Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spatiotemporal co-optimization of agricultural management practices towards climate-smart crop production

Abstract

Co-optimization of multiple management practices may facilitate climate-smart agriculture, but is challenged by complex climate–crop–soil management interconnections across space and over time. Here we develop a hybrid approach combining agricultural system modelling, machine learning and life cycle assessment to spatiotemporally co-optimize fertilizer application, irrigation and residue management to achieve yield potential of wheat and maize and minimize greenhouse gas emissions in the North China Plain. We found that the optimal fertilizer application rate and irrigation for the historical period (1995–2014) are lower than local farmers’ practices as well as trial-derived recommendations. With the optimized practices, the projected annual requirement of fertilizer, irrigation water and residue inputs across the North China Plain in the period 2051–2070 is reduced by 16% (14–21%) (mean with 95% confidence interval), 19% (7–32%) and 20% (16–26%), respectively, compared with the current supposed optimal management in the historical reference period, with substantial greenhouse gas emission reductions. We demonstrate the potential of spatiotemporal co-optimization of multiple management practices and present digital mapping of management practices as a benchmark for site-specific management across the region.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A simulation framework enables spatiotemporal optimization of multiple management practices.
Fig. 2: Spatial pattern of yield, SOC changes (ΔSOC), net GHG emissions and optimized management practices under the target of maximizing yield and minimizing GHG emissions.
Fig. 3: Distributions of simulated yield, ΔSOC and GHG emissions under the target of maximizing yield and minimizing GHG emissions across the study region (that is, the NCP).
Fig. 4: Distributions of optimized management practices under the target of maximizing yield and minimizing GHG emissions across the study region (that is, the NCP).
Fig. 5: Coefficients of the predictors of a linear mixed-effects regression for optimized management practices.

Similar content being viewed by others

Data availability

Daily historical climate data are available at https://data.cma.cn/. The soil database is freely available at http://poles.tpdc.ac.cn/zh-hans/data/8ba0a731-5b0b-4e2f-8b95-8b29cc3c0f3a/?tdsourcetag=s_pctim_aiomsg. The raw datasets from CMIP6 simulations are available at https://esgf-node.llnl.gov/projects/cmip6/. The bias correction method is available at https://www.isimip.org/gettingstarted/isimip3b-bias-adjustment/. The APSIM Classic is freely available at https://www.apsim.info/download-apsim/. The data needed to regenerate the results in this study are publicly available at https://figshare.com/articles/figure/_b_Data_for_Spatiotemporal_co-optimization_of_agricultural_management_practices_b_/24471919.

Code availability

The code used to generate the results can be accessed at https://figshare.com/articles/figure/_b_Data_for_Spatiotemporal_co-optimization_of_agricultural_management_practices_b_/24471919.

References

  1. Shang, Z. et al. Can cropland management practices lower net greenhouse emissions without compromising yield? Glob. Change Biol. 27, 4657–4670 (2021).

    Article  CAS  Google Scholar 

  2. Cui, Z. et al. Pursuing sustainable productivity with millions of smallholder farmers. Nature 555, 363–366 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Chen, X.-P. et al. Integrated soil–crop system management for food security. Proc. Natl Acad. Sci. USA 108, 6399–6404 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Du, Y. et al. A synthetic analysis of the effect of water and nitrogen inputs on wheat yield and water- and nitrogen-use efficiencies in China. Field Crops Res. https://doi.org/10.1016/j.fcr.2021.108105 (2021).

  5. He, M. et al. Long-term appropriate N management can continuously enhance gross N mineralization rates and crop yields in a maize–wheat rotation system. Biol. Fertil. Soils 59, 501–511 (2021).

  6. Yu, C. et al. Managing nitrogen to restore water quality in China. Nature 567, 516–520 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Wang, L. et al. Nitrogen management to reduce GHG emissions while maintaining high crop productivity in temperate summer rainfall climate. Field Crops Res. https://doi.org/10.1016/j.fcr.2022.108761 (2023).

  8. Xin, Y. & Tao, F. Developing climate-smart agricultural systems in the North China Plain. Agr. Ecosyst. Environ. 291, 106791 (2020).

    Article  CAS  Google Scholar 

  9. Song, Q. et al. Effect of straw retention on carbon footprint under different cropping sequences in Northeast China. Environ. Sci. Pollut. Res. Int. 28, 54792–54801 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Amelung, W. et al. Towards a global-scale soil climate mitigation strategy. Nat. Commun. 11, 5427 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang, L. et al. Planning maize hybrids adaptation to future climate change by integrating crop modelling with machine learning. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/ac32fd (2021).

  12. Wang, L. et al. Optimal straw management co-benefits crop yield and soil carbon sequestration of intensive farming systems. Land Degrad. Dev. 34, 2322–2333 (2023).

  13. Liu, C., Lu, M., Cui, J., Li, B. & Fang, C. Effects of straw carbon input on carbon dynamics in agricultural soils: a meta-analysis. Glob. Change Biol. 20, 1366–1381 (2014).

    Article  ADS  Google Scholar 

  14. Prestele, R. & Verburg, P. H. The overlooked spatial dimension of climate‐smart agriculture. Glob. Change Biol. (2019).

  15. Keating, B. A. et al. An overview of APSIM, a model designed for farming systems simulation. Eur. J. Agron. 18, 267–288 (2003).

  16. Carberry, P. S. et al. Scope for improved eco-efficiency varies among diverse cropping systems. Proc. Natl Acad. Sci. USA 110, 8381–8386 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhao, Y. et al. Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands. Proc. Natl Acad. Sci. USA 115, 4045–4050 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jägermeyr, J. et al. Climate impacts on global agriculture emerge earlier in new generation of climate and crop models. Nat. Food 2, 873–885 (2021).

    Article  PubMed  Google Scholar 

  19. Liu, B. et al. Similar estimates of temperature impacts on global wheat yield by three independent methods. Nat. Clim. Change 1130–1136 (2016).

  20. Kimball, B. A. Crop responses to elevated CO2 and interactions with H2O, N, and temperature. Curr. Opin. Plant Biol. 31, 36–43 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Lobell, D. B., Deines, J. M. & Tommaso, S. D. Changes in the drought sensitivity of US maize yields. Nat. Food https://doi.org/10.1038/s43016-020-00165-w (2020).

  22. Wood, S. A. & Bowman, M. Large-scale farmer-led experiment demonstrates positive impact of cover crops on multiple soil health indicators. Nat. Food 2, 97–103 (2021).

    Article  PubMed  Google Scholar 

  23. Yin, Y. et al. A steady-state N balance approach for sustainable smallholder farming. Proc. Natl Acad. Sci. USA 118, e2106576118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Berhane Hagos, M. et al. Effects of long‐term straw return on soil organic carbon storage and sequestration rate in North China upland crops: a meta‐analysis. Glob. Change Biol. (2020).

  25. Qiao, L. et al. Soil quality both increases crop production and improves resilience to climate change. Nat. Clim. Change 12, 574–580 (2022).

    Article  ADS  Google Scholar 

  26. Folberth, C. et al. Uncertainty in soil data can outweigh climate impact signals in global crop yield simulations. Nat. Commun. 7, 11872 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang, E. et al. The uncertainty of crop yield projections is reduced by improved temperature response functions. Nat. Plants 3, 17102 (2017).

    Article  PubMed  Google Scholar 

  28. Xiong, W. et al. Increased ranking change in wheat breeding under climate change. Nat. Plants 7, 1207–1212 (2021).

    Article  PubMed  Google Scholar 

  29. Zhao, Z., Wang, E., Kirkegaard, J. A. & Rebetzke, G. J. Novel wheat varieties facilitate deep sowing to beat the heat of changing climates. Nat. Clim. Change 12, 291–296 (2022).

    Article  ADS  Google Scholar 

  30. Cai, S. et al. Optimal nitrogen rate strategy for sustainable rice production in China. Nature 615, 73–79 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Xiao, L., Wang, G., Zhou, H., Jin, X. & Luo, Z. Coupling agricultural system models with machine learning to facilitate regional predictions of management practices and crop production. Environ. Res. Lett. 17, 114027 (2022).

    Article  ADS  Google Scholar 

  32. Zhang, X.-Q. et al. Tillage effects on carbon footprint and ecosystem services of climate regulation in a winter wheat–summer maize cropping system of the North China Plain. Ecol. Indic. 67, 821–829 (2016).

    Article  CAS  Google Scholar 

  33. Luo, N. et al. China can be self-sufficient in maize production by 2030 with optimal crop management. Nat. Commun. 14, 2637 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. China Statistical Yearbook 2018 (National Bureau of Statistics of China, 2018).

  35. Zhao, Z., Qin, X., Wang, Z. & Wang, E. Performance of different cropping systems across precipitation gradient in North China Plain. Agric. For. Meteorol. 259, 162–172 (2018).

    Article  ADS  Google Scholar 

  36. Ni, B. et al. Exponential relationship between N2O emission and fertilizer nitrogen input and mechanisms for improving fertilizer nitrogen efficiency under intensive plastic-shed vegetable production in China: a systematic analysis. Agr. Ecosyst. Environ. 312, 107353 (2021).

    Article  CAS  Google Scholar 

  37. R: A Language and Environment for Statistical Computing, version 4.0.5 (R Foundation for Statistical Computing, 2021).

  38. Arias, P. et al. Climate Change 2021: The Physical Science Basis. Contribution of Working Group14 I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Technical Summary (IPCC, 2021).

  39. O’Neill, B. C. et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).

    Article  ADS  Google Scholar 

  40. Lange, S. Trend-preserving bias adjustment and statistical downscaling with ISIMIP3BASD (v1.0). Geosci. Model Dev. 12, 3055–3070 (2019).

    Article  ADS  Google Scholar 

  41. Wei, S. & Dai, Y. Dataset of soil properties for land surface modeling over China. A Big Earth Data Platform for Three Poles https://doi.org/10.11888/Soil.tpdc.270281 (2019).

  42. Xu, M. G., Zhang, W. J. & Shuang, S. W. China Soil Fertility Evolution (2nd edition) 1124 (China Agriculture and Science Technology Publishing House, 2015).

  43. Probert, M. E., Dimes, J. P., Keating, B. A., Dalal, R. C. & Strong, W. M. APSIM’s water and nitrogen modules and simulation of the dynamics of water and nitrogen in fallow systems. Agr. Syst. 56, 1–28 (1998).

    Article  Google Scholar 

  44. Luo, Z. et al. Modelling soil carbon and nitrogen dynamics using measurable and conceptual soil organic matter pools in APSIM. Agr. Ecosyst. Environ. 186, 94–104 (2014).

    Article  CAS  Google Scholar 

  45. Thorburn, P. J., Biggs, J. S., Collins, K. & Probert, M. E. Using the APSIM model to estimate nitrous oxide emissions from diverse Australian sugarcane production systems. Agr. Ecosyst. Environ. 136, 343–350 (2010).

    Article  CAS  Google Scholar 

  46. Smith, C. et al. Measurements and APSIM modelling of soil C and N dynamics. Soil Res. 58, 41–61 (2019).

    Article  Google Scholar 

  47. Wang, G., Luo, Z., Wang, E. & Zhang, W. Reducing greenhouse gas emissions while maintaining yield in the croplands of Huang-Huai-Hai Plain, China. Agr. For. Meteorol. 260–261, 80–94 (2018).

  48. Liu, Z. et al. Optimization of China’s maize and soy production can ensure feed sufficiency at lower nitrogen and carbon footprints. Nat. Food 2, 426–433 (2021).

    Article  PubMed  Google Scholar 

  49. Reddy, S., et al. (2019). The 2019 Refinement to the 2006 IPCC guidelines for national greenhouse gas inventories (eds E. Calvo Buendia, K. Tanabe, A. Kranjc, J. Baasansuren, M. Fukuda, S. Ngarize, A. Osako, Y. Pyrozhenko, P. Shermanau, & S. Federici) (IPCC, 2019)

  50. 2006 IPCC guidelines for national greenhouse gas inventories. Institute for Global Environmental Strategies (IPCC, 2006).

  51. Mullen, K., Ardia, D., Gil, D. L., Windover, D. & Cline, J. DEoptim: an R package for global optimization by differential evolution. J. Stat. Softw. 40, 1–26 (2011).

    Article  Google Scholar 

  52. Tsou, C.-S. nsga2R: Elitist Non-dominated Sorting Genetic Algorithm Based on R. R Package Version 1.0. (R Foundation for Statistical Computing, 2013).

  53. Peres-Neto, P. R., Legendre, P., Dray, S. & Borcard, D. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87, 2614–2625 (2006).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the national key research programme of Ministry of Science and Technology of China (grant no. 2021YFE0114500 to Z.L.) and the National Natural Science Foundation of China (grant no. 42001105 to L.X.) and the Fundamental Research Funds for the Central Universities (XUEKEN2023012, KYLH2023005 to L.X.).

Author information

Authors and Affiliations

Authors

Contributions

Z.L. conceived the study; L.X., G.W., P.Z. and H.Z. compiled the data; L.X., G.W. and H.Z. led the data assessment with the contributions of S.L.; L.X. conducted mapping; Z.L., L.X., G.W., E.W. and J.C. interpreted the results with the contribution of all authors; Z.L. and L.X. led manuscript writing with substantial contributions of all authors; Z.L., L.X. and Y.Z. contributed to the manuscript revision.

Corresponding author

Correspondence to Zhongkui Luo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Food thanks Fanqiao Meng, Jordi Sardans and Zhenling Cui for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14, Tables 1–6 and data.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, L., Wang, G., Wang, E. et al. Spatiotemporal co-optimization of agricultural management practices towards climate-smart crop production. Nat Food 5, 59–71 (2024). https://doi.org/10.1038/s43016-023-00891-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43016-023-00891-x

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene