Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Biophysical investigations using atomic force microscopy can elucidate the link between mouthfeel and flavour perception

Abstract

Food texture, along with taste and odour, is an important factor in determining food flavour. However, the physiological properties of oral texture perception require greater examination and definition. Here we explore recent trends and perspectives related to mouthfeel and its relevance in food flavour perception, with an emphasis on the biophysical point of view and methods. We propose that atomic force microscopy, combined with other biophysical techniques and more traditional food science approaches, offers a unique opportunity to study the mechanisms of mouthfeel at cellular and molecular levels. With this knowledge, food composition could be modified to develop healthier products by limiting salt, sugar, fat and calories while maintaining sensory qualities and consumer acceptance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The biophysical elements of mouthfeel.
Fig. 2: Common biophysical tools used to investigate cellular mechanotransduction.
Fig. 3: The powerful and highly versatile atomic force microscope can be applied to decipher mouthfeel in flavour perception.

Similar content being viewed by others

References

  1. Szczesniak, A. S. Texture is a sensory property. Food Qual. Prefer. 13, 215–225 (2002).

    Article  Google Scholar 

  2. Kravchuk, O., Torley, P. & Stokes, J. R. in Food Materials Science and Engineering (eds Bhandari, B. & Roos, Y. H.) 349–372 (Wiley, 2012).

  3. Stribiţcaia, E., Evans, C. E. L., Gibbons, C., Blundell, J. & Sarkar, A. Food texture influences on satiety: systematic review and meta-analysis. Sci. Rep. 10, 12929 (2020).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  4. Agorastos, G. Review of mouthfeel classification: a new perspective of food perception. J. Food Sci. Nutr. https://doi.org/10.46715/jfsn2020.09.1000107 (2020).

  5. Gogoi, B. J. Changing consumer preferences: factors influencing choice of fast food outlet. Acad. Mark. Stud. J. 24, 1–17 (2020).

    Google Scholar 

  6. Kim, M., Heo, G. & Kim, S.-Y. Neural signalling of gut mechanosensation in ingestive and digestive processes. Nat. Rev. Neurosci. 23, 135–156 (2022).

    Article  CAS  PubMed  Google Scholar 

  7. Wang, L. et al. Structure and mechanogating of the mammalian tactile channel PIEZO2. Nature 573, 225–229 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Righi, A. et al. Merkel cells in the oral mucosa. Int. J. Surg. Pathol. 14, 206–211 (2006).

    Article  PubMed  Google Scholar 

  9. Moayedi, Y., Duenas-Bianchi, L. F. & Lumpkin, E. A. Somatosensory innervation of the oral mucosa of adult and aging mice. Sci. Rep. 8, 9975 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  10. Uhlén, M. et al. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

    Article  PubMed  Google Scholar 

  11. Millet, J. R. M., Romero, L. O., Lee, J., Bell, B. & Vásquez, V. C. elegans PEZO-1 is a mechanosensitive ion channel involved in food sensation. J. Gen. Physiol. 154, e202112960 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Delmas, P. & Coste, B. SnapShot: orofacial sensation. Cell 183, 284–284.e1 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Chalfie, M. Neurosensory mechanotransduction. Nat. Rev. Mol. Cell Biol. 10, 44–52 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Toft-Bertelsen, T. L. & MacAulay, N. TRPing on cell swelling—TRPV4 senses it. Front. Immunol. 12, 730982 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Haggard, P. & de Boer, L. Oral somatosensory awareness. Neurosci. Biobehav. Rev. 47, 469–484 (2014).

    Article  PubMed  Google Scholar 

  16. Moayedi, Y. et al. The cellular basis of mechanosensation in mammalian tongue. Cell Rep. 42, 112087 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Moayedi, Y., Michlig, S., Park, M., Koch, A. & Lumpkin, E. A. Somatosensory innervation of healthy human oral tissues. J. Comp. Neurol. 529, 3046–3061 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rolls, E. T. Taste, olfactory, and food texture processing in the brain, and the control of food intake. Physiol. Behav. 85, 45–56 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Burbidge, A. S. & Le Révérend, B. J. D. Biophysics of food perception. J. Phys. D 49, 114001 (2016).

    Article  ADS  Google Scholar 

  20. Shi, Y., Sezgin, E. & Chen, W. Editorial: the role of biomembranes and biophysics in immune cell signaling. Front. Immunol. 12, 740373 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sunshine, H. & Iruela-Arispe, M. L. Membrane lipids and cell signaling. Curr. Opin. Lipidol. 28, 408–413 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Amin, D. N. & Hazelbauer, G. L. Influence of membrane lipid composition on a transmembrane bacterial chemoreceptor. J. Biol. Chem. 287, 41697–41705 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Guinard, J.-X. & Mazzucchelli, R. The sensory perception of texture and mouthfeel. Trends Food Sci. Technol. 7, 213–219 (1996).

    Article  CAS  Google Scholar 

  24. Stokes, J. R., Boehm, M. W. & Baier, S. K. Oral processing, texture and mouthfeel: from rheology to tribology and beyond. Curr. Opin. Colloid Interface Sci. 18, 349–359 (2013).

    Article  CAS  Google Scholar 

  25. Koç, H., Vinyard, C. J., Essick, G. K. & Foegeding, E. A. Food oral processing: conversion of food structure to textural perception. Annu. Rev. Food Sci. Technol. 4, 237–266 (2013).

    Article  PubMed  Google Scholar 

  26. Canon, F., Neiers, F. & Guichard, E. Saliva and flavor perception: perspectives. J. Agric. Food Chem. 66, 7873–7879 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Yang, C. et al. Mechanical dynamics in live cells and fluorescence-based force/tension sensors. Biochim. Biophys. Acta 1853, 1889–1904 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dumitru, A. C. & Koehler, M. Recent advances in the application of atomic force microscopy to structural biology. J. Struct. Biol. 215, 107963 (2023).

    Article  CAS  PubMed  Google Scholar 

  29. Koehler, M. et al. Control of ligand-binding specificity using photocleavable linkers in AFM force spectroscopy. Nano Lett. 20, 4038–4042 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wildling, L. et al. Linking of sensor molecules with amino groups to amino-functionalized AFM tips. Bioconjug. Chem. 22, 1239–1248 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Saha, P., Duanis‐Assaf, T. & Reches, M. Fundamentals and applications of fluidFM technology in single‐cell studies. Adv. Mater. Interfaces 7, 2001115 (2020).

    Article  CAS  Google Scholar 

  32. Koehler, M. et al. Reovirus directly engages integrin to recruit clathrin for entry into host cells. Nat. Commun. 12, 2149 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dumitru, A. C. et al. Submolecular probing of the complement C5a receptor–ligand binding reveals a cooperative two-site binding mechanism. Commun. Biol. 3, 786 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Koehler, M. et al. Glycan-mediated enhancement of reovirus receptor binding. Nat. Commun. 10, 4460 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  35. Koehler, M., Farka, D., Yumusak, C., Sariciftci, N. S. & Hinterdorfer, P. Localizing binding sites on bioconjugated hydrogen‐bonded organic semiconductors at the nanoscale. ChemPhysChem 21, 659–666 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Oh, Y. J. et al. Ultra-sensitive and label-free probing of binding affinity using recognition imaging. Nano Lett. 19, 612–617 (2018).

    Article  ADS  PubMed  Google Scholar 

  37. Dickinson, E. Colloids in food: ingredients, structure, and stability. Annu. Rev. Food Sci. Technol. 6, 211–233 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Dufrene, Y. F., Martinez-Martin, D., Medalsy, I., Alsteens, D. & Muller, D. J. Multiparametric imaging of biological systems by force-distance curve-based AFM. Nat. Methods 10, 847–854 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Liu, S. & Wang, Y. in Advances in Food and Nutrition Research Vol. 62 (ed. Taylor, S. L.) 201–240 (Academic Press, 2011).

  40. Gaub, B. M. & Müller, D. J. Mechanical stimulation of Piezo1 receptors depends on extracellular matrix proteins and directionality of force. Nano Lett. 17, 2064–2072 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Krieg, M. et al. Atomic force microscopy-based mechanobiology. Nat. Rev. Phys. 1, 41–57 (2019).

    Article  Google Scholar 

  42. Hunter, S. R. & Dalton, P. H. The need for sensory nutrition research in individuals with smell loss. Clin. Nutr. Open Sci. 46, 35–41 (2022).

    Article  Google Scholar 

  43. Bassi, G., Grimaudo, M. A., Panseri, S. & Montesi, M. Advanced multi-dimensional cellular models as emerging reality to reproduce in vitro the human body complexity. Int. J. Mol. Sci. 22, 1195 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liszt, K. I. et al. Caffeine induces gastric acid secretion via bitter taste signaling in gastric parietal cells. Proc. Natl Acad. Sci. USA 114, E6260–E6269 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kutter, A., Hanesch, C., Rauh, C. & Delgado, A. Impact of proprioception and tactile sensations in the mouth on the perceived thickness of semi-solid foods. Food Qual. Prefer. 22, 193–197 (2011).

    Article  Google Scholar 

  46. Simons, C. T., Klein, A. H. & Carstens, E. Chemogenic subqualities of mouthfeel. Chem. Senses 44, 281–288 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Delius, J., Médard, G., Kuster, B. & Hofmann, T. Effect of astringent stimuli on salivary protein interactions elucidated by complementary proteomics approaches. J. Agric. Food Chem. 65, 2147–2154 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. Dunkel, A. & Hofmann, T. Carbonic anhydrase|IV mediates the fizz of carbonated beverages. Angew. Chem. Int. Ed. 49, 2975–2977 (2010).

    Article  CAS  Google Scholar 

  49. Matjaž, P., Shuo, M., Gino, F., Markus, S. & Sanne, B. Smells like fat: a systematic scoping review on the contribution of olfaction to fat perception in humans and rodents. Food Qual. Prefer. 107, 104847 (2023).

    Article  Google Scholar 

  50. Galindo, M. M. et al. G protein–coupled receptors in human fat taste perception. Chem. Senses 37, 123–139 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge support for the research for this work from the Leibniz Association through the Leibniz Best Minds programme (M.K., grant number J112/2021).

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in drafting and revising the paper, providing intellectual content and approving the final version for submission.

Corresponding author

Correspondence to Melanie Koehler.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Food thanks Jason Stokes, Emanuele Zannini and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koehler, M., Benthin, J., Karanth, S. et al. Biophysical investigations using atomic force microscopy can elucidate the link between mouthfeel and flavour perception. Nat Food 5, 281–287 (2024). https://doi.org/10.1038/s43016-024-00958-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43016-024-00958-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing