Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Characteristics, drivers and feedbacks of global greening

Abstract

Vegetation greenness has been increasing globally since at least 1981, when satellite technology enabled large-scale vegetation monitoring. The greening phenomenon, together with warming, sea-level rise and sea-ice decline, represents highly credible evidence of anthropogenic climate change. In this Review, we examine the detection of the greening signal, its causes and its consequences. Greening is pronounced over intensively farmed or afforested areas, such as in China and India, reflecting human activities. However, strong greening also occurs in biomes with low human footprint, such as the Arctic, where global change drivers play a dominant role. Vegetation models suggest that CO2 fertilization is the main driver of greening on the global scale, with other factors being notable at the regional scale. Modelling indicates that greening could mitigate global warming by increasing the carbon sink on land and altering biogeophysical processes, mainly evaporative cooling. Coupling high temporal and fine spatial resolution remote-sensing observations with ground measurements, increasing sampling in the tropics and Arctic, and modelling Earth systems in more detail will further our insights into the greening of Earth.

Key points

  • Long-term satellite records reveal a significant global greening of vegetated areas since the 1980s, which recent data suggest has continued past 2010.

  • Pronounced greening is observed in China and India due to afforestation and agricultural intensification.

  • Global vegetation models suggest that CO2 fertilization is the main driver of global vegetation greening.

  • Warming is the major cause of greening in boreal and Arctic biomes, but has negative effects on greening in the tropics.

  • Greening was found to mitigate global warming through enhanced land carbon uptake and evaporative cooling, but might also lead to decreased albedo that could potentially cause local warming.

  • Greening enhances transpiration, a process that reduces soil moisture and runoff locally, but can either amplify or reduce runoff and soil moisture regionally through altering the pattern of precipitation.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Changes in satellite-derived global vegetation indices, vegetation optical depth and contiguous solar-induced fluorescence.
Fig. 2: Spatial patterns of changes in leaf area index.
Fig. 3: Changes in the seasonality of vegetation greenness and atmospheric CO2 concentration.
Fig. 4: Attribution of trends in growing season mean leaf area index.
Fig. 5: Current and predicted global leaf area index.
Fig. 6: Changes in global carbon fluxes and seasonal CO2 amplitude.
Fig. 7: Biogeophysical feedbacks of recent vegetation greening to the climate system.

References

  1. Bonan, G. B., Pollard, D. & Thompson, S. L. Effects of boreal forest vegetation on global climate. Nature 359, 716–718 (1992).

    Google Scholar 

  2. Haberl, H. et al. Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. Proc. Natl Acad. Sci. USA 104, 12942–12947 (2007).

    Google Scholar 

  3. Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).

    Google Scholar 

  4. Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).

    Google Scholar 

  5. Tucker, C. J., Fung, I. Y., Keeling, C. D. & Gammon, R. H. Relationship between atmospheric CO2 variations and a satellite-derived vegetation index. Nature 319, 195–199 (1986).

    Google Scholar 

  6. Fung, I. Y., Tucker, C. J. & Prentice, K. C. Application of advanced very high resolution radiometer vegetation index to study atmosphere-biosphere exchange of CO2. J. Geophys. Res. Atmos. 92, 2999–3015 (1987).

    Google Scholar 

  7. Myneni, R. B., Keeling, C. D., Tucker, C. J., Asrar, G. & Nemani, R. R. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386, 698–702 (1997). The first study to reveal large-scale vegetation greening over the Northern Hemisphere.

    Google Scholar 

  8. Zhou, L. et al. Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. J. Geophys. Res. Atmos. 106, 20069–20083 (2001).

    Google Scholar 

  9. Goetz, S. J., Bunn, A. G., Fiske, G. J. & Houghton, R. A. Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance. Proc. Natl Acad. Sci. USA 102, 13521–13525 (2005).

    Google Scholar 

  10. Xu, L. et al. Temperature and vegetation seasonality diminishment over northern lands. Nat. Clim. Change 3, 581–586 (2013).

    Google Scholar 

  11. Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. Change 6, 791–795 (2016). A detailed attribution study of global leaf area index change during the past three decades with ensemble dynamic global vegetation models.

    Google Scholar 

  12. Ju, J. & Masek, J. G. The vegetation greenness trend in Canada and US Alaska from 1984–2012 Landsat data. Remote. Sens. Environ. 176, 1–16 (2016).

    Google Scholar 

  13. Chen, C. et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2, 122–129 (2019). Demonstrates the pattern of global greening since 2000 with the latest MODIS C6 collection data.

    Google Scholar 

  14. Lucht, W. et al. Climatic control of the high-latitude vegetation greening trend and Pinatubo effect. Science. 296, 1687–1689 (2002).

    Google Scholar 

  15. Arneth, A. et al. IPCC special report on climate change and land. Intergovernmental Panel on Climate Change (IPCC) https://www.ipcc.ch/report/srccl/ (2019) (accessed October 2019).

  16. Abram, N. et al. IPCC special report on the ocean and cryosphere in a changing climate. Intergovernmental Panel on Climate Change (IPCC) https://www.ipcc.ch/srocc/home/ (accessed October 2019).

  17. Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model. Dev. 9, 1937–1958 (2016).

    Google Scholar 

  18. Swann, A. L. S., Fung, I. Y. & Chiang, J. C. H. Mid-latitude afforestation shifts general circulation and tropical precipitation. Proc. Natl Acad. Sci. USA 109, 712–716 (2012).

    Google Scholar 

  19. Zeng, Z. et al. Climate mitigation from vegetation biophysical feedbacks during the past three decades. Nat. Clim. Change 7, 432–436 (2017). A quantification of the climatic impacts of vegetation greening through modulating land-atmosphere energy and water exchanges, with an Earth system model forced by satellite-observed LAI change during the past three decades.

    Google Scholar 

  20. de Jong, R., Verbesselt, J., Schaepman, M. E. & De Bruin, S. Trend changes in global greening and browning: contribution of short-term trends to longer-term change. Glob. Change Biol. 18, 642–655 (2012).

    Google Scholar 

  21. Tian, F. et al. Evaluating temporal consistency of long-term global NDVI datasets for trend analysis. Remote. Sens. Environ. 163, 326–340 (2015).

    Google Scholar 

  22. Zhang, Y., Song, C., Band, L. E., Sun, G. & Li, J. Reanalysis of global terrestrial vegetation trends from MODIS products: Browning or greening? Remote. Sens. Environ. 191, 145–155 (2017).

    Google Scholar 

  23. Liu, Y., Liu, R. & Chen, J. M. Retrospective retrieval of long-term consistent global leaf area index (1981–2011) from combined AVHRR and MODIS data. J. Geophys. Res. Biogeosciences 117, G04003 (2012).

    Google Scholar 

  24. Lyapustin, A. et al. Scientific impact of MODIS C5 calibration degradation and C6+ improvements. Atmos. Meas. Tech. 7, 4353–4365 (2014).

    Google Scholar 

  25. Park, T. et al. Changes in growing season duration and productivity of northern vegetation inferred from long-term remote sensing data. Environ. Res. Lett. 11, 084001 (2016).

    Google Scholar 

  26. Beck, P. S. A. & Goetz, S. J. Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: ecological variability and regional differences. Environ. Res. Lett. 6, 045501 (2011).

    Google Scholar 

  27. Sturm, M., Racine, C. & Tape, K. Climate change: increasing shrub abundance in the Arctic. Nature 411, 546–547 (2001).

    Google Scholar 

  28. Frost, G. V. & Epstein, H. E. Tall shrub and tree expansion in Siberian tundra ecotones since the 1960s. Glob. Change Biol. 20, 1264–1277 (2014).

    Google Scholar 

  29. Myers-Smith, I. H. et al. Climate sensitivity of shrub growth across the tundra biome. Nat. Clim. Change 5, 887–891 (2015).

    Google Scholar 

  30. Myers-Smith, I. H. et al. Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ. Res. Lett. 6, 045509 (2011).

    Google Scholar 

  31. Mahowald, N. et al. Projections of leaf area index in earth system models. Earth Syst. Dyn. 7, 211–229 (2016).

    Google Scholar 

  32. Bhatt, U. et al. Recent declines in warming and vegetation greening trends over pan-Arctic tundra. Remote. Sens. 5, 4229–4254 (2013).

    Google Scholar 

  33. Verbyla, D. The greening and browning of Alaska based on 1982–2003 satellite data. Glob. Ecol. Biogeogr. 17, 547–555 (2008).

    Google Scholar 

  34. Senf, C., Pflugmacher, D., Wulder, M. A. & Hostert, P. Characterizing spectral–temporal patterns of defoliator and bark beetle disturbances using Landsat time series. Remote. Sens. Environ. 170, 166–177 (2015).

    Google Scholar 

  35. Bjerke, J. W. et al. Understanding the drivers of extensive plant damage in boreal and Arctic ecosystems: Insights from field surveys in the aftermath of damage. Sci. Total. Environ. 599, 1965–1976 (2017).

    Google Scholar 

  36. White, J. C., Wulder, M. A., Hermosilla, T., Coops, N. C. & Hobart, G. W. A nationwide annual characterization of 25 years of forest disturbance and recovery for Canada using Landsat time series. Remote. Sens. Environ. 194, 303–321 (2017).

    Google Scholar 

  37. Sulla-Menashe, D., Woodcock, C. E. & Friedl, M. A. Canadian boreal forest greening and browning trends: an analysis of biogeographic patterns and the relative roles of disturbance versus climate drivers. Environ. Res. Lett. 13, 014007 (2018).

    Google Scholar 

  38. Bi, J., Xu, L., Samanta, A., Zhu, Z. & Myneni, R. Divergent Arctic-boreal vegetation changes between North America and Eurasia over the past 30 years. Remote. Sens. 5, 2093–2112 (2013).

    Google Scholar 

  39. Feng, X. et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Change. 6, 1019–1022 (2016).

    Google Scholar 

  40. Zhou, L. et al. Widespread decline of Congo rainforest greenness in the past decade. Nature 509, 86–90 (2014).

    Google Scholar 

  41. Goswami, S., Gamon, J., Vargas, S. & Tweedie, C. Relationships of NDVI, biomass, and leaf area index (LAI) for six key plant species in Barrow, Alaska. PeerJ PrePrints 3, e913v1 (2015).

  42. Samanta, A. et al. Amazon forests did not green-up during the 2005 drought. Geophys. Res. Lett. 37, L05401 (2010).

    Google Scholar 

  43. Saleska, S. R., Didan, K., Huete, A. R. & Da Rocha, H. R. Amazon forests green-up during 2005 drought. Science 318, 612 (2007).

    Google Scholar 

  44. Asner, G. P. & Alencar, A. Drought impacts on the Amazon forest: the remote sensing perspective. New Phytol. 187, 569–578 (2010).

    Google Scholar 

  45. Fensholt, R. et al. Greenness in semi-arid areas across the globe 1981–2007—an Earth Observing Satellite based analysis of trends and drivers. Remote. Sens. Environ. 121, 144–158 (2012).

    Google Scholar 

  46. Ahlström, A. et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348, 895–899 (2015).

    Google Scholar 

  47. Buitenwerf, R., Rose, L. & Higgins, S. I. Three decades of multi-dimensional change in global leaf phenology. Nat. Clim. Change 5, 364–368 (2015).

    Google Scholar 

  48. Piao, S. et al. Plant phenology and global climate change: current progresses and challenges. Glob. Change Biol. 25, 1922–1940 (2019).

    Google Scholar 

  49. White, M. A. et al. Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006. Glob. Change Biol. 15, 2335–2359 (2009).

    Google Scholar 

  50. Schwartz, M. D. & Hanes, J. M. Intercomparing multiple measures of the onset of spring in eastern North America. Int. J. Climatol. 30, 1614–1626 (2010).

    Google Scholar 

  51. Richardson, A. D., Hufkens, K., Milliman, T. & Frolking, S. Intercomparison of phenological transition dates derived from the PhenoCam Dataset V1.0 and MODIS satellite remote sensing. Sci. Rep. 8, 5679 (2018).

    Google Scholar 

  52. Jeong, S.-J., Ho, C.-H., Gim, H.-J. & Brown, M. E. Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982–2008. Glob. Change Biol. 17, 2385–2399 (2011).

    Google Scholar 

  53. Keenan et al. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat. Clim. Change 4, 598–604 (2014).

    Google Scholar 

  54. Garonna, I., de Jong, R. & Schaepman, M. E. Variability and evolution of global land surface phenology over the past three decades (1982–2012). Glob. Change Biol. 22, 1456–1468 (2016).

    Google Scholar 

  55. Menzel, A. et al. European phenological response to climate change matches the warming pattern. Glob. Change Biol. 12, 1969–1976 (2006).

    Google Scholar 

  56. Cleland, E. E., Chuine, I., Menzel, A., Mooney, H. A. & Schwartz, M. D. Shifting plant phenology in response to global change. Trends Ecol. Evol. 22, 357–365 (2007).

    Google Scholar 

  57. Gill, A. L. et al. Changes in autumn senescence in northern hemisphere deciduous trees: a meta-analysis of autumn phenology studies. Ann. Bot. 116, 875–888 (2015).

    Google Scholar 

  58. Barichivich, J. et al. Large-scale variations in the vegetation growing season and annual cycle of atmospheric CO2 at high northern latitudes from 1950 to 2011. Glob. Change Biol. 19, 3167–3183 (2013).

    Google Scholar 

  59. Piao, S., Friedlingstein, P., Ciais, P., Viovy, N. & Demarty, J. Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades. Glob. Biogeochem. Cycles 21, GB3018 (2007).

    Google Scholar 

  60. Julien, Y. & Sobrino, J. A. Global land surface phenology trends from GIMMS database. Int. J. Remote. Sens. 30, 3495–3513 (2009).

    Google Scholar 

  61. Park, T. et al. Changes in timing of seasonal peak photosynthetic activity in northern ecosystems. Glob. Change Biol. 25, 2382–2395 (2019).

    Google Scholar 

  62. Gonsamo, A., Chen, J. M. & Ooi, Y. W. Peak season plant activity shift towards spring is reflected by increasing carbon uptake by extratropical ecosystems. Glob. Change Biol. 24, 2117–2128 (2018).

    Google Scholar 

  63. Bhatt, U. S. et al. Changing seasonality of panarctic tundra vegetation in relationship to climatic variables. Environ. Res. Lett. 12, 055003 (2017).

    Google Scholar 

  64. Epstein, H. et al. Tundra greenness. In Arctic Report Card 2018. National Oceanic and Atmospheric Administration (NOAA), 46–52 (2018).

  65. Huang, M. et al. Velocity of change in vegetation productivity over northern high latitudes. Nat. Ecol. Evol. 1, 1649–1654 (2017).

    Google Scholar 

  66. Farquhar, G. D. & Sharkey, T. D. Stomatal conductance and photosynthesis. Annu. Rev. Plant. Physiol. 33, 317–345 (1982).

    Google Scholar 

  67. Keenan, T. F. et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499, 324–327 (2013).

    Google Scholar 

  68. Donohue, R. J., Roderick, M. L., McVicar, T. R. & Farquhar, G. D. Impact of CO2 fertilization on maximum foliage cover across the globe’s warm, arid environments. Geophys. Res. Lett. 40, 3031–3035 (2013).

    Google Scholar 

  69. Ukkola, A. M., Prentice, I. C., Keenan, T. F., van Dijk, A. I. J. M., Viney, N. R., Myneni, R. B. & Bi, J. Reduced streamflow in water-stressed climates consistent with CO2 effects on vegetation. Nat. Clim. Change 6, 75–78 (2015).

    Google Scholar 

  70. Sitch, S. et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12, 653–679 (2015).

    Google Scholar 

  71. Ahlbeck, J. R. Comment on “Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981–1999” by L. Zhou et al. J. Geophys. Res. Atmos. 107, ACH–9 (2002).

    Google Scholar 

  72. Los, S. O. Analysis of trends in fused AVHRR and MODIS NDVI data for 1982–2006: Indication for a CO2 fertilization effect in global vegetation. Glob. Biogeochem. Cycles 27, 318–330 (2013).

    Google Scholar 

  73. Norby, R. J., Warren, J. M., Iversen, C. M., Medlyn, B. E. & McMurtrie, R. E. CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proc. Natl Acad. Sci.USA 107, 19368–19373 (2010).

    Google Scholar 

  74. Dubey, S. K., Tripathi, S. K. & Pranuthi, G. Effect of elevated CO2 on wheat crop: Mechanism and impact. Crit. Rev. Environ. Sci. Technol. 45, 2283–2304 (2015).

    Google Scholar 

  75. Ainsworth, E. A. & Long, S. P. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol. 165, 351–372 (2005).

    Google Scholar 

  76. Norby, R. J. & Zak, D. R. Ecological lessons from free-air CO2 enrichment (FACE) experiments. Annu. Rev. Ecol. Evol. Syst. 42, 181–203 (2011).

    Google Scholar 

  77. Hickler, T. et al. CO2 fertilization in temperate FACE experiments not representative of boreal and tropical forests. Glob. Change Biol. 14, 1531–1542 (2008).

    Google Scholar 

  78. Schimel, D., Stephens, B. B. & Fisher, J. B. Effect of increasing CO2 on the terrestrial carbon cycle. Proc. Natl Acad. Sci. USA 112, 436–441 (2015).

    Google Scholar 

  79. Obermeier, W. A. et al. Reduced CO2 fertilization effect in temperate C3 grasslands under more extreme weather conditions. Nat. Clim. Change 7, 137–141 (2017).

    Google Scholar 

  80. Gray, S. B. et al. Intensifying drought eliminates the expected benefits of elevated carbon dioxide for soybean. Nat. Plants 2, 16132 (2016).

    Google Scholar 

  81. Reich, P. B. & Hobbie, S. E. Decade-long soil nitrogen constraint on the CO2 fertilization of plant biomass. Nat. Clim. Change 3, 278–282 (2013).

    Google Scholar 

  82. Reich, P. B., Hobbie, S. E. & Lee, T. D. Plant growth enhancement by elevated CO2 eliminated by joint water and nitrogen limitation. Nat. Geosci. 7, 920–924 (2014).

    Google Scholar 

  83. Terrer, C. et al. Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nat. Clim. Change 9, 684–689 (2019).

    Google Scholar 

  84. Corlett, R. T. Impacts of warming on tropical lowland rainforests. Trends Ecol. Evol. 26, 606–613 (2011).

    Google Scholar 

  85. Huang, M. et al. Air temperature optima of vegetation productivity across global biomes. Nat. Ecol. Evol. 3, 772–779 (2019).

    Google Scholar 

  86. Keenan, T. F. & Riley, W. J. Greening of the land surface in the world’s cold regions consistent with recent warming. Nat. Clim. Change 8, 825–828 (2018).

    Google Scholar 

  87. Braswell, B. H., Schimel, D. S., Linder, E. & Moore, B. III The response of global terrestrial ecosystems to interannual temperature variability. Science 278, 870–873 (1997).

    Google Scholar 

  88. Linderholm, H. W. Growing season changes in the last century. Agric. For. Meteorol. 137, 1–14 (2006).

    Google Scholar 

  89. Richardson, A. D. et al. Influence of spring and autumn phenological transitions on forest ecosystem productivity. Philos. Trans. R. Soc. Lond. 365, 3227–3246 (2010).

    Google Scholar 

  90. Piao, S. et al. Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity. Nat. Commun. 5, 5018 (2014). Discusses the weakening temperature impacts on northern vegetation greenness since the 1980s.

    Google Scholar 

  91. Vickers, H. et al. Changes in greening in the high Arctic: insights from a 30 year AVHRR max NDVI dataset for Svalbard. Environ. Res. Lett. 11, 105004 (2016).

    Google Scholar 

  92. Nemani, R. R. et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300, 1560–1563 (2003).

    Google Scholar 

  93. Eklundh, L. & Olsson, L. Vegetation index trends for the African Sahel 1982–1999. Geophys. Res. Lett. 30, 1430 (2003).

    Google Scholar 

  94. Anyamba, A. & Tucker, C. J. Analysis of Sahelian vegetation dynamics using NOAA-AVHRR NDVI data from 1981–2003. J. Arid. Environ. 63, 596–614 (2005).

    Google Scholar 

  95. Donohue, R. J., McVicar, T. R. & Roderick, M. L. Climate-related trends in Australian vegetation cover as inferred from satellite observations, 1981–2006. Glob. Change Biol. 15, 1025–1039 (2009).

    Google Scholar 

  96. Herrmann, S. M., Anyamba, A. & Tucker, C. J. Recent trends in vegetation dynamics in the African Sahel and their relationship to climate. Glob. Environ. Change 15, 394–404 (2005).

    Google Scholar 

  97. Hickler, T. et al. Precipitation controls Sahel greening trend. Geophys. Res. Lett. 32, L21415 (2005).

    Google Scholar 

  98. Huber, S., Fensholt, R. & Rasmussen, K. Water availability as the driver of vegetation dynamics in the African Sahel from 1982 to 2007. Glob. Planet. Change 76, 186–195 (2011).

    Google Scholar 

  99. Dardel, C. et al. Re-greening Sahel: 30 years of remote sensing data and field observations (Mali, Niger). Remote. Sens. Environ. 140, 350–364 (2014).

    Google Scholar 

  100. Brandt, M. et al. Changes in rainfall distribution promote woody foliage production in the Sahel. Commun. Biol. 2, 133 (2019).

    Google Scholar 

  101. Brandt, M. et al. Human population growth offsets climate-driven increase in woody vegetation in sub-Saharan Africa. Nat. Ecol. Evol. 1, 0081 (2017).

    Google Scholar 

  102. Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).

    Google Scholar 

  103. Eighth National Forest Resource Inventory Report (2009–2013) (State Forestry Administration of the People’s Republic of China, 2014).

  104. Luyssaert, S. et al. Land management and land-cover change have impacts of similar magnitude on surface temperature. Nat. Clim. Change 4, 389–393 (2014).

    Google Scholar 

  105. Song, X.-P. et al. Global land change from 1982 to 2016. Nature 560, 639–643 (2018).

    Google Scholar 

  106. Poulter, B. et al. The global forest age dataset and its uncertainties (GFADv1.1). NASA National Aeronautics and Space Administration, PANGAEA https://doi.org/10.1594/PANGAEA.897392 (2019).

  107. Reich, P. B. et al. Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature 440, 922–925 (2006).

    Google Scholar 

  108. Penuelas, J. et al. Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe. Nat. Commun. 4, 2934 (2013).

    Google Scholar 

  109. Greaver, T. L. et al. Key ecological responses to nitrogen are altered by climate change. Nat. Clim. Change 6, 836–843 (2016).

    Google Scholar 

  110. Zaehle, S. et al. Evaluation of 11 terrestrial carbon–nitrogen cycle models against observations from two temperate Free-Air CO2 Enrichment studies. New Phytol. 202, 803–822 (2014).

    Google Scholar 

  111. Le Quéré, C. et al. Global carbon budget 2018. Earth Syst. Sci. Data 10, 2141–2194 (2018).

    Google Scholar 

  112. Chen, J. M. et al. Vegetation structural change since 1981 significantly enhanced the terrestrial carbon sink. Nat. Commun. 10, 4259 (2019).

    Google Scholar 

  113. van Dijk, A. I. J. M., Dolman, A. J. & Schulze, E.-D. Radiation, temperature, and leaf area explain ecosystem carbon fluxes in boreal and temperate European forests. Glob. Biogeochem. Cycles 19, GB2029 (2005).

    Google Scholar 

  114. Zhang, Y., Joiner, J., Alemohammad, S. H., Zhou, S. & Gentine, P. A global spatially contiguous solar-induced fluorescence (CSIF) dataset using neural networks. Biogeosciences 15, 5779–5800 (2018).

    Google Scholar 

  115. Cheng, L. et al. Recent increases in terrestrial carbon uptake at little cost to the water cycle. Nat. Commun. 8, 110 (2017).

    Google Scholar 

  116. Winkler, A. J., Myneni, R. B., Alexandrov, G. A. & Brovkin, V. Earth system models underestimate carbon fixation by plants in the high latitudes. Nat. Commun. 10, 885 (2019).

    Google Scholar 

  117. Shevliakova, E. et al. Historical warming reduced due to enhanced land carbon uptake. Proc. Natl Acad. Sci. USA 110, 16730–16735 (2013).

    Google Scholar 

  118. Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    Google Scholar 

  119. Liu, Y. Y. et al. Recent reversal in loss of global terrestrial biomass. Nat. Clim. Change 5, 470–474 (2015).

    Google Scholar 

  120. Keenan, T. F. et al. Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake. Nat. Commun. 7, 13428 (2016).

    Google Scholar 

  121. Piao, S. et al. Lower land-use emissions responsible for increased net land carbon sink during the slow warming period. Nat. Geosci. 11, 739–743 (2018).

    Google Scholar 

  122. Kondo, M. et al. Plant regrowth as a driver of recent enhancement of terrestrial CO2 uptake. Geophys. Res. Lett. 45, 4820–4830 (2018).

    Google Scholar 

  123. Pugh, T. A. M. et al. Role of forest regrowth in global carbon sink dynamics. Proc. Natl Acad. Sci. USA 116, 4382–4387 (2019).

    Google Scholar 

  124. Naudts, K. et al. Europe’s forest management did not mitigate climate warming. Science 351, 597–600 (2016).

    Google Scholar 

  125. Keeling, C. D., Chin, J. F. S. & Whorf, T. P. Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature 382, 146–149 (1996).

    Google Scholar 

  126. Graven, H. D. et al. Enhanced seasonal exchange of CO2 by northern ecosystems since 1960. Science 341, 1085–1089 (2013).

    Google Scholar 

  127. Piao, S. et al. On the causes of trends in the seasonal amplitude of atmospheric CO2. Glob. Change Biol. 24, 608–616 (2018).

    Google Scholar 

  128. Forkel, M. et al. Enhanced seasonal CO2 exchange caused by amplified plant productivity in northern ecosystems. Science 351, 696–699 (2016). Presents the linkage between increasing photosynthesis of northern vegetation and the enlarging seasonal CO 2 amplitude.

    Google Scholar 

  129. Piao, S. et al. Weakening temperature control on the interannual variations of spring carbon uptake across northern lands. Nat. Clim. Change 7, 359–363 (2017).

    Google Scholar 

  130. Barichivich, J., Briffa, K. R., Osborn, T. J., Melvin, T. M. & Caesar, J. Thermal growing season and timing of biospheric carbon uptake across the Northern Hemisphere. Glob. Biogeochem. Cycles 26, GB4015 (2012).

    Google Scholar 

  131. Piao, S. et al. Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 451, 49–52 (2008).

    Google Scholar 

  132. Alkama, R. & Cescatti, A. Biophysical climate impacts of recent changes in global forest cover. Science 351, 600–604 (2016). Presents evidence for feedbacks of forest cover change to land-surface temperature and its regional disparities.

    Google Scholar 

  133. Arora, V. K. & Montenegro, A. Small temperature benefits provided by realistic afforestation efforts. Nat. Geosci. 4, 514–518 (2011).

    Google Scholar 

  134. Jasechko, S. et al. Terrestrial water fluxes dominated by transpiration. Nature 496, 347–350 (2013).

    Google Scholar 

  135. Good, S. P., Noone, D. & Bowen, G. Hydrologic connectivity constrains partitioning of global terrestrial water fluxes. Science 349, 175–177 (2015).

    Google Scholar 

  136. Lian, X. et al. Partitioning global land evapotranspiration using CMIP5 models constrained by observations. Nat. Clim. Change 8, 640–646 (2018).

    Google Scholar 

  137. Bernacchi, C. J. & VanLoocke, A. Terrestrial ecosystems in a changing environment: a dominant role for water. Annu. Rev. Plant. Biol. 66, 599–622 (2015).

    Google Scholar 

  138. Zhang, Y. et al. Multi-decadal trends in global terrestrial evapotranspiration and its components. Sci. Rep. 6, 19124 (2016).

    Google Scholar 

  139. Zeng, Z., Peng, L. & Piao, S. Response of terrestrial evapotranspiration to Earth’s greening. Curr. Opin. Environ. Sustain. 33, 9–25 (2018).

    Google Scholar 

  140. Bosch, J. M. & Hewlett, J. D. A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. J. Hydrol. 55, 3–23 (1982).

    Google Scholar 

  141. Evaristo, J. & McDonnell, J. J. Global analysis of streamflow response to forest management. Nature 570, 455–461 (2019).

    Google Scholar 

  142. Wang, S. et al. Reduced sediment transport in the Yellow River due to anthropogenic changes. Nat. Geosci. 9, 38–41 (2016).

    Google Scholar 

  143. Li, Y. et al. Divergent hydrological response to large-scale afforestation and vegetation greening in China. Sci. Adv. 4, eaar4182 (2018).

    Google Scholar 

  144. Zeng, Z. et al. Impact of Earth greening on the terrestrial water cycle. J. Clim. 31, 2633–2650 (2018).

    Google Scholar 

  145. van der Ent, R. J., Savenije, H. H. G., Schaefli, B. & Steele-Dunne, S. C. Origin and fate of atmospheric moisture over continents. Water Resour. Res. 46, W09525 (2010). Discusses the importance of land evapotranspiration to sustain downwind precipitation.

    Google Scholar 

  146. Teuling, A. J. et al. Observational evidence for cloud cover enhancement over western European forests. Nat. Commun. 8, 14065 (2017).

    Google Scholar 

  147. Spracklen, D. V., Arnold, S. R. & Taylor, C. M. Observations of increased tropical rainfall preceded by air passage over forests. Nature 489, 282–285 (2012).

    Google Scholar 

  148. Buermann, W. et al. Widespread seasonal compensation effects of spring warming on northern plant productivity. Nature 562, 110–114 (2018).

    Google Scholar 

  149. Lian, X. et al. Summer soil drying exacerbated by earlier spring greening of northern vegetation. Sci. Adv. (in the press) https://doi.org/10.1126/sciadv.aax0255.

    Google Scholar 

  150. Bonan, G. B. Forests, climate, and public policy: A 500-year interdisciplinary odyssey. Annu. Rev. Ecol. Evol. Syst. 47, 97–121 (2016).

    Google Scholar 

  151. Davin, E. L. & de Noblet-Ducoudré, N. Climatic impact of global-scale deforestation: Radiative versus nonradiative processes. J. Clim. 23, 97–112 (2010).

    Google Scholar 

  152. Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).

    Google Scholar 

  153. Lee, X. et al. Observed increase in local cooling effect of deforestation at higher latitudes. Nature 479, 384–387 (2011).

    Google Scholar 

  154. Winckler, J., Lejeune, Q., Reick, C. H. & Pongratz, J. Nonlocal effects dominate the global mean surface temperature response to the biogeophysical effects of deforestation. Geophys. Res. Lett. 46, 745–755 (2019).

    Google Scholar 

  155. Green, J. K. et al. Regionally strong feedbacks between the atmosphere and terrestrial biosphere. Nat. Geosci. 10, 410–414 (2017).

    Google Scholar 

  156. Devaraju, N., de Noblet-Ducoudré, N., Quesada, B. & Bala, G. Quantifying the relative importance of direct and indirect biophysical effects of deforestation on surface temperature and teleconnections. J. Clim. 31, 3811–3829 (2018).

    Google Scholar 

  157. Bateni, S. M. & Entekhabi, D. Relative efficiency of land surface energy balance components. Water Resour. Res. 48, 4510 (2012).

    Google Scholar 

  158. Forzieri, G., Alkama, R., Miralles, D. G. & Cescatti, A. Satellites reveal contrasting responses of regional climate to the widespread greening of Earth. Science 356, 1180–1184 (2017).

    Google Scholar 

  159. Betts, R. A. Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 408, 187–190 (2000).

    Google Scholar 

  160. Shen, M. et al. Evaporative cooling over the Tibetan Plateau induced by vegetation growth. Proc. Natl Acad. Sci. USA 112, 9299–9304 (2015).

    Google Scholar 

  161. Jeong, S., Ho, C., Kim, K. & Jeong, J. Reduction of spring warming over East Asia associated with vegetation feedback. Geophys. Res. Lett. 36, L18705 (2009).

    Google Scholar 

  162. Essery, R. Large-scale simulations of snow albedo masking by forests. Geophys. Res. Lett. 40, 5521–5525 (2013).

    Google Scholar 

  163. Thackeray, C. W., Fletcher, C. G. & Derksen, C. The influence of canopy snow parameterizations on snow albedo feedback in boreal forest regions. J. Geophys. Res. Atmos. 119, 9810–9821 (2014).

    Google Scholar 

  164. Wang, L. et al. Investigating the spread in surface albedo for snow-covered forests in CMIP5 models. J. Geophys. Res. Atmos. 121, 1104–1119 (2016).

    Google Scholar 

  165. National Academies of Sciences, Engineering, and Medicine. Thriving on our changing planet: A decadal strategy for Earth observation from space (National Academies Press, 2018) https://doi.org/10.17226/24938.

  166. Metcalfe, D. B. et al. Patchy field sampling biases understanding of climate change impacts across the Arctic. Nat. Ecol. Evol. 2, 1443–1448 (2018).

    Google Scholar 

  167. Schimel, D. et al. Observing terrestrial ecosystems and the carbon cycle from space. Glob. Change Biol. 21, 1762–1776 (2015).

    Google Scholar 

  168. Park, D. S. et al. Herbarium specimens reveal substantial and unexpected variation in phenological sensitivity across the eastern United States. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20170394 (2018).

    Google Scholar 

  169. Reichstein, M. et al. Deep learning and process understanding for data-driven Earth system science. Nature 566, 195–204 (2019).

    Google Scholar 

  170. Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manage. 259, 660–684 (2010).

    Google Scholar 

  171. Sturrock, R. N. et al. Climate change and forest diseases. Plant. Pathol. 60, 133–149 (2011).

    Google Scholar 

  172. Raynolds, M. K. & Walker, D. A. Increased wetness confounds Landsat-derived NDVI trends in the central Alaska North Slope region, 1985–2011. Environ. Res. Lett. 11, 085004 (2016).

    Google Scholar 

  173. Matasci, G. et al. Three decades of forest structural dynamics over Canada’s forested ecosystems using Landsat time-series and lidar plots. Remote. Sens. Environ. 216, 697–714 (2018).

    Google Scholar 

  174. Mitchard, E. T. A. The tropical forest carbon cycle and climate change. Nature 559, 527–534 (2018).

    Google Scholar 

  175. Esau, I., Miles, V. V., Davy, R., Miles, M. W. & Kurchatova, A. Trends in normalized difference vegetation index (NDVI) associated with urban development in northern West Siberia. Atmos. Chem. Phys. 16, 9563–9577 (2016).

    Google Scholar 

  176. Knyazikhin, Y. et al. Hyperspectral remote sensing of foliar nitrogen content. Proc. Natl Acad. Sci. USA 110, E185–E192 (2013).

    Google Scholar 

  177. Tucker, C. J. Red and photographic infrared linear combinations for monitoring vegetation. Remote. Sens. Environ. 8, 127–150 (1979).

    Google Scholar 

  178. Bannari, A., Morin, D., Bonn, F. & Huete, A. R. A review of vegetation indices. Remote. Sens. Rev. 13, 95–120 (1995).

    Google Scholar 

  179. Myneni, R. B., Hall, F. G., Sellers, P. J. & Marshak, A. L. The interpretation of spectral vegetation indexes. IEEE Trans. Geosci. Remote. Sens. 33, 481–486 (1995).

    Google Scholar 

  180. Xue, J. & Su, B. Significant remote sensing vegetation indices: A review of developments and applications. J. Sens. 2017, 1353691 (2017).

    Google Scholar 

  181. Ganguly, S. et al. Generating vegetation leaf area index Earth system data record from multiple sensors. Part 2: Implementation, analysis and validation. Remote. Sens. Environ. 112, 4318–4332 (2008).

    Google Scholar 

  182. Zhu, Z. et al. Global data sets of vegetation leaf area index (LAI) 3g and fraction of photosynthetically active radiation (FPAR) 3g derived from global inventory modeling and mapping studies (GIMMS) normalized difference vegetation index (NDVI3g) for the period 1981 to 2011. Remote. Sens. 5, 927–948 (2013).

    Google Scholar 

  183. Pinzon, J. & Tucker, C. A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote. Sens. 6, 6929–6960 (2014). Discusses complexities and challenges in detecting greenness change with the longest available NDVI dataset (AVHRR NDVI) since the 1980s.

    Google Scholar 

  184. Knyazikhin, Y., Martonchik, J. V., Myneni, R. B., Diner, D. J. & Running, S. W. Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from MODIS and MISR data. J. Geophys. Res. Atmos. 103, 32257–32275 (1998).

    Google Scholar 

  185. Chen, J. M. & Black, T. A. Defining leaf area index for non-flat leaves. Plant. Cell Environ. 15, 421–429 (1992).

    Google Scholar 

  186. Asrar, G. Q., Fuchs, M., Kanemasu, E. T. & Hatfield, J. L. Estimating absorbed photosynthetic radiation and leaf area index from spectral reflectance in wheat 1. Agron. J. 76, 300–306 (1984).

    Google Scholar 

  187. Cohen, W. B., Maiersperger, T. K., Gower, S. T. & Turner, D. P. An improved strategy for regression of biophysical variables and Landsat ETM+ data. Remote. Sens. Environ. 84, 561–571 (2003).

    Google Scholar 

  188. Baret, F. et al. GEOV1: LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part1: Principles of development and production. Remote. Sens. Environ. 137, 299–309 (2013).

    Google Scholar 

  189. Claverie, M., Matthews, J., Vermote, E. & Justice, C. A 30+ year AVHRR LAI and FAPAR climate data record: Algorithm description and validation. Remote. Sens. 8, 263 (2016).

    Google Scholar 

  190. Ross, J. K. & Marshak, A. L. Calculation of canopy bidirectional reflectance using the Monte Carlo method. Remote. Sens. Environ. 24, 213–225 (1988).

    Google Scholar 

  191. Yang, B. et al. Estimation of leaf area index and its sunlit portion from DSCOVR EPIC data: Theoretical basis. Remote. Sens. Environ. 198, 69–84 (2017).

    Google Scholar 

  192. Xiao, Z. et al. Long-time-series global land surface satellite leaf area index product derived from MODIS and AVHRR surface reflectance. IEEE Trans. Geosci. Remote. Sens. 54, 5301–5318 (2016).

    Google Scholar 

  193. Myneni, R., Knyazikhin, Y. & Park, T. MOD15A2H MODIS/terra leaf area index/FPAR 8-day L4 global 500 m SIN grid V006. NASA EOSDIS L. Process. DAAC (2015).

  194. Tucker, C. J. et al. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote. Sens. 26, 4485–4498 (2005).

    Google Scholar 

  195. Huete, A. et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote. Sens. Environ. 83, 195–213 (2002).

    Google Scholar 

  196. Maisongrande, P., Duchemin, B. & Dedieu, G. VEGETATION/SPOT: an operational mission for the Earth monitoring; presentation of new standard products. Int. J. Remote. Sens. 25, 9–14 (2004).

    Google Scholar 

  197. Badgley, G., Field, C. B. & Berry, J. A. Canopy near-infrared reflectance and terrestrial photosynthesis. Sci. Adv. 3, e1602244 (2017).

    Google Scholar 

  198. Smith, W. K. et al. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization. Nat. Clim. Change 6, 306–310 (2016).

    Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (41861134036, 41988101) and the Research Council of Norway (287402), the National Key R&D Program of China (2017YFA0604702), Second Tibetan Plateau Scientific Expedition and Research Program (2019QZKK0208) and the Thousand Youth Talents Plan project in China. The works of C.C., R.B.M. and T.P. were funded by NASA’s Earth Science Division. R.B.M. also acknowledges support by the Alexander von Humboldt Foundation, Germany. P.C. acknowledges support by the European Research Council Synergy project (SyG- 2013-610028 IMBALANCE-P) and the ANR CLAND Convergence Institute. The authors thank Z. Zhu, Y. Li, K. Wang, Y. Deng, M. Gao and X. Li for their help in preparing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

S.P., X.W., T.P., C.C., X.L., Y.H., J.W.B., A.C., P.C., H.T. and R.B.M. wrote the first draft of the manuscript. S.P., X.W. and R.B.M. reviewed and edited the manuscript before submission. All authors made substantial contributions to the discussion of content.

Corresponding author

Correspondence to Shilong Piao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

EnMAP: http://www.enmap.org

FLEX: https://Earth.esa.int/web/guest/missions/esa-future-missions/flex

FLUXNET: https://fluxnet.fluxdata.org

HyspIRI: https://hyspiri.jpl.nasa.gov

PEP725: http://www.pep725.eu

PhenoCam: http://www.phenocam.us

Supplementary Information

Glossary

Afforestation

The conversion of treeless lands to forests through planting trees.

Land-surface phenology

Cyclic phenomena in vegetated land surfaces observed from remote sensing.

Carboxylation

The addition of CO2 to ribulose 1,5-bisphosphate during photosynthesis.

Evapotranspiration

The flux of water emitted from the Earth’s surface to the atmosphere. It is the sum of evaporation by the soil, wet canopy, open-water surfaces and transpiration by plant stomata.

Transpiration

The loss of water from plants to the atmosphere.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Piao, S., Wang, X., Park, T. et al. Characteristics, drivers and feedbacks of global greening. Nat Rev Earth Environ 1, 14–27 (2020). https://doi.org/10.1038/s43017-019-0001-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-019-0001-x

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing