doi.org/10.3386/w24918 (2018).

  15. 15.

    Schneider, S. H. & Chen, R. S. Carbon dioxide warming and coastline flooding: physical factors and climatic impact. Annu. Rev. Energy 5, 107–140 (1980). One of, if not the, first articles to quantify the potential displacement associated with SLR.

    Google Scholar 

  16. 16.

    Mercer, J. H. West Antarctic ice sheet and CO2 greenhouse effect: a threat of disaster. Nature 271, 321–325 (1978).

    Google Scholar 

  17. 17.

    Poulter, B. & Halpin, P. N. Raster modelling of coastal flooding from sea-level rise. Int. J. Geogr. Inf. Sci. 22, 167–182 (2008).

    Google Scholar 

  18. 18.

    Chang, S. W., Clement, T. P., Simpson, M. J. & Lee, K.-K. Does sea-level rise have an impact on saltwater intrusion? Adv. Water Resour. 34, 1283–1291 (2011).

    Google Scholar 

  19. 19.

    Carretero, S., Rapaglia, J., Bokuniewicz, H. & Kruse, E. Impact of sea-level rise on saltwater intrusion length into the coastal aquifer, Partido de La Costa, Argentina. Cont. Shelf Res. 61–62, 62–70 (2013).

    Google Scholar 

  20. 20.

    Knighton, A. D., Mills, K. & Woodroffe, C. D. Tidal-creek extension and saltwater intrusion in northern Australia. Geology 19, 831–834 (1991).

    Google Scholar 

  21. 21.

    Werner, A. D. & Simmons, C. T. Impact of sea-level rise on sea water intrusion in coastal aquifers. Groundwater 47, 197–204 (2009).

    Google Scholar 

  22. 22.

    Giambastiani, B. M. S., Antonellini, M., Oude Essink, G. H. P. & Stuurman, R. J. Saltwater intrusion in the unconfined coastal aquifer of Ravenna (Italy): a numerical model. J. Hydrol. 340, 91–104 (2007).

    Google Scholar 

  23. 23.

    Ketabchi, H., Mahmoodzadeh, D., Ataie-Ashtiani, B. & Simmons, C. T. Sea-level rise impacts on seawater intrusion in coastal aquifers: review and integration. J. Hydrol. 535, 235–255 (2016).

    Google Scholar 

  24. 24.

    Moftakhari, H. R. et al. Increased nuisance flooding along the coasts of the United States due to sea level rise: past and future. Geophys. Res. Lett. 42, 9846–9852 (2015).

    Google Scholar 

  25. 25.

    Vitousek, S. et al. Doubling of coastal flooding frequency within decades due to sea-level rise. Sci. Rep. 7, 1399 (2017).

    Google Scholar 

  26. 26.

    Strauss, B. H., Ziemlinski, R., Weiss, J. L. & Overpeck, J. T. Tidally adjusted estimates of topographic vulnerability to sea level rise and flooding for the contiguous United States. Environ. Res. Lett. 7, 014033 (2012).

    Google Scholar 

  27. 27.

    Van Manh, N. et al. Future sediment dynamics in the Mekong Delta floodplains: Impacts of hydropower development, climate change and sea level rise. Glob. Planet. Change 127, 22–33 (2015).

    Google Scholar 

  28. 28.

    Bruun, P. Sea-level rise as a cause of shore erosion. J. Waterw. Harb. Div. 88, 117–132 (1962).

    Google Scholar 

  29. 29.

    Leatherman, S. P., Zhang, K. & Douglas, B. C. Sea level rise shown to drive coastal erosion. Eos Trans. Am. Geophys. Union. 81, 55–57 (2000).

    Google Scholar 

  30. 30.

    Hallegatte, S. et al. Assessing climate change impacts, sea level rise and storm surge risk in port cities: a case study on Copenhagen. Clim. Change 104, 113–137 (2011).

    Google Scholar 

  31. 31.

    Tebaldi, C., Strauss, B. H. & Zervas, C. E. Modelling sea level rise impacts on storm surges along US coasts. Environ. Res. Lett. 7, 014032 (2012).

    Google Scholar 

  32. 32.

    Karim, M. F. & Mimura, N. Impacts of climate change and sea-level rise on cyclonic storm surge floods in Bangladesh. Glob. Environ. Change 18, 490–500 (2008).

    Google Scholar 

  33. 33.

    Woodruff, J. D., Irish, J. L. & Camargo, S. J. Coastal flooding by tropical cyclones and sea-level rise. Nature 504, 44–52 (2013).

    Google Scholar 

  34. 34.

    Mahmuduzzaman, M., Ahmed, Z. U., Nuruzzaman, A. K. M. & Ahmed, F. R. S. Causes of salinity intrusion in coastal belt of Bangladesh. Int. J. Plant. Res. 4, 8–13 (2014).

    Google Scholar 

  35. 35.

    Sušnik, J. et al. Interdisciplinary assessment of sea-level rise and climate change impacts on the lower Nile delta, Egypt. Sci. Total. Environ. 503–504, 279–288 (2015).

    Google Scholar 

  36. 36.

    Suarez, P., Anderson, W., Mahal, V. & Lakshmanan, T. R. Impacts of flooding and climate change on urban transportation: A systemwide performance assessment of the Boston Metro Area. Transp. Res. D Transp. Environ. 10, 231–244 (2005).

    Google Scholar 

  37. 37.

    Jacobs, J. M., Cattaneo, L. R., Sweet, W. & Mansfield, T. Recent and future outlooks for nuisance flooding impacts on roadways on the US East Coast. Transp. Res. Rec. 2672, 1–10 (2018).

    Google Scholar 

  38. 38.

    Dawson, D., Shaw, J. & Gehrels, W. R. Sea-level rise impacts on transport infrastructure: The notorious case of the coastal railway line at Dawlish, England. J. Transp. Geogr. 51, 97–109 (2016).

    Google Scholar 

  39. 39.

    Keenan, J. M., Hill, T. & Gumber, A. Climate gentrification: from theory to empiricism in Miami-Dade County, Florida. Environ. Res. Lett. 13, 054001 (2018). Discusses the concept of ‘climate gentrification’ due to SLR.

    Google Scholar 

  40. 40.

    McAlpine, S. A. & Porter, J. R. Estimating recent local impacts of sea-level rise on current real-estate losses: a housing market case study in Miami-Dade, Florida. Popul. Res. Policy Rev. 37, 871–895 (2018).

    Google Scholar 

  41. 41.

    Fussell, E. et al. Weather-related hazards and population change: a study of hurricanes and tropical storms in the United States, 1980–2012. Ann. Am. Acad. Political Soc. Sci. 669, 146–167 (2017).

    Google Scholar 

  42. 42.

    Alexander, M., Polimis, K. & Zagheni, E. The impact of Hurricane Maria on out-migration from Puerto Rico: evidence from Facebook data. Popul. Dev. Rev. 45, 617–630 (2019).

    Google Scholar 

  43. 43.

    Scott, D., Simpson, M. C. & Sim, R. The vulnerability of Caribbean coastal tourism to scenarios of climate change related sea level rise. J. Sustain. Tour. 20, 883–898 (2012).

    Google Scholar 

  44. 44.

    Mehvar, S., Filatova, T., Syukri, I., Dastgheib, A. & Ranasinghe, R. Developing a framework to quantify potential sea level rise-driven environmental losses: a case study in Semarang coastal area, Indonesia. Environ. Sci. Policy 89, 216–230 (2018).

    Google Scholar 

  45. 45.

    Badjeck, M.-C., Allison, E. H., Halls, A. S. & Dulvy, N. K. Impacts of climate variability and change on fishery-based livelihoods. Mar. Policy 34, 375–383 (2010).

    Google Scholar 

  46. 46.

    Desantis, L. R., Bhotika, S., Williams, K. & Putz, F. E. Sea-level rise and drought interactions accelerate forest decline on the Gulf Coast of Florida, USA. Glob. Change Biol. 13, 2349–2360 (2007).

    Google Scholar 

  47. 47.

    Black, R., Bennett, S. R. G., Thomas, S. M. & Beddington, J. R. Climate change: Migration as adaptation. Nature 478, 447–449 (2011). An especially useful overarching framework to discuss migration as multifaceted.

    Google Scholar 

  48. 48.

    Döös, B. R. Can large-scale environmental migrations be predicted? Glob. Environ. Change 7, 41–61 (1997).

    Google Scholar 

  49. 49.

    McLeman, R. A. Climate and Human Migration: Past Experiences, Future Challenges (Cambridge Univ. Press, 2014).

  50. 50.

    Hauer, M. E. Migration induced by sea-level rise could reshape the US population landscape. Nat. Clim. Change 7, 321–325 (2017). One of the first studies to model the potential migration destinations of SLR migrants.

    Google Scholar 

  51. 51.

    Gibbons, S. J. A. & Nicholls, R. J. Island abandonment and sea-level rise: An historical analog from the Chesapeake Bay, USA. Glob. Environ. Change 16, 40–47 (2006). One of the few historical analogues of island abandonment.

    Google Scholar 

  52. 52.

    Hauer, M. E., Hardy, R. D., Mishra, D. R. & Pippin, J. S. No landward movement: examining 80 years of population migration and shoreline change in Louisiana. Popul. Environ. 40, 369–387 (2019).

    Google Scholar 

  53. 53.

    Trincardi, F. et al. The 1966 flooding of Venice: What time taught us for the future. Oceanography 29, 178–186 (2016).

    Google Scholar 

  54. 54.

    Fussell, E., Curtis, K. J. & DeWaard, J. Recovery migration to the City of New Orleans after Hurricane Katrina: a migration systems approach. Popul. Environ. 35, 305–322 (2014).

    Google Scholar 

  55. 55.

    Bailey, C., Gramling, R. & Laska, S. B. in Perspectives on the Restoration of the Mississippi Delta: The Once and Future Delta (eds Day, J. W., Kemp, G. P., Freeman, A. M. & Muth, D. P.) 125–140 (Springer, 2014).

  56. 56.

    Yohe, G. W. & Schlesinger, M. E. Sea-level change: the expected economic cost of protection or abandonment in the United States. Clim. Change 38, 447–472 (1998).

    Google Scholar 

  57. 57.

    Yohe, G., Neumann, J., Marshall, P. & Ameden, H. The economic cost of greenhouse-induced sea-level rise for developed property in the United States. Clim. Change 32, 387–410 (1996).

    Google Scholar 

  58. 58.

    Fankhauser, S. Protection versus retreat: the economic costs of sea-level rise. Environ. Plan. A Econ. Space 27, 299–319 (1995).

    Google Scholar 

  59. 59.

    Chen, J. & Mueller, V. Coastal climate change, soil salinity and human migration in Bangladesh. Nat. Clim. Change 8, 981–985 (2018). One of the few studies to link a SLR hazard to empirical models of human migration.

    Google Scholar 

  60. 60.

    Davis, K. F., Battachan, A., D’Odorico, P. & Suweis, S. A universal model for predicting human migration under climate change: examining future sea level rise in Bangladesh. Environ. Res. Lett. 13, 064030 (2018).

    Google Scholar 

  61. 61.

    Adams, H. & Kay, S. Migration as a human affair: Integrating individual stress thresholds into quantitative models of climate migration. Environ. Sci. Policy 93, 129–138 (2019). Quantifies potential thresholds for migrating due to SLR.

    Google Scholar 

  62. 62.

    Hino, M., Field, C. B. & Mach, K. J. Managed retreat as a response to natural hazard risk. Nat. Clim. Change 7, 364–370 (2017). A global study of historic managed retreats that identifies four types of managed retreats.

    Google Scholar 

  63. 63.

    Koslov, L. The case for retreat. Public Cult. 28, 359–387 (2016).

    Google Scholar 

  64. 64.

    Pilkey, O. H., Pilkey-Jarvis, L. & Pilkey, K. C. Retreat From a Rising Sea: Hard Choices in an Age of Climate Change (Columbia Univ. Press, 2016).

  65. 65.

    Maldonado, J. K., Shearer, C., Bronen, R., Peterson, K. & Lazrus, H. in Climate Change and Indigenous Peoples in the United States: Impacts, Experiences and Actions (eds Maldonado, J. K., Colombi, B. & Pandya, R.) 93–106 (Springer, 2014).

  66. 66.

    Kniveton, D. Sea-level-rise impacts: Questioning inevitable migration. Nat. Clim. Change 7, 548–549 (2017).

    Google Scholar 

  67. 67.

    Laurice Jamero, M. A. et al. Small-island communities in the Philippines prefer local measures to relocation in response to sea-level rise. Nat. Clim. Change 7, 581–586 (2017). Demonstrates that, when given the option to relocate, people prefer to stay and protect in place rather than migrate.

    Google Scholar 

  68. 68.

    Kulp, S. A. & Strauss, B. H. New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding. Nat. Commun. 10, 4844 (2019).

    Google Scholar 

  69. 69.

    Mengel, M., Nauels, A., Rogelj, J. & Schleussner, C.-F. Committed sea-level rise under the Paris Agreement and the legacy of delayed mitigation action. Nat. Commun. 9, 601 (2018).

    Google Scholar 

  70. 70.

    Hinkel, J. et al. Coastal flood damage and adaptation costs under 21st century sea-level rise. Proc. Natl Acad. Sci. USA 111, 3292–3297 (2014).

    Google Scholar 

  71. 71.

    Rigaud, K. K. et al. Groundswell: Preparing for Internal Climate Migration (World Bank, 2018).

  72. 72.

    Siders, A. R., Hino, M. & Mach, K. J. The case for strategic and managed climate retreat. Science 365, 761–763 (2019).

    Google Scholar 

  73. 73.

    Hallegatte, S., Green, C., Nicholls, R. J. & Corfee-Morlot, J. Future flood losses in major coastal cities. Nat. Clim. Change 3, 802–806 (2013).

    Google Scholar 

  74. 74.

    Brown, S. et al. Quantifying land and people exposed to sea-level rise with no mitigation and 1.5°C and 2.0°C rise in global temperatures to year 2300. Earths Future 6, 583–600 (2018).

    Google Scholar 

  75. 75.

    Nicholls, R. J. & Cazenave, A. Sea-level rise and its impact on coastal zones. Science 328, 1517–1520 (2010).

    Google Scholar 

  76. 76.

    Curtis, K. J. & Schneider, A. Understanding the demographic implications of climate change: estimates of localized population predictions under future scenarios of sea-level rise. Popul. Environ. 33, 28–54 (2011). One of the first studies to hypothesize that SLR might not just spur people to migrate but will actually alter migration destinations.

    Google Scholar 

  77. 77.

    Marzeion, B. & Levermann, A. Loss of cultural world heritage and currently inhabited places to sea-level rise. Environ. Res. Lett. 9, 034001 (2014).

    Google Scholar 

  78. 78.

    Rowley, R. J., Kostelnick, J. C., Braaten, D., Li, X. & Meisel, J. Risk of rising sea level to population and land area. Eos Trans. Am. Geophys. Union. 88, 105–107 (2007).

    Google Scholar 

  79. 79.

    Small, C. & Nicholls, R. J. A global analysis of human settlement in coastal zones. J. Coast. Res. 19, 584–599 (2003).

    Google Scholar 

  80. 80.

    Lichter, M., Vafeidis, A. T. & Nicholls, R. J. Exploring data-related uncertainties in analyses of land area and population in the “low-elevation coastal zone” (LECZ). J. Coast. Res. 27, 757–768 (2010).

    Google Scholar 

  81. 81.

    Small, C., Gornitz, V. & Cohen, J. E. Coastal hazards and the global distribution of human population. Environ. Geosci. 7, 3–12 (2000).

    Google Scholar 

  82. 82.

    Mondal, P. & Tatem, A. J. Uncertainties in measuring populations potentially impacted by sea level rise and coastal flooding. PLOS ONE 7, e48191 (2012).

    Google Scholar 

  83. 83.

    Purvis, M. J., Bates, P. D. & Hayes, C. M. A probabilistic methodology to estimate future coastal flood risk due to sea level rise. Coast. Eng. 55, 1062–1073 (2008).

    Google Scholar 

  84. 84.

    Crowell, M. et al. An estimate of the U.S. population living in 100-year coastal flood hazard areas. J. Coast. Res. 262, 201–211 (2010).

    Google Scholar 

  85. 85.

    Heberger, M., Cooley, H., Herrera, P., Gleick, P. H. & Moore, E. Potential impacts of increased coastal flooding in California due to sea-level rise. Clim. Change 109, 229–249 (2011).

    Google Scholar 

  86. 86.

    Hauer, M. E., Evans, J. M. & Alexander, C. R. Sea-level rise and sub-county population projections in coastal Georgia. Popul. Environ. 37, 44–62 (2015).

    Google Scholar 

  87. 87.

    Hardy, R. D. & Hauer, M. E. Social vulnerability projections improve sea-level rise risk assessments. Appl. Geogr. 91, 10–20 (2018).

    Google Scholar 

  88. 88.

    El-Raey, M. Vulnerability assessment of the coastal zone of the Nile delta of Egypt, to the impacts of sea level rise. Ocean Coast. Manag. 37, 29–40 (1997).

    Google Scholar 

  89. 89.

    Zhang, K., Dittmar, J., Ross, M. & Bergh, C. Assessment of sea level rise impacts on human population and real property in the Florida Keys. Clim. Change 107, 129–146 (2011).

    Google Scholar 

  90. 90.

    Li, X. et al. GIS analysis of global impacts from sea level rise. Photogramm. Eng. Remote. Sens. 75, 807–818 (2009).

    Google Scholar 

  91. 91.

    Kleinosky, L. R., Yarnal, B. & Fisher, A. Vulnerability of Hampton Roads, Virginia to storm-surge flooding and sea-level rise. Nat. Hazards 40, 43–70 (2007).

    Google Scholar 

  92. 92.

    Sweet, W. V. & Park, J. From the extreme to the mean: Acceleration and tipping points of coastal inundation from sea level rise. Earths Future 2, 579–600 (2014).

    Google Scholar 

  93. 93.

    Bobba, A. G. Numerical modelling of salt-water intrusion due to human activities and sea-level change in the Godavari Delta, India. Hydrol. Sci. J. 47, S67–S80 (2002).

    Google Scholar 

  94. 94.

    Ataie-Ashtiani, B., Werner, A. D., Simmons, C. T., Morgan, L. K. & Lu, C. How important is the impact of land-surface inundation on seawater intrusion caused by sea-level rise? Hydrogeol. J. 21, 1673–1677 (2013).

    Google Scholar 

  95. 95.

    Loáiciga, H. A., Pingel, T. J. & Garcia, E. S. Sea water intrusion by sea-level rise: scenarios for the 21st century. Groundwater 50, 37–47 (2012).

    Google Scholar 

  96. 96.

    Ranasinghe, R., Callaghan, D. & Stive, M. J. Estimating coastal recession due to sea level rise: beyond the Bruun rule. Clim. Change 110, 561–574 (2012).

    Google Scholar 

  97. 97.

    Seto, K. C. Exploring the dynamics of migration to mega-delta cities in Asia and Africa: Contemporary drivers and future scenarios. Glob. Environ. Change 21, S94–S107 (2011).

    Google Scholar 

  98. 98.

    Black, R., Arnell, N. W., Adger, W. N., Thomas, D. & Geddes, A. Migration, immobility and displacement outcomes following extreme events. Environ. Sci. Policy 27, S32–S43 (2013).

    Google Scholar 

  99. 99.

    Adger, W. N. et al. Focus on environmental risks and migration: causes and consequences. Environ. Res. Lett. 10, 060201 (2015).

    Google Scholar 

  100. 100.

    Connell, J. Last days in the Carteret Islands? Climate change, livelihoods and migration on coral atolls. Asia Pac. Viewp. 57, 3–15 (2016).

    Google Scholar 

  101. 101.

    Black, R. et al. The effect of environmental change on human migration. Glob. Environ. Change 21, S3–S11 (2011).

    Google Scholar 

  102. 102.

    Dieleman, F. M. Modelling residential mobility; a review of recent trends in research. J. Hous. Built Environ. 16, 249–265 (2001).

    Google Scholar 

  103. 103.

    Clark, W. A. & Maas, R. Interpreting migration through the prism of reasons for moves. Popul. Space Place 21, 54–67 (2015).

    Google Scholar 

  104. 104.

    De Longueville, F., Zhu, Y. & Henry, S. Direct and indirect impacts of environmental factors on migration in Burkina Faso: application of structural equation modelling. Popul. Environ. 40, 456–479 (2019).

    Google Scholar 

  105. 105.

    Findlay, A. M. Migrant destinations in an era of environmental change. Glob. Environ. Change 21, S50–S58 (2011).

    Google Scholar 

  106. 106.

    Fussell, E., Hunter, L. M. & Gray, C. L. Measuring the environmental dimensions of human migration: the demographer’s toolkit. Glob. Environ. Change 28, 182–191 (2014).

    Google Scholar 

  107. 107.

    Adams, H. Why populations persist: mobility, place attachment and climate change. Popul. Environ. 37, 429–448 (2016).

    Google Scholar 

  108. 108.

    Slovic, P. The Perception of Risk (Routledge, 2016).

  109. 109.

    Ludy, J. & Kondolf, G. M. Flood risk perception in lands “protected” by 100-year levees. Nat. Hazards 61, 829–842 (2012).

    Google Scholar 

  110. 110.

    Botzen, W. J. W., Aerts, J. C. J. H. & van den Bergh, J. C. J. M. Dependence of flood risk perceptions on socioeconomic and objective risk factors: individual perceptions of climate change. Water Resour. Res. 45, W10440 (2009).

    Google Scholar 

  111. 111.

    Bubeck, P., Botzen, W. J. W. & Aerts, J. C. J. H. A review of risk perceptions and other factors that influence flood mitigation behavior. Risk Anal. 32, 1481–1495 (2012).

    Google Scholar 

  112. 112.

    Kousky, C. Managing shoreline retreat: a US perspective. Clim. Change 124, 9–20 (2014).

    Google Scholar 

  113. 113.

    Grothmann, T. & Reusswig, F. People at risk of flooding: why some residents take precautionary action while others do not. Nat. Hazards 38, 101–120 (2006).

    Google Scholar 

  114. 114.

    Knocke, E. T. & Kolivras, K. N. Flash flood awareness in southwest Virginia. Risk Anal. 27, 155–169 (2007).

    Google Scholar 

  115. 115.

    Solberg, C., Rossetto, T. & Joffe, H. The social psychology of seismic hazard adjustment: re-evaluating the international literature. Nat. Hazards Earth Syst. Sci. 10, 1663–1677 (2010).

    Google Scholar 

  116. 116.

    Kayastha, S. L. & Yadava, R. P. in Population Redistribution and Development in South Asia Vol. 3 (eds Kosiński, L. A. & Elahi, K. M.) 79–88 (Springer, 1985).

  117. 117.

    Scoones, I. Sustainable Rural Livelihoods: A Framework for Analysis (Institute of Development Studies, 1998).

  118. 118.

    Hunter, L. M., Luna, J. K. & Norton, R. M. Environmental dimensions of migration. Annu. Rev. Sociol. 41, 377–397 (2015).

    Google Scholar 

  119. 119.

    Stark, O. & Bloom, D. E. The new economics of labor migration. Am. Econ. Rev. 75, 173–178 (1985).

    Google Scholar 

  120. 120.

    McDowell, C. & de Haan, A. Migration and Sustainable Livelihoods: A Critical Review of the Literature (Institute of Development Studies, 1997).

  121. 121.

    McLeman, R. A. Settlement abandonment in the context of global environmental change. Glob. Environ. Change 21, S108–S120 (2011).

    Google Scholar 

  122. 122.

    Harris, J. R. & Todaro, M. P. Migration, unemployment and development: a two-sector analysis. Am. Econ. Rev. 60, 126–142 (1970).

    Google Scholar 

  123. 123.

    Lee, E. S. A theory of migration. Demography 3, 47–57 (1966).

    Google Scholar 

  124. 124.

    Greenwood, M. J. Internal migration in developed countries. Handb. Popul. Fam. Econ. 1, 647–720 (1997).

    Google Scholar 

  125. 125.

    Plane, D. A., Henrie, C. J. & Perry, M. J. Migration up and down the urban hierarchy and across the life course. Proc. Natl Acad. Sci. USA 102, 15313–15318 (2005).

    Google Scholar 

  126. 126.

    Morrison, P. S. & Clark, W. A. Internal migration and employment: macro flows and micro motives. Environ. Plan. A. 43, 1948–1964 (2011).

    Google Scholar 

  127. 127.

    Donner, S. D. & Webber, S. Obstacles to climate change adaptation decisions: a case study of sea-level rise and coastal protection measures in Kiribati. Sustain. Sci. 9, 331–345 (2014).

    Google Scholar 

  128. 128.

    Farbotko, C. & Lazrus, H. The first climate refugees? Contesting global narratives of climate change in Tuvalu. Glob. Environ. Change 22, 382–390 (2012).

    Google Scholar 

  129. 129.

    Shen, S. & Gemenne, F. Contrasted views on environmental change and migration: the case of Tuvaluan migration to New Zealand. Int. Migr. 49, e224–e242 (2011).

    Google Scholar 

  130. 130.

    Campbell, J. & Warrick, O. Climate Change and Migration Issues in the Pacific (United Nations ESCAP, 2014).

  131. 131.

    McLeman, R. A. & Hunter, L. M. Migration in the context of vulnerability and adaptation to climate change: insights from analogues. Wiley Interdiscip. Rev. Clim. Change 1, 450–461 (2010).

    Google Scholar 

  132. 132.

    Lu, X. et al. Unveiling hidden migration and mobility patterns in climate stressed regions: A longitudinal study of six million anonymous mobile phone users in Bangladesh. Glob. Environ. Change 38, 1–7 (2016).

    Google Scholar 

  133. 133.

    Curtis, K. J., Fussell, E. & DeWaard, J. Recovery migration after Hurricanes Katrina and Rita: spatial concentration and intensification in the migration system. Demography 52, 1269–1293 (2015).

    Google Scholar 

  134. 134.

    DeWaard, J., Curtis, K. J. & Fussell, E. Population recovery in New Orleans after Hurricane Katrina: exploring the potential role of stage migration in migration systems. Popul. Environ. 37, 449–463 (2016).

    Google Scholar 

  135. 135.

    Pais, J. F. & Elliott, J. R. Places as recovery machines: vulnerability and neighborhood change after major hurricanes. Soc. Forces 86, 1415–1453 (2008).

    Google Scholar 

  136. 136.

    Hsiang, S. M. & Jina, A. S. Geography, depreciation, and growth. Am. Econ. Rev. 105, 252–256 (2015).

    Google Scholar 

  137. 137.

    Hsiang, S. M. & Jina, A. S. The Causal Effect of Environmental Catastrophe on Long-Run Economic Growth: Evidence From 6,700 Cyclones (National Bureau of Economic Research, 2014).

  138. 138.

    Roback, J. Wages, rents, and the quality of life. J. Polit. Econ. 90, 1257–1278 (1982).

    Google Scholar 

  139. 139.

    Cragg, M. & Kahn, M. New estimates of climate demand: evidence from location choice. J. Urban Econ. 42, 261–284 (1997).

    Google Scholar 

  140. 140.

    Rappaport, J. in Environmental Amenities and Regional Economic Development (eds Cherry, T. L. & Rickman, D.) 25–53 (Routledge, 2009).

  141. 141.

    de Sherbinin, A. et al. Climate vulnerability mapping: a systematic review and future prospects. Wiley Interdiscip. Rev. Clim. Change 10, e600 (2019).

    Google Scholar 

  142. 142.

    McLeman, R. & Smit, B. Migration as an adaptation to climate change. Clim. Change 76, 31–53 (2006).

    Google Scholar 

  143. 143.

    Adger, W. N. D., de Campos, R. S. K. & Mortreux, C. R. in Routledge Handbook of Environmental Displacement and Migration (eds McLeman, R. & Gemenne, F.) 29–41 (Routledge, 2018).

  144. 144.

    Koerth, J., Vafeidis, A. T. & Hinkel, J. Household-level coastal adaptation and its drivers: a systematic case study review. Risk Anal. 37, 629–646 (2017). A review of household coastal adaptation processes, including the sociodemographic characteristics of who adapts in place.

    Google Scholar 

  145. 145.

    Nicholls, R. J. Planning for the impacts of sea level rise. Oceanography 24, 144–157 (2011). An easy-to-read and interpret overview of adaptation options for SLR.

    Google Scholar 

  146. 146.

    Cartwright, A. Global Climate Change and Adaptation – A Sea-Level Rise Risk Assessment (LaquaR Consultants CC, 2008).

  147. 147.

    Herzog, M. M. & Hecht, S. B. Combatting sea level rise in Southern California: how local governments can seize adaptation opportunities while minimizing legal risk. Hastings West-Northwest J. Environ. Law Policy 19, 463 (2013).

    Google Scholar 

  148. 148.

    Hinkel, J. et al. The ability of societies to adapt to twenty-first-century sea-level rise. Nat. Clim. Change 8, 570–578 (2018).

    Google Scholar 

  149. 149.

    Stive, M. J. F. et al. A new alternative to saving our beaches from sea-level rise: the sand engine. J. Coast. Res. 29, 1001–1008 (2013).

    Google Scholar 

  150. 150.

    Nicholls, R. J., Leatherman, S. P., Dennis, K. C. & Volonté, C. R. Impacts and responses to sea-level rise: qualitative and quantitative assessments. J. Coast. Res. 26–43 (1995).

  151. 151.

    Hinkel, J. et al. A global analysis of erosion of sandy beaches and sea-level rise: An application of DIVA. Glob. Planet. Change 111, 150–158 (2013).

    Google Scholar 

  152. 152.

    Davis, J. L., Currin, C. A., O’Brien, C., Raffenburg, C. & Davis, A. Living shorelines: coastal resilience with a blue carbon benefit. PLOS ONE 10, e0142595 (2015).

    Google Scholar 

  153. 153.

    Swann, L. The Use of Living Shorelines to Mitigate the Effects of Storm Events on Dauphin Island, Alabama, USA (American Fisheries Society, 2008).

  154. 154.

    Hinkel, J. et al. Sea-level rise impacts on Africa and the effects of mitigation and adaptation: an application of DIVA. Reg. Environ. Change 12, 207–224 (2012).

    Google Scholar 

  155. 155.

    Fu, X., Gomaa, M., Deng, Y. & Peng, Z.-R. Adaptation planning for sea level rise: a study of US coastal cities. J. Environ. Plan. Manag. 60, 249–265 (2017).

    Google Scholar 

  156. 156.

    Klein, R. J. T. et al. Technological options for adaptation to climate change in coastal zones. J. Coast. Res. 17, 531–543 (2001).

    Google Scholar 

  157. 157.

    Aerts, J. C. J. H. A review of cost estimates for flood adaptation. Water 10, 1646 (2018).

    Google Scholar 

  158. 158.

    Bloetscher, F., Romah, T., Berry, L., Hammer, N. H. & Cahill, M. A. Identification of physical transportation infrastructure vulnerable to sea level rise. J. Sustain. Dev. 5, 40–51 (2012).

    Google Scholar 

  159. 159.

    Boateng, I. An assessment of the physical impacts of sea-level rise and coastal adaptation: a case study of the eastern coast of Ghana. Clim. Change 114, 273–293 (2012).

    Google Scholar 

  160. 160.

    Lee, Y. Coastal planning strategies for adaptation to sea level rise: a case study of Mokpo, Korea. J. Build. Constr. Plan. Res. 2, 74–81 (2014).

    Google Scholar 

  161. 161.

    Esteban, M. et al. Adaptation to sea level rise on low coral islands: Lessons from recent events. Ocean Coast. Manag. 168, 35–40 (2019).

    Google Scholar 

  162. 162.

    Mortreux, C. & Barnett, J. Climate change, migration and adaptation in Funafuti, Tuvalu. Glob. Environ. Change 19, 105–112 (2009).

    Google Scholar 

  163. 163.

    Jamero, Ma. L., Onuki, M., Esteban, M. & Tan, N. Community-based adaptation in low-lying islands in the Philippines: challenges and lessons learned. Reg. Environ. Change 18, 2249–2260 (2018).

    Google Scholar 

  164. 164.

    Dannenberg, A. L., Frumkin, H., Hess, J. J. & Ebi, K. L. Managed retreat as a strategy for climate change adaptation in small communities: public health implications. Clim. Change 153, 1–4 (2019).

    Google Scholar 

  165. 165.

    Lincke, D. & Hinkel, J. Economically robust protection against 21st century sea-level rise. Glob. Environ. Change 51, 67–73 (2018).

    Google Scholar 

  166. 166.

    Danh, V. T. & Mushtaq, S. in Environmental Change and Agricultural Sustainability in the Mekong Delta (eds. Stewart, M. A. & Coclanis, P. A.) 181–204 (Springer, 2011).

  167. 167.

    Huntington, H. P., Goodstein, E. & Euskirchen, E. Towards a tipping point in responding to change: rising costs, fewer options for arctic and global societies. AMBIO 41, 66–74 (2012).

    Google Scholar 

  168. 168.

    Abel, N. et al. Sea level rise, coastal development and planned retreat: analytical framework, governance principles and an Australian case study. Environ. Sci. Policy 14, 279–288 (2011).

    Google Scholar 

  169. 169.

    Lemann, A. B. Stronger than the storm: disaster law in a defiant age. LA Law Rev. 78, 437–498 (2017).

    Google Scholar 

  170. 170.

    King, M. A tribe faces rising tides: the resettlement of Isle de Jean Charles comments. LSU J. Energy Law Resour. 6, 295–318 (2017).

    Google Scholar 

  171. 171.

    Flatt, V. B. et al. From surviving to thriving: equity in disaster planning and recovery. Univ. Hawai’i Richardson School Law https://doi.org/10.2139/ssrn.3340133 (2019).

  172. 172.

    Geisler, C. & Currens, B. Impediments to inland resettlement under conditions of accelerated sea level rise. Land Use Policy 66, 322–330 (2017).

    Google Scholar 

  173. 173.

    McNamara, K. E. & Des Combes, H. J. Planning for community relocations due to climate change in Fiji. Int. J. Disaster Risk Sci. 6, 315–319 (2015).

    Google Scholar 

  174. 174.

    Bronen, R. Climate-induced community relocations: using integrated social-ecological assessments to foster adaptation and resilience. Ecol. Soc. 20, 36 (2015).

    Google Scholar 

  175. 175.

    King, D. et al. Voluntary relocation as an adaptation strategy to extreme weather events. Int. J. Disaster Risk Reduct. 8, 83–90 (2014).

    Google Scholar 

  176. 176.

    Siders, A. Managed coastal retreat: a legal handbook on shifting development away from vulnerable areas. Columbia Public Law https://doi.org/10.2139/ssrn.2349461 (2013).

  177. 177.

    Liu, L. et al. Natural environment: saving an essential part of Hawaii. Hawaii Business Magazine https://www.hawaiibusiness.com/change-report-environment/ (2019).

  178. 178.

    Byrne, J. P. The cathedral engulfed: Sea-level rise, property rights, and time. LA Law Rev. 73, 69–118 (2012).

    Google Scholar 

  179. 179.

    Butler, W. H., Deyle, R. E. & Mutnansky, C. Low-regrets incrementalism: land use planning adaptation to accelerating sea level rise in Florida’s coastal communities. J. Plan. Educ. Res. 36, 319–332 (2016).

    Google Scholar 

  180. 180.

    Marino, E. Adaptation privilege and voluntary buyouts: perspectives on ethnocentrism in sea level rise relocation and retreat policies in the US. Glob. Environ. Change 49, 10–13 (2018).

    Google Scholar 

  181. 181.

    Mach, K. J. et al. Managed retreat through voluntary buyouts of flood-prone properties. Sci. Adv. 5, eaax8995 (2019).

    Google Scholar 

  182. 182.

    Kaswan, A. Seven principles for equitable adaptation. Sustain. Dev. Law Policy 13, 41–46 (2012).

    Google Scholar 

  183. 183.

    Verchick, R. R. M. & Johnson, L. R. When retreat is the best option: flood insurance after Biggert-Waters and other climate change puzzles. John Marshall Law Rev. 47, 695–718 (2013).

    Google Scholar 

  184. 184.

    Cutter, S. L., Boruff, B. J. & Shirley, W. L. Social vulnerability to environmental hazards. Soc. Sci. Q. 84, 242–261 (2003).

    Google Scholar 

  185. 185.

    McDowell, C. Climate-change adaptation and mitigation: implications for land acquisition and population relocation. Dev. Policy Rev. 31, 677–695 (2013).

    Google Scholar 

  186. 186.

    Lovelock, C. E. et al. The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Nature 526, 559–563 (2015).

    Google Scholar 

  187. 187.

    Wetzel, F. T., Kissling, W. D., Beissmann, H. & Penn, D. J. Future climate change driven sea-level rise: secondary consequences from human displacement for island biodiversity. Glob. Change Biol. 18, 2707–2719 (2012).

    Google Scholar 

  188. 188.

    Crossett, K., Ache, B., Pacheco, P. & Haber, K. National coastal population report, population trends from 1970 to 2020 (NOAA, 2013).

  189. 189.

    Loughran, K. & Elliott, J. R. Residential buyouts as environmental mobility: examining where homeowners move to illuminate social inequities in climate adaptation. Popul. Environ. 41, 52–70 (2019).

    Google Scholar 

  190. 190.

    Hori, M., Schafer, M. J. & Bowman, D. J. Displacement dynamics in southern Louisiana after Hurricanes Katrina and Rita. Popul. Res. Policy Rev. 28, 45–65 (2009).

    Google Scholar 

  191. 191.

    Thiede, B. C. & Brown, D. L. Hurricane Katrina: Who stayed and why? Popul. Res. Policy Rev. 32, 803–824 (2013).

    Google Scholar 

  192. 192.

    Rosenzweig, C. et al. Developing coastal adaptation to climate change in the New York City infrastructure-shed: process, approach, tools, and strategies. Clim. Change 106, 93–127 (2011).

    Google Scholar 

  193. 193.

    Parris, A. S. et al. Global sea level rise scenarios for the United States National Climate Assessment. NOAA Institutional Repository (2012).

  194. 194.

    Quay, R. Anticipatory governance: a tool for climate change adaptation. J. Am. Plann. Assoc. 76, 496–511 (2010).

    Google Scholar 

  195. 195.

    Hamilton, L. C., Saito, K., Loring, P. A., Lammers, R. B. & Huntington, H. P. Climigration? Population and climate change in Arctic Alaska. Popul. Environ. 38, 115–133 (2016).

    Google Scholar 

  196. 196.

    Albert, S. et al. Heading for the hills: climate-driven community relocations in the Solomon Islands and Alaska provide insight for a 1.5 °C future. Reg. Environ. Change 18, 2261–2272 (2018).

    Google Scholar 

  197. 197.

    Ali, A. Vulnerability of Bangladesh to climate change and sea level rise through tropical cyclones and storm surges. Water Air Soil Pollut. 92, 171–179 (1996).

    Google Scholar 

  198. 198.

    Huq, S., Ali, S. I. & Rahman, A. A. Sea-level rise and Bangladesh: A preliminary analysis. J. Coast. Res. 44–53 (1995).

  199. 199.

    Dasgupta, S., Kamal, F. A., Khan, Z. H., Choudhury, S. & Nishat, A. in World Scientific Reference on Asia and the World Economy (eds Agarwal, M., Pan, J. & Whalley, J.) 205–242 (World Scientific, 2015).

  200. 200.

    Clarke, D., Williams, S., Jahiruddin, M., Parks, K. & Salehin, M. Projections of on-farm salinity in costal Bangladesh. Environ. Sci. Process. Impacts 17, 1127–1136 (2015).

    Google Scholar 

  201. 201.

    Payo, A. et al. Modeling daily soil salinity dynamics in response to agricultural and environmental changes in coastal Bangladesh. Earths Future 5, 495–514 (2017).

    Google Scholar 

  202. 202.

    Khanom, T. Effect of salinity on food security in the context of interior coast of Bangladesh. Ocean Coast. Manag. 130, 205–212 (2016).

    Google Scholar 

  203. 203.

    Kartiki, K. Climate change and migration: a case study from rural Bangladesh. Gend. Dev. 19, 23–38 (2011).

    Google Scholar 

  204. 204.

    Mallick, B. & Vogt, J. Cyclone, coastal society and migration: empirical evidence from Bangladesh. Int. Dev. Plan. Rev. 34, 217–240 (2012).

    Google Scholar 

  205. 205.

    Islam, M. R. Climate change, natural disasters and socioeconomic livelihood vulnerabilities: migration decision among the char land people in Bangladesh. Soc. Indic. Res. 136, 575–593 (2018).

    Google Scholar 

  206. 206.

    Hassani-Mahmooei, B. & Parris, B. W. Climate change and internal migration patterns in Bangladesh: an agent-based model. Environ. Dev. Econ. 17, 763–780 (2012).

    Google Scholar 

  207. 207.

    Poncelet, A., Gemenne, F., Martiniello, M. & Bousetta, H. in Environment, Forced Migration and Social Vulnerability (eds Afifi, T. & Jäger, J.) 211–222 (Springer, 2010).

  208. 208.

    Mallick, B. & Vogt, J. Population displacement after cyclone and its consequences: empirical evidence from coastal Bangladesh. Nat. Hazards 73, 191–212 (2014).

    Google Scholar 

  209. 209.

    Call, M., Gray, C., Yunus, M. & Emch, M. Disruption, not displacement: environmental variability and temporary migration in Bangladesh. Glob. Environ. Change 46, 157–165 (2017).

    Google Scholar 

  210. 210.

    Gray, C. L. & Mueller, V. Natural disasters and population mobility in Bangladesh. Proc. Natl Acad. Sci. USA 109, 6000–6005 (2012).

    Google Scholar 

  211. 211.

    Chen, J. J., Mueller, V., Jia, Y. & Tseng, S. K.-H. Validating migration responses to flooding using satellite and vital registration data. Am. Econ. Rev. 107, 441–445 (2017).

    Google Scholar 

  212. 212.

    Shaw, R., Mallick, F. H. & Islam, M. A. Climate Change Adaptation Actions in Bangladesh (Springer, 2013).

  213. 213.

    United Nations High Commissioner for Refugees. Climate change and statelessness: an overview (UNHCR, 2009).

  214. 214.

    Kälin, W. & Schrepfer, N. Protecting People Crossing Borders in the Context of Climate Change - Normative Gaps and Possible Approaches (Univ. Bern, 2012).

  215. 215.

    Vidas, D., Freestone, D. & McAdam, J. International law and sea level rise: the new ILA Committee. ILSA J. Int. Comp. Law 21, 397–408 (2015).

    Google Scholar 

  216. 216.

    Constable, A. L., Climate change and migration in the Pacific: options for Tuvalu and the Marshall Islands. Reg. Environ. Change 17, 1029–1038 (2017).

    Google Scholar 

  217. 217.

    Ionesco, D., Mokhnacheva, D. & Gemenne, F. The Atlas of Environmental Migration (Routledge, 2016).

  218. 218.

    McNamara, K. E. Cross-border migration with dignity in Kiribati. Forced Migr. Rev. 49, 62 (2015). An example of an unplanned or unmanaged retreat in Kiribati, where economic and educational opportunities are enhanced for cross-border, international migrants.

    Google Scholar 

  219. 219.

    Klepp, S. & Herbeck, J. The politics of environmental migration and climate justice in the Pacific region. J. Hum. Rights Environ. 7, 54–73 (2016).

    Google Scholar 

  220. 220.

    Gerland, P. et al. World population stabilization unlikely this century. Science 346, 234–237 (2014).

    Google Scholar 

  221. 221.

    Rogers, A. Age patterns of elderly migration: an international comparison. Demography 25, 355–370 (1988).

    Google Scholar 

  222. 222.

    Nicholls, R. J., Adger, W. N., Hutton, C. W. & Hanson, S. E. Deltas in the Anthropocene (Palgrave Macmillan, 2020).

  223. 223.

    Barnett, J. & McMichael, C. The effects of climate change on the geography and timing of human mobility. Popul. Environ. 39, 339–356 (2018).

    Google Scholar 

  224. 224.

    Gharbaoui, D. J. in Routledge Handbook of Environmental Displacement and Migration Vol. 300 (eds McLeman, R. & Gemenne, F.) 300–319 (Routledge, 2018).

  225. 225.

    Hutton, D. & Haque, C. E. Patterns of coping and adaptation among erosion-induced displacees in Bangladesh: implications for hazard analysis and mitigation. Nat. Hazards 29, 405–421 (2003).

    Google Scholar 

  226. 226.

    Barman, D. S., Majumder, C. S., Rahaman, M. Z. & Sarker, S. Foundations of migration from the disaster consequences coastal area of Bangladesh. Dev. Ctry. Stud. 2, 22–29 (2012).

    Google Scholar 

  227. 227.

    Chhetri, P., Stimson, R. J. & Western, J. Understanding the downshifting phenomenon: a case of South East Queensland, Australia. Aust. J. Soc. Issues 44, 345–362 (2009).

    Google Scholar 

  228. 228.

    Fussell, E., Sastry, N. & VanLandingham, M. Race, socioeconomic status, and return migration to New Orleans after Hurricane Katrina. Popul. Environ. 31, 20–42 (2010).

    Google Scholar 

  229. 229.

    Chamlee-Wright, E. & Storr, V. H. “There’s no place like New Orleans”: sense of place and community recovery in the Ninth Ward after Hurricane Katrina. J. Urban Aff. 31, 615–634 (2009).

    Google Scholar 

  230. 230.

    Adger, W. N., Barnett, J., Brown, K., Marshall, N. & O’brien, K. Cultural dimensions of climate change impacts and adaptation. Nat. Clim. Change 3, 112–117 (2013).

    Google Scholar 

  231. 231.

    Zickgraf, C. in Routledge Handbook of Environmental Displacement and Migration (eds McLeman, R. & Gemenne, F.) 71–84 (Routledge, 2018).

  232. 232.

    Warner, K. Coordinated approaches to large-scale movements of people: contributions of the Paris Agreement and the Global Compacts for migration and on refugees. Popul. Environ. 39, 384–401 (2018).

    Google Scholar 

  233. 233.

    McAdam, J. The emerging New Zealand jurisprudence on climate change, disasters and displacement. Migr. Stud. 3, 131–142 (2015).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Socio-Environmental Synthesis Center (SESYNC) under funding received from the National Science Foundation DBI-1639145 and based upon work supported by the National Science Foundation under grant number 1600131.

Author information

Affiliations

Authors

Contributions

M.E.H., E.F., M.B. and V.M. substantially contributed to the discussion of content and wrote and edited the paper. M.C., K.A., R.M. and D.W. substantially contributed to the discussion of content and edited the paper.

Corresponding author

Correspondence to Mathew E. Hauer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Earth & Environment thanks Helen Adams, William Adger, Barbara Neumann and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hauer, M.E., Fussell, E., Mueller, V. et al. Sea-level rise and human migration. Nat Rev Earth Environ 1, 28–39 (2020). https://doi.org/10.1038/s43017-019-0002-9

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing