Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Digital innovations for monitoring sustainability in food systems

Abstract

Monitoring systems that incentivize, track and verify compliance with social and environmental standards are widespread in food systems. In particular, digital monitoring approaches using remote sensing, machine learning, big data, smartphones, platforms and blockchain are proliferating. The increasing use and availability of these technologies put us at a critical juncture to leverage these innovations for enhanced transparency, fairness and open access, rather than descending into a dystopian landscape of digital surveillance and division perpetuated by a powerful few. Here we discuss opportunities and risks, and highlight research gaps linked to the ongoing digitalization of monitoring approaches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. von Braun, J., Afsana, K., Fresco, L. O. & Hassan, M. Food systems: seven priorities to end hunger and protect the planet. Nature 597, 28–30 (2021).

    Article  ADS  Google Scholar 

  2. Schleifer, P., Brandi, C., Verma, R., Bissinger, K. & Fiorini, M. Voluntary standards and the SDGs: Mapping public-private complementarities for sustainable development. Earth Syst. Governance 14, 100153 (2022).

    Article  Google Scholar 

  3. Baylis, K., Peplow, S., Rausser, G. & Simon, L. Agri-environmental policies in the EU and United States: a comparison. Ecol. Econ. 65, 753–764 (2008).

    Article  Google Scholar 

  4. Scholten, M. C. T., de Boer, I. J. M., Gremmen, B. & Lokhorst, C. Livestock farming with care: towards sustainable production of animal-source food. NJAS: Wageningen J. Life Sci. 66, 3–5 (2013).

    Google Scholar 

  5. Basu, K. The global child labor problem: what do we know and what can we do? World Bank Econ. Rev. 17, 147–173 (2003).

    Article  Google Scholar 

  6. Meemken, E.-M. et al. Sustainability standards in global agrifood supply chains. Nat. Food https://doi.org/10.1038/s43016-021-00360-3 (2021).

    Article  PubMed  Google Scholar 

  7. Hatanaka, M., Konefal, J., Strube, J., Glenna, L. & Conner, D. Data‐driven sustainability: metrics, digital technologies, and governance in food and agriculture*. Rural Sociol. 87, 206–230 (2022).

    Article  Google Scholar 

  8. Sellare, J. et al. Six research priorities to support corporate due-diligence policies. Nature 606, 861–863 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Ehlers, M.-H., Huber, R. & Finger, R. Agricultural policy in the era of digitalisation. Food Policy 100, 102019 (2021).

    Article  Google Scholar 

  10. Hendriks, S. et al. in Science and Innovations for Food Systems Transformation (eds von Braun, J. et al.) 581–601. (Springer, 2023).

  11. Ansah, E. O., Kaplowitz, M. D., Lupi, F. & Kerr, J. Smallholder participation and procedural compliance with sustainable cocoa certification programs. Agroecol. Sustainable Food Syst. 44, 54–87 (2020).

    Article  Google Scholar 

  12. Kloppenburg, S. et al. Scrutinizing environmental governance in a digital age: new ways of seeing, participating, and intervening. One Earth 5, 232–241 (2022).

    Article  ADS  Google Scholar 

  13. Galaz, V. et al. Artificial intelligence, systemic risks, and sustainability. Technol. Soc. 67, 101741 (2021).

    Article  Google Scholar 

  14. Persello, C. et al. Deep learning and earth observation to support the sustainable development goals: current approaches, open challenges, and future opportunities. IEEE Geosci. Remote Sens. Mag. 10, 172–200 (2022).

    Article  Google Scholar 

  15. Weersink, A., Fraser, E., Pannell, D., Duncan, E. & Rotz, S. Opportunities and challenges for big data in agricultural and environmental analysis. Annu. Rev. Resour. Econ. 10, 19–37 (2018).

    Article  Google Scholar 

  16. Verdouw, C., Tekinerdogan, B., Beulens, A. & Wolfert, S. Digital twins in smart farming. Agric. Syst. 189, 103046 (2021).

    Article  Google Scholar 

  17. Kruk, S. R. L., Kloppenburg, S., Toonen, H. M. & Bush, S. R. Digitalizing environmental governance for smallholder participation in food systems. Earth Syst. Governance 10, 100125 (2021).

    Article  Google Scholar 

  18. Castka, P., Zhao, X., Bremer, P., Wood, L. C. & Mirosa, M. Supplier audits during COVID-19: a process perspective on their transformation and implications for the future. Int. J. Logist. Manage. 33, 1294–1314 (2022).

  19. Nicorescu, A.-I., Hălălișan, A.-F., Popa, B. & Neykov, N. Challenges for FSC forest certification: audits in the context of pandemic COVID-19. Forests 12, 997 (2021).

    Article  Google Scholar 

  20. Walter, A., Finger, R., Huber, R. & Buchmann, N. Smart farming is key to developing sustainable agriculture. Proc. Natl Acad. Sci. USA 114, 6148–6150 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Lobell, D. B. et al. Eyes in the sky, boots on the ground: assessing satellite‐ and ground‐based approaches to crop yield measurement and analysis. Am. J. Agric. Econ. 102, 202–219 (2020).

    Article  Google Scholar 

  23. Heilmayr, R., Rausch, L. L., Munger, J. & Gibbs, H. K. Brazil’s Amazon Soy Moratorium reduced deforestation. Nat. Food 1, 801–810 (2020).

    Article  PubMed  Google Scholar 

  24. Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Kalischek, N. et al. Cocoa plantations are associated with deforestation in Côte d’Ivoire and Ghana. Nat. Food 4, 384–393 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Blackstone, N. T., Norris, C. B., Robbins, T., Jackson, B. & Decker Sparks, J. L. Risk of forced labour embedded in the US fruit and vegetable supply. Nat. Food 2, 692–699 (2021).

    Article  PubMed  Google Scholar 

  27. Progga, F. T., Shahria, M. D. T., Arisha, A. & Shanto, M. U. A. A deep learning based approach to child labour detection. In 2020 6th Information Technology International Seminar 24–29 (IEEE, 2020).

  28. Gold, S., Gutierrez-Huerter O, G. & Trautrims, A. Modern slavery risk assessment. Nat. Food 2, 644–645 (2021).

    Article  PubMed  Google Scholar 

  29. Henderson, J. V., Storeygard, A. & Weil, D. N. Measuring economic growth from outer space. Am. Econ. Rev. 102, 994–1028 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Jean, N. et al. Combining satellite imagery and machine learning to predict poverty. Science 353, 790–794 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Kougkoulos, I. et al. A multi‐method approach to prioritize locations of labor exploitation for ground‐based interventions. Prod. Oper. Manage. 30, 4396–4411 (2021).

  32. Lee, N. M., Varshney, L. R., Michelson, H. C., Goldsmith, P. & Davis, A. Digital trust substitution technologies to support smallholder livelihoods in sub-Saharan Africa. Global Food Secur. 32, 100604 (2022).

    Article  Google Scholar 

  33. Arsyad, A. A., Dadkhah, S. & Köppen, M. in Advances in Intelligent Networking and Collaborative Systems (eds Xhafa, F. et al.) 332–339. (Springer, 2019).

  34. Zhou, X., Pullman, M. & Xu, Z. The impact of food supply chain traceability on sustainability performance. Oper. Manage. Res. 15, 93–115 (2021).

    Article  Google Scholar 

  35. Niknejad, N., Ismail, W., Bahari, M., Hendradi, R. & Salleh, A. Z. Mapping the research trends on blockchain technology in food and agriculture industry: a bibliometric analysis. Environ. Technol. Innovation 21, 101272 (2021).

    Article  Google Scholar 

  36. Bunge, A. C., Wood, A., Halloran, A. & Gordon, L. J. A systematic scoping review of the sustainability of vertical farming, plant-based alternatives, food delivery services and blockchain in food systems. Nat. Food 3, 933–941 (2022).

    Article  PubMed  Google Scholar 

  37. Senou, R. B., Dégila, J., Adjobo, E. C. & Djossou, A. P. M. Blockchain for child labour decrease in cocoa production in West and Central Africa. IFAC-PapersOnLine 52, 2710–2715 (2019).

    Article  Google Scholar 

  38. Rijswijk, K. et al. Digital transformation of agriculture and rural areas: a socio-cyber-physical system framework to support responsibilisation. J. Rural Stud. 85, 79–90 (2021).

    Article  Google Scholar 

  39. Finger, R., Swinton, S. M., El Benni, N. & Walter, A. Precision farming at the nexus of agricultural production and the environment. Annu. Rev. Resour. Econ. 11, 313–335 (2019).

    Article  Google Scholar 

  40. Nikander, J., Manninen, O. & Laajalahti, M. Requirements for cybersecurity in agricultural communication networks. Comput. Electron. Agric. 179, 105776 (2020).

    Article  Google Scholar 

  41. Archer, M. Imagining impact in global supply chains: data-driven sustainability and the production of surveillable space. Surveillance Soc. 19, 282–298 (2021).

    Article  Google Scholar 

  42. Kruk, S. R. L., Toonen, H. M. & Bush, S. R. Digital sustainability assurance governing global value chains: the case of aquaculture. Regul. Governance https://doi.org/10.1111/rego.12571 (2023).

  43. MacPherson, J. et al. Future agricultural systems and the role of digitalization for achieving sustainability goals. A review. Agron. Sustain. Dev. 42, 70 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Clapp, J. & Ruder, S.-L. Precision technologies for agriculture: digital farming, gene-edited crops, and the politics of sustainability. Global Environ. Polit. 20, 49–69 (2020).

    Article  Google Scholar 

  45. Carolan, M. Automated agrifood futures: robotics, labor and the distributive politics of digital agriculture. J. Peasant Stud. 47, 184–207 (2020).

    Article  Google Scholar 

  46. Brooks, S. Configuring the digital farmer: a nudge world in the making? Econ. Soc. 50, 374–396 (2021).

    Article  Google Scholar 

  47. Stock, R. & Gardezi, M. Make bloom and let wither: biopolitics of precision agriculture at the dawn of surveillance capitalism. Geoforum 122, 193–203 (2021).

    Article  Google Scholar 

  48. Carolan, M. Agro‐digital governance and life itself: food politics at the intersection of code and affect. Sociol. Rural. 57, 816–835 (2017).

    Article  Google Scholar 

  49. Wolfert, S., Verdouw, C., van Wassenaer, L., Dolfsma, W. & Klerkx, L. Digital innovation ecosystems in agri-food: design principles and organizational framework. Agric. Syst. 204, 103558 (2023).

    Article  Google Scholar 

  50. Zuboff, S. The Age of Surveillance Capitalism: The Fight for a Human Future at the New Frontier of Power (PublicAffairs, 2020).

Download references

Acknowledgements

AI (Grammarly and ChatGPT) was used to correct typos and shorten sentences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva-Marie Meemken.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Food thanks Victor Galaz, Emily Duncan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meemken, EM., Becker-Reshef, I., Klerkx, L. et al. Digital innovations for monitoring sustainability in food systems. Nat Food 5, 656–660 (2024). https://doi.org/10.1038/s43016-024-01018-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43016-024-01018-6

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene