Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Holistic food system innovation strategies can close up to 80% of China’s domestic protein gaps while reducing global environmental impacts

Abstract

China’s imports of livestock feed, particularly protein-rich feeds, pose challenges to global environmental sustainability. Achieving protein self-sufficiency for food and feed in China without exceeding environmental boundaries requires integrated measures and optimization of China’s food system. Here we propose holistic food system innovation strategies consisting of three components—technological innovation, integrated spatial planning and demand-side options—to reduce protein import dependency and promote global environmental sustainability. We find that food system innovations can close almost 80% of China’s future protein gaps while reducing 57–85% of agricultural import-embodied environmental impacts. Deploying these innovations would also reduce greenhouse gas emissions (22–27%) and people’s harmful exposure to ammonia (73–81%) compared with the baseline scenario in 2050. Technological innovations play a key role in closing protein gaps, while integrated crop–livestock spatial planning is imperative for achieving environmental and health targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Diagram of the HFIs in China.
Fig. 2: Contribution of different steps of the food system innovation strategies compared with the BAU scenario in 2050.
Fig. 3: Comparison of spatial distribution for 2050 under the BAU scenario and with the implementation of the HFIs.
Fig. 4: Changes in global environmental impacts due to China’s HFIs compared with the BAU scenario.

Similar content being viewed by others

Data availability

Datasets used for calculating nitrogen and irrigation water boundaries are as follows: precipitation and evapotranspiration are taken from CRU-JRA v.1.1 and LandFlux-EVAL (https://doi.org/10.5285/13f3635174794bb98cf8ac4b0ee8f4ed and https://iac.ethz.ch/group/land-climate-dynamics/research/landflux-eval.html); global runoff data are from https://doi.org/10.6084/m9.figshare.9228176. Crop yield data and livestock feed efficiency are available in Supplementary Information. Basemap for the county boundary of China is derived from the Chinese Resource and Environmental Science Data Platform (https://www.resdc.cn/DOI/DOI.aspx?DOIID=120). Basemap for world administrative boundaries is derived from the World Bank-approved administrative boundaries (Admin 0) (2020) under a CC BY 4.0 license (https://datacatalog.worldbank.org/search/dataset/0038272/World-Bank-Official-Boundaries). Source data are provided with this paper.

Code availability

The GAMS code used for crop relocation in this study is deposited at https://doi.org/10.6084/m9.figshare.25045994 (ref. 54). Equations of livestock relocation can be found at https://doi.org/10.1038/s43016-021-00453-z. Global impacts embodied in agricultural trade calculation are available at https://github.com/iiasa/virtual_trade.

References

  1. Four Decades of Poverty Reduction in China: Drivers, Insights for the World, and the Way Ahead (World Bank Group, 2022).

  2. FAOSTAT: Statistical Database (FAO, 2021).

  3. Zhao, H. et al. China’s future food demand and its implications for trade and environment. Nat. Sustain. 4, 1042–1051 (2021).

    Article  Google Scholar 

  4. Bryan, B. A. et al. China’s response to a national land-system sustainability emergency. Nature 559, 193–204 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Innovation, Agricultural Productivity and Sustainability in China OECD Food and Agricultural Reviews (OECD, 2018); https://doi.org/10.1787/9789264085299-en

  6. Qi, X. et al. Rising agricultural water scarcity in China is driven by expansion of irrigated cropland in water scarce regions. One Earth 5, 1139–1152 (2022).

    Article  ADS  Google Scholar 

  7. Yu, C. et al. Managing nitrogen to restore water quality in China. Nature 567, 516–520 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Rockström, J., Edenhofer, O., Gaertner, J. & DeClerck, F. Planet-proofing the global food system. Nat. Food 1, 3–5 (2020).

    Article  Google Scholar 

  9. Clark, M. A. et al. Global food system emissions could preclude achieving the 1.5° and 2 °C climate change targets. Science 370, 705–708 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Springmann, M. et al. Options for keeping the food system within environmental limits. Nature 562, 519–525 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Ma, L. et al. Exploring future food provision scenarios for China. Environ. Sci. Technol. 53, 1385–1393 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. de Vries, W., Schulte-Uebbing, L., Kros, H., Voogd, J. C. & Louwagie, G. Spatially explicit boundaries for agricultural nitrogen inputs in the European Union to meet air and water quality targets. Sci. Total Environ. 786, 147283 (2021).

    Article  PubMed  Google Scholar 

  13. Cui, Z. et al. Pursuing sustainable productivity with millions of smallholder farmers. Nature 555, 363–366 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Thornton, P. K. Livestock production: recent trends, future prospects. Phil. Trans. R. Soc. B 365, 2853–2867 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Beyer, R. M., Hua, F., Martin, P. A., Manica, A. & Rademacher, T. Relocating croplands could drastically reduce the environmental impacts of global food production. Commun. Earth Environ. 3, 49 (2022).

    Article  ADS  Google Scholar 

  16. van Grinsven, H. J. M. et al. Reducing external costs of nitrogen pollution by relocation of pig production between regions in the European Union. Reg. Environ. Change 18, 2403–2415 (2018).

    Article  Google Scholar 

  17. Chang, J. et al. Reply to comment by Rigolot on ‘Narratives behind livestock methane mitigation studies matter’. AGU Adv. 2, e2021AV000549 (2021).

    Article  ADS  Google Scholar 

  18. Long, W. & Fan, S. Building a diversified food supply system with a big food approach. Res. Agric. Mod. 44, 233–343 (2023).

    Google Scholar 

  19. Jin, X. et al. Spatial planning needed to drastically reduce nitrogen and phosphorus surpluses in China’s agriculture. Environ. Sci. Technol. 54, 11894–11904 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Zhang, Q. et al. Outlook of China’s agriculture transforming from smallholder operation to sustainable production. Glob. Food Secur. 26, 100444 (2020).

    Article  Google Scholar 

  21. Wang, Z. et al. Integrating crop redistribution and improved management towards meeting China’s food demand with lower environmental costs. Nat. Food 3, 1031–1039 (2022).

    Article  PubMed  Google Scholar 

  22. Bai, Z. et al. Relocate 10 billion livestock to reduce harmful nitrogen pollution exposure for 90% of China’s population. Nat. Food 3, 152–160 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Nelson, G. C. et al. Climate change effects on agriculture: economic responses to biophysical shocks. Proc. Natl Acad. Sci. USA 111, 3274–3279 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Xu, P. et al. Policy-enabled stabilization of nitrous oxide emissions from livestock production in China over 1978–2017. Nat. Food 3, 356–366 (2022).

    Article  CAS  PubMed  Google Scholar 

  25. Liu, L. et al. Exploring global changes in agricultural ammonia emissions and their contribution to nitrogen deposition since 1980. Proc. Natl Acad. Sci. USA 119, e2121998119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Agricultural Policy Monitoring and Evaluation 2023 (OECD, 2023); https://doi.org/10.1787/b14de474-en

  27. Mitter, H., Larcher, M., Schönhart, M., Stöttinger, M. & Schmid, E. Exploring farmers’ climate change perceptions and adaptation intentions: empirical evidence from Austria. Environ. Manag. 63, 804–821 (2019).

    Article  ADS  Google Scholar 

  28. Bonilla-Cedrez, C. et al. Priority areas for investment in more sustainable and climate-resilient livestock systems. Nat. Sustain. 6, 1279–1286 (2023).

    Article  Google Scholar 

  29. Herrero, M. et al. Articulating the effect of food systems innovation on the sustainable development goals. Lancet Planet Health 5, e50–e62 (2021).

    Article  PubMed  Google Scholar 

  30. Lee, H. F., Jia, X. & Ji, B. Population, wars, and the grand canal in Chinese history. Sustainability 14, 7006 (2022).

    Article  Google Scholar 

  31. Annual Data by Province (National Bureau of Statistics of China, accessed in 2023); https://data.stats.gov.cn/english/easyquery.htm?cn=E0103

  32. Ma, T. et al. Pollution exacerbates China’s water scarcity and its regional inequality. Nat. Commun. 11, 650 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hu, Y. et al. Food production in China requires intensified measures to be consistent with national and provincial environmental boundaries. Nat. Food 1, 572–582 (2020).

    Article  PubMed  Google Scholar 

  34. Folberth, C. et al. The global cropland-sparing potential of high-yield farming. Nat. Sustain. 3, 281–289 (2020).

    Article  Google Scholar 

  35. van Huis, A. & Gasco, L. Insects as feed for livestock production. Science 379, 138–139 (2023).

    Article  ADS  PubMed  Google Scholar 

  36. Piercy, E. et al. A sustainable waste-to-protein system to maximise waste resource utilisation for developing food- and feed-grade protein solutions. Green Chem. 25, 808–832 (2023).

    Article  CAS  Google Scholar 

  37. Balaji, V. et al. Are general circulation models obsolete? Proc. Natl Acad. Sci. USA 119, e2202075119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hattermann, F. F. et al. Sources of uncertainty in hydrological climate impact assessment: a cross-scale study. Environ. Res. Lett. 13, 015006 (2018).

    Article  ADS  Google Scholar 

  39. Talhelm, T. et al. Large-scale psychological differences within china explained by rice versus wheat agriculture. Science 344, 603–608 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. He, D., Yin, Q., Zheng, M. & Gao, P. Transport and regional economic integration: evidence from the Chang-Zhu-Tan region in China. Transp. Policy 79, 193–203 (2019).

    Article  Google Scholar 

  41. Richter, B. D. Re‐thinking environmental flows: from allocations and reserves to sustainability boundaries. River Res. Appl. 26, 1052–1063 (2010).

    Article  Google Scholar 

  42. Pastor, A. V., Ludwig, F., Biemans, H., Hoff, H. & Kabat, P. Accounting for environmental flow requirements in global water assessments. Hydrol. Earth Syst. Sci. 18, 5041–5059 (2014).

    Article  ADS  Google Scholar 

  43. Chang, J. et al. Reconciling regional nitrogen boundaries with global food security. Nat. Food 2, 700–711 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  44. de Vries, W., Kros, J., Kroeze, C. & Seitzinger, S. P. Assessing planetary and regional nitrogen boundaries related to food security and adverse environmental impacts. Curr. Opin. Environ. Sustain. 5, 392–402 (2013).

    Article  Google Scholar 

  45. Lu, J. et al. Mitigation options to reduce nitrogen losses to water from crop and livestock production in China. Curr. Opin. Environ. Sustain. 40, 95–107 (2019).

    Article  Google Scholar 

  46. Zhou, F. et al. Deceleration of China’s human water use and its key drivers. Proc. Natl Acad. Sci. USA 117, 7702–7711 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Balkovič, J. et al. Global wheat production potentials and management flexibility under the representative concentration pathways. Glob. Planet. Change 122, 107–121 (2014).

    Article  ADS  Google Scholar 

  48. Ji, Y., Yan, H., Liu, J., Kuang, W. & Hu, Y. A MODIS data derived spatial distribution of high-, medium- and low-yield cropland in China. Acta Geogr. Sin. 70, 766–778 (2015).

    Google Scholar 

  49. Herrero, M. et al. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc. Natl Acad. Sci. USA 110, 20888–20893 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Xue, L. et al. China’s food loss and waste embodies increasing environmental impacts. Nat. Food 2, 519–528 (2021).

    Article  PubMed  Google Scholar 

  51. Fry, J. P., Mailloux, N. A., Love, D. C., Milli, M. C. & Cao, L. Feed conversion efficiency in aquaculture: do we measure it correctly? Environ. Res. Lett. 13, 024017 (2018).

    Article  ADS  Google Scholar 

  52. Pharo, P. et al. Growing Better: Ten Critical Transitions to Transform Food and Land Use The Global Consultation Report of the Food and Land Use Coalition (Food and Land Use Coalition, 2019).

  53. MacLeod, M. J., Hasan, M. R., Robb, D. H. F. & Mamun-Ur-Rashid, M. Quantifying greenhouse gas emissions from global aquaculture. Sci. Rep. 10, 11679 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhao, H. Holistic food system innovation strategies can close up to 80% of China’s domestic protein gaps while reducing global environmental impacts. figshare https://doi.org/10.6084/m9.figshare.25045994 (2024).

Download references

Acknowledgements

This research has been financially supported by the National Key R&D Program of China (2021YFE0101900), the Key R&D Program of Hebei, China (21327507D), the National Natural Science Foundation of China (grant numbers 42301324, 32361143871 and 32222053) and the Natural Science Foundation of Hebei Province (D2022503014). J.C. is supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (grant number XDA26010303). H.Z. acknowledges the support from the China National Postdoctoral Program (BX20230305 and 2022M722773).

Author information

Authors and Affiliations

Authors

Contributions

L.M. conceived the study. H.Z. led data collection and modelling work and wrote the draft with contributions from J.C. X.F., Z.B., C.W. and P.H. contributed to the interpretation of the results. Z.C., J.B., M.H. and Z.S. provided support for data collection and processing. All authors commented on the paper.

Corresponding authors

Correspondence to Lin Ma or Jinfeng Chang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Food thanks Matthew Harrison, Ming Ren and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods 1–4, Figs. 1–16, Tables 1–16 and References.

Supplementary Data 1

The detailed data supporting results in supplementary figures.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Fan, X., Bai, Z. et al. Holistic food system innovation strategies can close up to 80% of China’s domestic protein gaps while reducing global environmental impacts. Nat Food 5, 581–591 (2024). https://doi.org/10.1038/s43016-024-01011-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43016-024-01011-z

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene