Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Hybrid intelligence for reconciling biodiversity and productivity in agriculture

Hybrid intelligence — arising from the sensible, targeted fusion of human minds and cutting-edge computational systems — holds great potential for enhancing the sustainability of agriculture. Leveraging the combined strengths of both collective human and artificial intelligence helps identify and stress-test pathways towards the reconciliation of biodiversity and productivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic diagram of the socio-technical system and processes for hybrid intelligence.
Fig. 2: Exemplary use cases of human–AI interaction for hybrid intelligence.


  1. Wanger, T. C. et al. Nat. Ecol. Evol. 4, 1150–1152 (2020).

    Article  PubMed  Google Scholar 

  2. Seppelt, R. et al. Bioscience 66, 890–896 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gerling, C. et al. Ecol. Complex. 40, 100792 (2019).

    Article  Google Scholar 

  4. Westerink, J. et al. Land Use Policy 69, 176–192 (2017).

    Article  Google Scholar 

  5. Dellermann, D., Ebel, P., Söllner, M. & Leimeister, J. M. Bus. Inf. Syst. Eng. 61, 637–643 (2019).

    Article  Google Scholar 

  6. Peeters, M. M. M. et al. AI & Soc. 36, 217–238 (2021).

    Article  Google Scholar 

  7. Gimpel, H., Lahmer, S., Wöhl, M. & Graf-Drasch, V. Group Decis. Negot. 33, 113–145 (2024).

    Article  Google Scholar 

  8. Hazell, P. B. R., Chakravorty, U., Dixon, J. & Celis, R. Monitoring Systems for Managing Natural Resources: Economics Indicators and Environmental Externalities in a Costa Rican Watershed. Discussion Paper (International Food Policy Research Institute, 2001);

  9. Janssen, M. A. & Ostrom, E. Ecol. Soc. 11, 37 (2006).

    Article  Google Scholar 

  10. Kremmydas, D., Athanasiadis, I. N. & Rozakis, S. Agric. Syst. 164, 95–106 (2018).

    Article  Google Scholar 

  11. Troost, C. et al. Environ. Model. Softw. 159, 105559 (2023).

    Article  Google Scholar 

  12. Glikson, E. & Woolley, A. W. Acad. Manag. Ann. 14, 627–660 (2020).

    Article  Google Scholar 

  13. Mössinger, J., Troost, C. & Berger, T. Agric. Syst. 195, 103315 (2022).

    Article  Google Scholar 

  14. Boukherroub, T., D’amours, S. & Rönnqvist, M. J. Clean. Prod. 179, 567–580 (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to T. Berger.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berger, T., Gimpel, H., Stein, A. et al. Hybrid intelligence for reconciling biodiversity and productivity in agriculture. Nat Food 5, 270–272 (2024).

Download citation

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene