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Agricultural input shocks affect crop yields 
more in the high-yielding areas of the world

Aino Ahvo, Matias Heino    , Vilma Sandström    , Daniel Chrisendo    , 
Mika Jalava     & Matti Kummu     

The industrialization of agriculture has led to an increasing dependence on 
non-locally sourced agricultural inputs. Hence, shocks in the availability 
of agricultural inputs can be devastating to food crop production. There 
is also a pressure to decrease the use of synthetic fertilizers and pesticides 
in many areas. However, the combined impact of the agricultural input 
shocks on crop yields has not yet been systematically assessed globally. 
Here we modelled the effects of agricultural input shocks using a random 
forest machine learning algorithm. We show that shocks in fertilizers cause 
the most drastic yield losses. Under the scenario of 50% shock in all studied 
agricultural inputs, global maize production could decrease up to 26%, and 
global wheat production up to 21%, impacting particularly the high-yielding 
‘breadbasket’ areas of the world. Our study provides insights into global 
food system resilience and can be useful for preparing for potential future 
shocks or agricultural input availability decreases at local and global scales.

The industrialized food production systems, on which the majority 
of global food crops are grown1, depend on off-farm inputs such as 
synthetic fertilizers, machinery, energy, pesticides, seeds and animal 
feed. Many of these inputs are imported, often only from a few coun-
tries2. And while some countries might be resilient enough in their 
food system to handle local extreme weather shocks or disturbances 
in food trade flows, their food production might be influenced by the 
availability of agricultural inputs3,4. Also, there is an increasing pressure 
to decrease the use of synthetic fertilizers and pesticides to reduce 
their burden on environment5,6.

The relationships of different disturbances on food production 
(extreme weather and so on) and supply (trade shocks and so on) are 
increasingly well understood (for example, Dall’erba et al.7 and Fergu-
son and Gars8). Very little is known, however, how drastically decreased 
use or availability of agricultural inputs would impact food crop yields 
and thus food availability and food security on a large scale (national or 
global). The few existing studies include, for example, Beckman et al.5 
who, using economic models, study the effects of globally adopting the 
European Union’s (EU’s) Green Deal and Farm to Fork strategies that 
aim to reduce pesticides by 50% and fertilizers by 20%. Responses to 
input reductions differed greatly around the globe, but, for example 
in the EU, wheat production would decrease by 33%. Jansik et al.9, in 

turn, use expert interviews to investigate the effects of agricultural 
input shocks on Finnish agriculture. In their estimate, a total shock in 
the input of farm chemicals, fertilizers and pesticides could reduce 
yields by 10–40% (crops not specified).

In this Article, we aim to assess the impacts of combined  
agricultural input shocks (or decrease by other reasons) on crop 
yields globally with 5 arcmin resolution (10 km at the equator) and  
map the areas and crops that are particularly vulnerable to the shocks 
or decreased input use levels. We also identify the input shocks that 
would most decrease the yield separately for each crop type. Charac-
terizing high-risk areas and crops will provide crucial information on 
national and global food security in the times of global geopolitical 
turmoil.

We used a random forest machine learning model10 to conduct the 
assessment. The model allowed us to estimate the impact of different 
levels of agricultural input shocks (25%, 50% and 75%) as well as differ-
ent shock combinations (nitrogen (N), phosphorus (P) and potassium 
(K) fertilizer shocks individually, machinery shock, pesticide shock, 
shock in all fertilizers together and shock in all inputs together) on 
agricultural yields of 12 food crops globally (Methods). We controlled 
the impact of climate by dividing the globe to 25 climate bins (see 
example map of climate bins in Extended Data Fig. 1 and thresholds 
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Agricultural input shocks affect yields
The validated model allowed us to estimate the impact of different kinds 
and levels of agricultural input shocks on yields for each crop–climate 
bin combination. The model estimates the change in yield of a shock 
scenario for a given grid cell by screening areas within a climate bin 
(where this grid cell is located) and where input use in the baseline is 
similar to the scenario input use of the target grid cell. The decreased 
yields, after the shocks were applied, indicate that within the climate 
bin in question, the baseline yields were only attainable with original 
input values. Increased yields after scenario shocks mean that in the 
same climate bin, similar or better yields are possible with less com-
mercial agricultural inputs.

As an example of all the applied shock scenarios, the results for 
wheat in climate bin 10 are shown in Fig. 1—being representant of 
overall impacts of shocks on different crops–climate bin combina-
tions (see all results in Agri.Input.Shock -explorer). The areas with 
the highest original yields suffered the most when subjected to the 
shocks, as was the case also for most scenarios in all crops and climate 
bins. If the original yield was smaller, the shock yield stayed the same 
or may have even increased. As expected, the larger input shock 
scenarios decrease the yields more: 75% input shock resulted in the 
lowest shock yields.

For example, for wheat in climate bin 10, shocks in the P rate and 
pesticide do not show large declines in yield, while yields are decreased 
by shocks in the N rate, K rate and machinery as well as a combined 
fertilizer shock and a shock in all inputs (Fig. 1). Similar responses are 
seen in all crops, with the scenarios of largest impact somewhat varying 
between crops and climate bins (Agri.Input.Shock -explorer).

for growing degree days (GDD) and precipitation in Extended Data 
Fig. 2). In addition, we considered soil conditions by adding three soil 
parameters to the model (Methods). Using spatially gridded data-
sets allowed us to model the effects in high resolution and identify 
sub-national differences that are hindered in national-scale analyses. 
Our results reveal the areas where decrease in agricultural input use 
would have the highest hit on yields and thus potentially threatening 
food security and, inversely, where the yields would not necessarily 
be that hardly impacted.

Results
Before applying the developed random forest model to input shock 
scenarios, we estimated the model performance by comparing the 
model predictions of the testing data to the known original yields 
separately for each climate bin and crop (see Methods). For most of 
the crop - climate bin combinations the model performance was good 
(Nash–Sutcliffe efficiency (NSE) 0.65–0.75; 16% of the models) or very 
good (NSE > 0.75; 79% of the models) (Extended Data Fig. 3). We also 
validated our simulated baseline yields (Extended Data Fig. 4) against 
Food and Agriculture Organization of the United Nations Statistics 
(FAOSTAT) reported yields11 with very good agreement (R2 > 0.85 for 
all crops when weighted with production of each country; Supple-
mentary Table 1 and Extended Data Fig. 5). In addition, the validation 
results from a control scenario (where all inputs were set to zero) show 
an appreciable yield and thus further confirm the robustness of the 
model (Extended Data Figs. 6 and 7). More visualizations of model 
performances and behaviours can be viewed in the Agri.Input.Shock 
-explorer (http://193.166.24.46:3838/shock_shiny/).
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Fig. 1 | Impacts of input shocks on wheat yield in a single climate bin. 
Relationship between modelled baseline and scenario yields for each of the 
studied shock scenarios for one crop–climate bin combination (wheat bin 
10).a–g, Results for each shock scenario: N (nitrogen) shock (a); P (phosphorous) 
shock (b); K (potassium) shock (c); machinery shock (d); pesticide shock (e); 

fertilizer shock (f); shock in all inputs (g). The red diagonal line denotes the 1:1 
line where scenario yields would be identical to baseline yields. Points below 
the red line indicate that the agricultural input shock decreased the yields. 
See plots for all crop–climate bin combinations in Agri.Input.Shock -explorer: 
http://193.166.24.46:3838/shock_shiny/.
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When exploring the impacts of the scenario with 50% shock in  
N input geographically, we found that wheat yield decreases were par-
ticularly induced in, for example, Central Europe, parts of North Amer-
ica and some locations in Southern Africa, China and India (Fig. 2a).  
However, a combined shock in all inputs decreased wheat yields more—
and in more locations (Fig. 3l)—than only N-input shock. Crops were 
impacted differently by the input shocks. When analysing the combined 
shock in all inputs, some areas showed decreased yields for multiple 
crops, but there were no areas with declined yields for all crops (Fig. 3).  
The yields of barley, maize, potato and wheat all decreased heavily in 
the western part of the United States. Barley, maize, millet, potato, 
sorghum and soybean yields all decreased in the northern part of 
Argentina, while barley, maize, potato, wheat and to some extent sugar 
beet also saw large yield decreases in Central Europe (particularly in 
France, Germany and the UK). Rice yields in turn decreased heavily in 
Thailand, Vietnam and the southern part of India (Fig. 3g).

Interestingly, we found a large variation in yield response to shock 
between the areas of low agricultural input rates (see Agri.Input.Shock 
-explorer), and in some agricultural areas the shocks increased the 
yields (Extended Data Figs. 8 and 9). These areas—located mostly in 
sub-Saharan Africa and South Asia—might indicate yield gap areas; that 
is, in other parts of the climate bin in question better yields are achieved 
with similar or smaller input (Discussion). The areas also match rela-
tively well with yield gap studies (for example, Mueller et al.12). For 
example, in sub-Saharan Africa synthetic fertilizers are not used in large 
quantities due to high prices. In addition, acidic soil conditions and 
imbalances in N and P fertilizer ratios prevent them from reaching their 
full potential13,14. Best yield results require stoichiometrically balanced 
fertilizers coupled with adequate water supply and soil modification 
using machinery. When an agricultural input shock is modelled in an 
imbalanced system, the results can reflect more balanced conditions 
and thus increased yields. However, this work has not specifically exam-
ined any additional factors or causes contributing to increased yield.

Shock effects by climate bins
To examine the impacts of input shocks in relation to each climate bin, 
scenario results of all grid cells within each climate bin of a crop were 
aggregated, focusing on yield decreases. We found clear differences 
between the climate bins on how the shocks impact on yields: in case 
of maize, for example, climate bins 6, 9, 11, 12 and 13 (corresponding to 
temperate climate) seem to respond heavily to P shock, with bin 5 to K 
shock and bin 3 to machinery shock (Fig. 4). Most climate bins experience 
yield decrease in a larger area when all inputs have a shock, and in many 
climate bins the fertilizer shock effect is somewhat similar to the shock in 
all inputs. At the same time, there are some climate bins, such as 21, that 
do not see a large yield decrease with any shock type. For many crops, 
the shock in pesticide inputs has little effect on yield decrease (Fig. 4).

There are similarities and differences between the crops in their yield 
decrease responses to the different shock scenarios when examined over 
climate bins (see Agri.Input.Shock -explorer). For most crops, the shock 
in all fertilizers results in a decrease in yields rather similar to that caused 
by the shock in all inputs, emphasizing the importance of fertilizers. These 
findings are in line with an existing study by Pradhan et al.15 who studied 
different agricultural management interventions needed to close yield 
gaps and determined that fertilizer application and soil quality manage-
ment were the most important interventions, and pesticides application, 
along with other strategies were less important on a global level.

Over all the 12 crops, there is no clear pattern detected in the 
shock-induced yield decline related to the climate bin variables (Agri.
Input.Shock -explorer). In individual crops, however, some clustering of 
heavily affected bins can be seen: in the case of maize, climate bins 6, 8, 9, 
12, 13 and 14 share relatively close temperature and precipitation condi-
tions and are also most heavily affected by the shock in all inputs (Fig. 4).

Changes in production
To account for varying harvested areas across global croplands, we 
converted the shock scenario results from yields to production volumes 

0−25−50−75−100

N shock P shock
a b

c d
Machinery shock Pesticide shock

Wheat yield change after −50% shock in selected scenarios (%)

Fig. 2 | Wheat yield change after a 50% shock in selected inputs. a–d, Results 
for each input shock scenario: N (nitrogen) shock (a); P (phosphorous) shock (b); 
machinery shock (c); pesticide shock (d). Note: here only the decreases in yields 

are shown, and the agricultural areas where yield might potentially increase 
following a shock are shown in Extended Data Fig. 8. See all shock scenarios for all 
crops in Agri.Input.Shock -explorer: http://193.166.24.46:3838/shock_shiny/.
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by multiplying crop-specific yields (tonnes per hectare (t ha−1)) with 
their harvested area (ha) for each shock scenario. Then we compared 
these with the original production (t), including both yield decreases 
and increases. The shock increase did not have a linear effect on produc-
tion change: for example, in the case of wheat, a 25% shock in all inputs 
decreased global production by 15%, while a 50% shock decreased the 
production by 20% (Fig. 5l).

The crop most affected in global production by a shock in all agri-
cultural inputs is maize, where production declines over 25% with 50% 
shock and nearly 40% with a 75% shock (Fig. 5d). This might be because 
global maize production is highly optimized with the highest use rate 

of synthetic fertilizers of all cereals16 and therefore more susceptible 
to decreases in fertilizer inputs. The largest production decreases by 
shocks in individual agricultural inputs occur in barley, rice and wheat 
by N rate, and in sugar beet by K rate. Despite not showing consider-
able effects on overall yields (Fig. 4 and Agri.Input.Shock -explorer), 
pesticides seem to have a substantial effect on, for example, sugarcane 
production on the global scale.

To assess which food production areas and countries would 
be most impacted by the input shocks, we mapped the cell-wise 
impacts of shock scenarios (Fig. 6 and Agri.Input.Shock -explorer). 
Notable decreases in crop production can be seen in many important 
agricultural regions, such as the United States, Argentina, Western 
Europe and Southern Africa as well as parts of China and Thailand 
(Fig. 6a). Country-wise, the largest relative decreases in produc-
tion (>50% reductions) are experienced in Denmark, Oman, the 
UK, New Zealand and Saudi Arabia (Fig. 6b). Of the five current top  
producers of all the studied 12 crops (Brazil, China, India, Thailand 
and the United States), the United States experienced the largest  
decline in production, −28%. The largest absolute production 
decline occurs as well in the United States, where production 
would fall as much as 140 million tonnes, followed by Brazil with a  
114 million-tonne decline. Many countries in Africa and, for example, 
Finland and the Baltics would suffer relatively little of this kind of 
input shock (Fig. 6b).

Finally, we calculated the change in production for the most 
important export countries of each major crop17–19 after a 50% shock 
in all agricultural inputs (Table 1). The production decreases for the 
major exporting countries are substantial and would likely result in 
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Fig. 3 | Crop yield change across all crops after a 50% shock in all inputs.  
a–l, Results for each crop: barley (a); cassava (b); groundnut (c); maize (d); millet 
(e); potato (f); rice (g); sorghum (h); soybean (i); sugar beet (j); sugarcane (k); 
wheat (l). Note: here only the decreases in yields are shown, and the agricultural 
areas where yield might potentially increase following a shock are shown in 
Extended Data Fig. 9. See all shock scenarios in Agri.Input.Shock -explorer: 
http://193.166.24.46:3838/shock_shiny/.
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food security issues in the countries heavily dependent on imports; 
the Middle East and North African region are dependent on Western 
Europe for wheat, Central America depends on the United States for 
maize and West Africa depends on rice from Thailand17,18. Global food 
security would be further threatened by ensuing food price increases 
and possible export restrictions. More research is needed to fully 
understand how the input shocks would propagate in the intercon-
nected food trade network.

Discussion
The relationships between the use of agricultural inputs and crop 
yields are complex and difficult to assess with a single process-based 
model. To overcome this bottleneck, we developed a machine learning 
model using random forest algorithms that allowed us to predict the 
changes in crop yield in the face of single and combined agricultural 
input shocks. Although some existing studies have also examined the 
effects of agricultural input shocks or reductions, those have been 
much more limited in terms of geographical extent and/or inputs con-
sidered than our study. Our shock scenario of a 25% shock in all inputs 
resulted in decreases of −22%, −3% and −20% in wheat production in 
China, the United States and the EU, respectively, which are rather well 
in line with the findings of Beckman et al.5 who modelled the reduction 
of pesticides by 50% and fertilizers by 20% and found changes of −33%, 
+3% and −33%, respectively.

In a more local study, Jansik et al.9 found that a total shock in the 
input of farm chemicals, fertilizers and pesticides could reduce yields 
by 10–40% (crops not specified). In our scenarios, a 75% shock in all 
inputs reduced the yields of Finnish wheat, barley and potato by a 
maximum of 45%. Jansik et al.9 also conclude that the effects of pesti-
cide shocks would be severe: grain yields could decrease by 30% and 
potato yields by 50% or more. In our study, pesticide shocks had a low 
effect globally, but in our 75% pesticide shock scenarios for Finland, 
barley, potato and wheat yields decreased moderately: 12%, 14% and 
25%, respectively. Due to the finite resources of P, few other national 
or larger-scale studies have estimated the impacts of shock on its 
availability or price increases. For example, O’Hara et al.20 simulated 
using an economic model that −11% and −26% change in application 
rates of phosphate and potash resulted in a 14% reduction in maize 
production. In our somewhat comparable shock scenarios, a 25% P 
shock and a 25% fertilizer shock, maize production in India decreased 
by 4% and 8%, respectively.

Model performance
Most (95%) of the random forest models for crops and climate bins had 
NSE scores above 0.65, and for 79% of the models the NSE scores were 
even above 0.75 (Extended Data Fig. 3), indicating good or very good 
model performance21, respectively. There was, however, considerable 
variation between crop–climate bin combinations, with some perform-
ing better than others (Extended Data Fig. 3; see also uncertainty results 
in Methods and Extended Data Fig. 10). For lower-performing climate 
bins, it is possible that the input data are not diverse enough to produce 
good models or that climate or other factors play a more important 
role than the agricultural inputs we studied. Our NSE values align with 
the results of Jeong et al.22, who apply random forest models to predict 
global wheat yields. They note, however, that their good results may 
be a product of spatial autocorrelation between data points in simi-
lar political units. Ferraciolli et al.23 show that spatial autocorrelation 
indeed increases overfitting in their yield model—that they applied for 
sugarcane—and that it underestimates the error of the model. Similarly 
to Ferraciolli et al.23, we aimed to minimize the effects of overfitting and 
spatial autocorrelation on model evaluation by dividing the training 
and testing data into grids to keep adjacent cells in different groups to 
make sure that the model predictions were truly based on relationships 
in the data (Methods).

Study limitations and way forward
Most of the input and yield data are from the same period, with averages 
around the year 2000 (Supplementary Table 2). We assumed that the 
relationships between the inputs and yield have remained quite similar 
and changes are slow and that the results also apply to the current-day 
situation. Yet another aspect that could have affected the model per-
formances is some details of the model input data: for a wheat climate 
bin with 28,000 observations, there are only 30 unique values for N 
rate or P rate, and furthermore, many of the fertilizer rates are known 
only at subnational or county level12. The low level of details in the data 
could increase spatial autocorrelation, and more detailed data would 
improve our model’s accuracy and prediction power (Methods).

We found that the largest yield decreases were observed for high 
yields, while lower yields tended not to be affected negatively by the 
shocks (Fig. 1). Higher yields likely have a higher dependency on agri-
cultural inputs than lower yields, and the variation of high yields can be 
more readily explained by variation in agricultural input use. This result 
confirms the findings from an earlier study projecting a conversion to 
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organic agriculture with no synthetic fertilizer use and where the cur-
rently high-yielding areas were most affected as well24.

We also found that some yields increased after input shock (Fig. 1 
and Extended Data Figs. 5 and 6). Methodologically, it is important to 
note that instead of indicating an actual yield increase in the specific 
area due to decreasing inputs, this means there is another similar area 
with smaller inputs but a higher yield. In the Results section, we discuss 
whether these indicate yield gap areas. Furthermore, yet another pos-
sible or partial explanation can be found inherently in the random 
forest algorithm; it does not perform as well in the extreme ends or 
beyond the dataset where extrapolation is needed10,25. The model 
cannot, for example, accurately predict smaller yield values than what 
it was trained on. The crop yield and agricultural input data are less 
detailed in the low-yielding areas of the dataset and thus do not allow 
the model to perform so well in these areas. In addition, the long-term 
risks to yields are not captured by the model. For example, a short-term 
shock in synthetic P could be buffered by soil P stocks, thus showing a 
smaller impact in the short term. However, the model does not capture 
possible long-term impacts due to changes in soil P availability. These 
are, however, out of the scope of this study as our main aim was to assess 
the short-term threats of agricultural input shocks and yield decreases, 
and the inclusion of these features was left for future studies.

Finally, including additional agricultural inputs not studied here, 
for example, seeds, could provide further understanding of the impacts 
of potential shocks and trade disturbances. We also acknowledge that 
the flow of agricultural inputs is intimately related to economics and 
trade. From the total production perspective, general equilibrium 
models can efficiently allocate resources and direct investments in 
resource shock mitigation. Yet, the economic analysis was outside 
our focus and thus not included in this study, which concentrated on 

the magnitude of the impacts of shocks, regardless of their cause. One 
idea is to use gravity models of trade to estimate the volume of flows 
of agricultural inputs between places by considering productivity and 
various costs26. Furthermore, the reserve stocks of the agricultural 
inputs that countries keep as a buffer against disturbances in import 
flows can impact the way countries are affected. However, to our knowl-
edge, no such data are available globally, and therefore we could not 
include those in our analysis.

Concluding remarks
We found that the input shocks would hit the high-yielding ‘bread-
baskets’ particularly hard and thus have a considerable impact on 
global food security. Although our results do not reveal any single 
agricultural input as being the most influential in shock yield decreases 
across all crop–climate bin combinations, most of the decrease was 
attributed to shocks in synthetic fertilizers. To increase food security 
and resilience, areas with a high degree of synthetic fertilizer use—and 
particularly those depending on imported fertilizers—combined with 
high potential yield losses due to shocks should seek to replace them 
with more sustainable and local organic fertilizers. Our results can be 
used to evaluate regional food security more comprehensively and, 
together with other information, help to identify areas under risk. All 
in all, agricultural inputs and their availability should be considered 
with more emphasis when constructing a more resilient and sustain-
able global food system.

Methods
Crop yield data
The availability of global gridded crop yield and agricultural input data 
limited the selection of food crops for the analysis. Twelve globally 
important food crops were selected for analysis for which all necessary 
data were found: barley, cassava, groundnut, maize, millet, potato, rice, 
sorghum, soybean, sugar beet, sugarcane and wheat.

Yield data (t ha−1) were sourced from Monfreda et al.27. They rep-
resent the average yields between 1997 and 2003, thus minimizing 
the effect of interannual yield variability. For production calculations, 
harvested area (ha) from the same dataset was used (Supplementary 
Table 2).

Agricultural input data
For the gridded fertilizer data, we used the synthetic fertilizer appli-
cation, including N, P and K fertilizers, in Mueller et al.12. We chose to 
concentrate only on synthetic fertilizers as they are often imported 
from elsewhere and thus more prone to, for example, shocks in trade 
networks. We also included the non-mineral fertilizer layer from the 
EarthStat database (West et al.28) to represent the locally available ferti-
lizers, but this was kept constant in all scenarios. For machinery use, we 
used US Department of Agriculture data of International Agricultural 
Productivity29 per 1,000 ha of cropland having data of agricultural 

Decrease in production after 50% shock in all inputs (%)

0

b

a

−25−50≤−75 Missing

Fig. 6 | Change in total production of the 12 analysed crops after a 50% shock 
in all inputs. a,b, Results on grid cell level (a) and by country (b). Same colour 
scale for both maps. Results for all scenarios are shown in Agri.Input.Shock 
-explorer: http://193.166.24.46:3838/shock_shiny/.

Table 1 | Impact of a 50% shock in all agricultural inputs 
on maize, rice, soybean and wheat production in the most 
important exporting countries17–19

Maize  
(production 
change, %)

Rice  
(production 
change, %)

Soybean 
(production 
change, %)

Wheat 
(production 
change, %)

Argentina −47 India −7 Argentina −22 Australia −1

Brazil −36 Thailand −8 Brazil −13 Canada −29

China −16 USA −27 USA −22 Germany −48

France −32 Vietnam −29 France −39

USA −34 Russia −19

USA −11
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machinery that were aggregated across multiple years to an average 
for each country and transformed into a raster. These data include the 
country-level use of major farm equipment (four-wheel riding tractors, 
two-wheel pedestrian tractors, power harvester–threshers and milking 
machines) presented in total metric horse-power. If the data source 
did not have machinery data for a particular country, the average of 
the continent was used. The machinery data are not crop specific but 
rather proxy measures of the degree of agricultural mechanization 
used in the area. We also included a proxy for how intensively the crop 
production is based on human labour by including national-level data 
on people working in the agriculture sector (FAOSTAT11) per 1,000 ha 
of cropland. This was kept constant in all scenarios.

Pesticide data from Maggi et al.30 consist of application rate data 
of the 20 most used pesticides for selected crops (wheat, maize, rice 
and soybean) as well as different crop classes. For the eight other 
crops, the aggregate class Other was used, as classified by Maggi 
et al.30. The pesticide data were given as high and low estimates, but 
for our analysis, a mean estimate was calculated from these. As it was 
not feasible to add all the 20 pesticides (per crop) individually to 
the model, we divided the pesticides into four groups: Herbicides, 
Insecticides, Fungicides and Others. Furthermore, due to the varying 
application rates of different pesticides within each group, in terms 
of weight per hectare, we needed to rescale the application rates. 
We therefore rescaled each pesticide application rate so that the 
application rate of each grid cell was divided with the 97.5 percentile 
application rate (of a given pesticide) found globally. This resulted 
in a new gridded application rate dataset for each pesticide, the rate 
varying from 0 to 1 (values above 97.5 percentile were given value 1). 
These rescaled pesticide grids within each group were then summed 
together. This resulted in four ‘pesticide’ inputs. This way we were 
able to decrease the amount of pesticide variables to just four, while 
retaining the weight of each individual pesticide and also separating 
the key pesticide groups. Straightforward summing of individual 
pesticide applications rates within each group would have masked 
the active ingredients that are only needed in smaller quantities. For 
future development of the model, a more sophisticated way of dealing 
with the pesticides could be explored.

We included a statistic for irrigation in our model, as irrigated 
crops have higher yields31. Irrigation also enhances the effect of ferti-
lization: the same fertilizer input produces higher yields on irrigated 
crops than on non-irrigated, based on empirical studies by, for exam-
ple, Di Paolo and Rinaldi32 as well as yield modelling results by Mueller 
et al.12. Even in a situation of agricultural input shocks, the infrastruc-
ture for irrigation would remain unchanged and could potentially allevi-
ate the effects of decreased inputs. Crop-specific irrigated and rainfed 
harvested area was sourced from Portmann et al.33, and for the analysis 
we transformed it to the share of harvested area under irrigation (%).

Soil data
We added altogether three soil parameters to the machine learn-
ing model to represent soil quality. We included gridded soil P from 
McDowell et al.34 and soil N from SoilGrid v235 for the topsoil (0–30 cm) 
to represent the natural availability of P and N, respectively, to the 
crops. Furthermore, we used soil organic carbon as it is shown to impact 
yields36 and to be a good indicator for soil degradation37. For that we 
used organic carbon density (hg m−3) from SoilGrid v235 for the topsoil 
(0–30 cm). We aggregated this and soil N from 1 km to 5 arcmin resolu-
tion (using mean value over each aggregated grid cell) and converted 
the unit to t ha−1.

Climate bins
To control for the yield variation caused by climate, we divided each 
crop into climate bins to study the variation in yield caused only by 
the agricultural inputs. For example, crops in Finland are compared to 
crops in similar climate bins in Canada, Russia and China to capture the 

relationships between inputs and yield in their respective climates. The 
climate bin method has been used successfully before in global agri-
cultural production analyses12,38,39. Johnston et al.38 and Licker et al.39 
use GDD and the soil moisture index to construct the climate bins, 
while Mueller et al.12 use GDD and precipitation and divide the bins by 
equal harvested area. We followed the approach by Mueller et al.12 and 
used GDD and precipitation. We created crop-specific climate bins and 
wanted to ensure that each climate bin would have an equal amount of 
data points (that is, grid cells with cropland of a crop in question), and 
therefore could not use any readily available dataset.

To create crop-specific climate bins with equal amounts of data 
points in each bin, we used daily temperature and precipitation over 
21 years (1990–2010) from AgMERRA40. AgMERRA is a climate forcing 
dataset based on the US National Aeronautics and Space Administra-
tion (NASA) Modern-Era Restrospective Analysis for Research and 
Applications (MERRA), but is corrected especially for agricultural 
applications. To estimate the GDD, we used the approach from existing 
studies12,39,41 and summed the temperature over the days with higher 
temperatures than baseline temperature (Supplementary Table 3). 
Furthermore, we used the cut-off temperature (as in Grigorieva et al.42) 
to represent the temperature ceiling that a crop can benefit from; 
that is, if a temperature of a day was over the cut-off temperature, the 
cut-off temperature was used instead. We estimated the GDD for each 
year over the 21 years and used an average GDD over these years for the 
climate bins. For precipitation, we used an average annual cumulative 
precipitation. For each crop area (that is, the area on which a crop is 
grown globally), GDD and precipitation were divided into five quantiles 
to group the crop area into 25 different climate bins (see example for 
wheat in Extended Data Fig. 1). While the existing studies have divided 
the world into 100 climate bins12,38,39, we used only 25 bins to ensure 
enough data points in each climate bin.

Random forest model
Preliminary examination of the agricultural input data revealed that 
within a climate bin, the relationship between the agricultural input 
and crop yields was not linear. Furthermore, some of the agricultural 
inputs correlated with each other (for example, areas with high ferti-
lizer input often also have high pesticide input). A machine learning 
approach was thus selected, as it can handle nonlinear relationships 
as well as predictor interactions and, furthermore, it is able to process 
many different types of dataset with minimal intervention43.

Random forest10 is a machine learning algorithm based on clas-
sification and regression trees44. Here the trees are constructed with 
bootstrapped data, that is, a random subset of the data with resam-
pling. Within each node of the tree, a defined number of randomly 
selected parameters is used to split the node so that the weighted vari-
ance is minimized. Hundreds or thousands of trees are constructed like 
this, making them uncorrelated and preventing overfitting. The final 
output of the random forest regression is the average of all the output 
values of the individual uncorrelated trees in the forest. Random for-
est can be adjusted with different hyperparameter values45. A larger 
number of trees grown (ntree) improves the accuracy of the random 
forest but increases the required computing power. The number of 
parameters used to split the node (mtry) is usually set to p/3 in case of 
regression, where p is the number of variables in the model. The third 
hyperparameter value is nodesize which is the minimum number of 
observations remaining in the tree’s terminal (leaf) node. The default 
value for regression trees is 5. Smaller nodesize values lead to deeper 
trees, because more nodes are needed to reach the small terminal 
nodes. The random forest default values have been shown to produce 
good results46.

Random forest has been successfully used for yield predictions 
with smaller-scale climate, irrigation and satellite data47–51. It has also 
been used in agricultural modelling to help select the important vari-
ables for constructing another type of model52.
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Jeong et al.22 compare the random forest algorithm in global yield 
predictions with multiple linear regression. They find that in global 
wheat yield prediction as well as smaller-scale maize and potato yield 
prediction, random forests outperform multiple linear regression in 
prediction accuracy. However, Jeong et al.22 use mostly meteorologi-
cal and geophysical variables and only one agricultural input (N). In 
predicting yield variability in time and space, Feng et al.53 and Leng 
and Hall43 also find that random forest performs better than regres-
sion or process-based models, but they only use climate data. To our 
knowledge, no random forest analyses have been done with global, 
trade-dependent agricultural input data.

We constructed the random forest models for each of the 12 crops 
and their 25 climate bins. The agricultural input and yield data were 
assigned into their respective climate bins and transformed into data 
frames, where each row consisted of a 5 arcmin grid cell and all its 
agricultural input and yield data.

Random forest regression was then performed with R package 
randomForest (4.7-1.1) (ref. 54) on each climate bin and crop individu-
ally, using crop yield as a dependent variable and agricultural inputs 
with soil organic carbon as independent variables. To minimize the 
effects of overfitting and spatial autocorrelation in the evaluation 
of the models, the data in each climate bin were divided randomly 
between training and testing data. One degree (60 arcmin) grid was 
imposed over the 5 arcmin resolution data to divide it into square sets 
of 12 × 12 grid cells. Of these sets 75% were used for training and 25% for 
testing, thus limiting the number of consecutive 5 arcmin cells in each 
training–testing iteration.

The training data were used to construct the forest with default 
hyperparameter values (1,000 trees, a minimum of 5 terminal nodes 
and using 2 parameters to split the nodes). Default values were used 
for all forests for all crops, as preliminary testing with hyperparameter 
tuning showed little or no improvement to model performances, and 
the default values have been shown to produce good results46.

Agricultural input shock scenario setting
The constructed models allowed us to predict the effect of different 
agricultural input shock scenarios on crop yields. We developed the 
following scenarios: individual input shocks (N shock, P shock, K shock, 
machinery shock, pesticide shock), shock in all fertilizers and shock in 
all inputs. Three degrees of shock severity were used for each scenario: 
25%, 50% and 75% decreases in inputs including in a scenario.

For each climate bin and crop combination, forest construction 
and scenario prediction were iterated 25 times with results saved  
for each iteration. We were thus able to calculate prediction  
variances between iterations, improving the estimation of model 
stability43. The scenario results were compared against the baseline 
model run.

In our study, random forest regression predicts the shock scenario 
yields by ‘selecting’ observations in the same climate bin where input 
use is in the baseline similar to scenario use. Decreased scenario shock 
yields indicate that within the climate bin in question, the baseline 
yields were only attainable with original input values. Increased yields 
after scenario shocks mean that in the same climate bin, similar or 
better yields are possible with less commercial agricultural inputs. It 
should also be noted that the model cannot take into account potential 
other effects of or adaptations on the shocks, such as reallocation of 
crops or labour.

All analyses and calculations were performed using R software 
version 4.0.455 using R Studio. The code is available in GitHub: https://
github.com/ahvoa/shock_pub. All the raster files from the scenario 
results can be accessed in the Zenodo data repository (https://doi.
org/10.5281/zenodo.8381197). Due to the large amount of data gener-
ated in the analyses, Agri.Input.Shock -explorer using R Shiny app was 
created to view and discuss the results. The Agri.Input.Shock -explorer 
is available at http://193.166.24.46:3838/shock_shiny/. The code for 

the Agri.Input.Shock -explorer is available for local installation at 
the GitHub repository mentioned above, in case the above link stops 
working at some stage.

Model performance and validation
Model performance was estimated by comparing the model pre-
dictions of the testing data to the known original yields using root 
mean square error (r.m.s.e., see Agri.Input.Shock -explorer; and NSE, 
Extended Data Fig. 3). For most of the crops and climate bins, the NSE 
scores are above 0.65 (Extended Data Fig. 3), indicating that the models 
have good (NSE > 0.65) or very good (NSE > 0.75) simulation results 
and predicting power21. The scores for sugar beet and barley seem to 
be especially high, while for cassava the climate bins with high pre-
cipitation and groundnut climate bins with low GDD have relatively 
poor scores. Scenario predictions from these poorly scored climate 
bins should be examined with caution. More visualizations of model 
performances and behaviours can be viewed in the Agri.Input.Shock 
-explorer (http://193.166.24.46:3838/shock_shiny/).

Furthermore, we validated the mean country-level yields of the 
baseline runs against the reported yields in FAOSTAT for the years 
1997–200311 weighted with modelled production. The comparison 
showed that the baseline yields from the model are mostly very well in 
line with the reported yields (R2 > 0.8 for all the crops; Supplementary 
Table 1 and Extended Data Fig. 5). The modelled yields for the baseline 
are mapped in Extended Data Fig. 4.

In addition, we validated the model performance by setting a 
control scenario where all the inputs were set to zero. The results of 
this control scenario did not show zero yields but instead an appreci-
able yield confirming the robustness of the model (Extended Data 
Figs. 6 and 7).

Uncertainty
A full-scale uncertainty analysis could not be conducted for a lack of 
uncertainty measures in most datasets used in our work and capability 
of the methods deployed here to account for other sources of uncer-
tainty. However, to assess the uncertainty related to the model inputs, 
for each crop and climate bin we calculated the model outputs for the 
baseline model run 25 times, while randomly sampling the data that go 
into the training and testing sets. This approach allowed us to quantify 
the effects that the variability in model inputs have on the modelled 
crop yields. We then calculated the coefficient of variance (c.v.) of the 
predicted crop yields for each grid cell to understand where their vari-
ability, and hence the uncertainty, is the largest.

The analysis shows that for most of the global crop-growing areas, 
the uncertainty is relatively low, as the c.v. of the crop yield predictions 
remains below 10% (Extended Data Fig. 10). This means that the stand-
ard deviation of the yield predictions is less than 10% of the average 
prediction. Relatively large variations are found, for example, in the 
eastern coast of Africa (sorghum), India (millet) and Southeast Asia 
(sugarcane), while Europe generally shows relatively low variability 
(Extended Data Fig. 10).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All the input data are openly available from the sources mentioned 
in Methods. All the output raster files from the scenario results 
can be accessed in the data repository: https://doi.org/10.5281/
zenodo.8381197.

Code availability
The analysis codes are available in GitHub: https://github.com/ahvoa/
shock_pub.
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Extended Data Fig. 1 | Climate bins for wheat. Each climate bin represents an 
area with similar Growing Degree Day (GDD) and precipitation characteristics 
and has roughly similar amount of grid cells. Spatial resolution is 5 arc-min.  

The GDD and precipitation thresholds are shown in Extended Data Fig. 2.  
See climate bins for all crops at Agri.Input.Shock -explorer: http://193.166. 
24.46:3838/shock_shiny/.
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Extended Data Fig. 2 | Growing degree day and precipitation thresholds for the climate bins of wheat. See map of the climate bins in Extended Data Fig. 1.
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Extended Data Fig. 3 | Model performance at grid cell level across climate 
bins. Results are shown for each crop separately: a. barley, b. cassava,  
c. groundnut, d. maize, e. millet, f. potato, g. rice, h. sorghum, i. soybean, j. sugar 
beet, k. sugarcane, and l. wheat. Model performance estimated by comparing  
the model predictions of the testing data to the known original yields using  

Nash-Sutcliffe model efficiency (NSE). Scores are shown for all crops and climate 
bins (n = 25). A score above 0.5 denotes a satisfactory model, above 0.65 a good 
model and above 0.75 a very good model 21. See climate bin for wheat, as an 
example, in Extended Data Fig. 1.
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Extended Data Fig. 4 | Average country level modelled baseline crop yield (t/ha) for the 12 crops included in the study. Results are shown for each crop separately: 
a. barley, b. cassava, c. groundnut, d. maize, e. millet, f. potato, g. rice, h. sorghum, i. soybean, j. sugar beet, k. sugarcane, and l. wheat.

http://www.nature.com/natfood
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Extended Data Fig. 5 | Model performance at country level. Results are shown 
for each crop separately: a. barley, b. cassava, c. groundnut, d. maize, e. millet,  
f. potato, g. rice, h. sorghum, i. soybean, j. sugar beet, k. sugarcane, and l. wheat. 
Comparison of the modelled mean country level yields (y-axis) with the reported 

yields from FAOSTAT 11 (x-axis), averaged over years 1997-2013. Bubble size 
represents the country level modelled production of the crop. See summary 
statistics in Supplementary Table 1.

http://www.nature.com/natfood
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Extended Data Fig. 6 | Average country level modelled crop yield (t/ha) with zero agricultural input for the 12 crops included in the study. Results are shown for 
each crop separately: a. barley, b. cassava, c. groundnut, d. maize, e. millet, f. potato, g. rice, h. sorghum, i. soybean, j. sugar beet, k. sugarcane, and l. wheat.

http://www.nature.com/natfood
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Extended Data Fig. 7 | Ratio between crop yield from the modelled scenario 
with zero agricultural input and the modelled baseline scenario. Results are 
shown for each crop separately: a. barley, b. cassava, c. groundnut, d. maize,  
e. millet, f. potato, g. rice, h. sorghum, i. soybean, j. sugar beet, k. sugarcane, and l. 

wheat. The smaller the ratio, the more the yields decreased in zero input scenario 
compared to the baseline. In case of ration over 100%, the yields increased (see 
Discussion in the main text).

http://www.nature.com/natfood
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Extended Data Fig. 8 | Wheat yield change after a 50% shock in selected inputs. Results are shown for each input shock scenario separately: a. N (nitrogen) shock, b. 
P (phosphorous) shock, c. machinery shock, and d. pesticide shock. Here both decreased and increased yields are shown, otherwise the figure is similar to Fig. 2.
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Extended Data Fig. 9 | Crop yield changes across all crops after a 50% shock in all inputs. Results are shown for each crop separately: a. barley, b. cassava,  
c. groundnut, d. maize, e. millet, f. potato, g. rice, h. sorghum, i. soybean, j. sugar beet, k. sugarcane, and l. wheat. Here both decreased and increased yields are shown, 
otherwise the figure is similar to Fig. 3.
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Extended Data Fig. 10 | Coefficient of variance (c.v.) of the crop yield 
predictions for the baseline model runs. Results are shown for each crop 
separately: a. barley, b. cassava, c. groundnut, d. maize, e. millet, f. potato,  

g. rice, h. sorghum, i. soybean, j. sugar beet, k. sugarcane, and l. wheat. The c.v.s 
are calculated across the 25 baseline model runs (see Methods) for each location 
(grid cell) where the crop in question is grown.
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
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The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
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Only common tests should be described solely by name; describe more complex techniques in the Methods section.
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A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
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AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection no software was used

Data analysis The analyses were conducted with the R programming language (version 4.2.0) using the RStudio integrated development environment 
(1.1.456). A custom random forest algorithm (Breiman, 2001) was used to analyze the data (randomForest 4.7-1.1). The analysis codes are 
available in GitHub https://github.com/ahvoa/shock_pub.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
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- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

All the input data are openly available from the sources mentioned in Methods. All the output raster files from the scenario results can be accessed in the data 
repository: https://doi.org/10.5281/zenodo.8381197. The analysis codes are available in GitHub: https://github.com/ahvoa/shock_pub.
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Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender We did not have human research participants

Population characteristics We did not have human research participants

Recruitment We did not have human research participants

Ethics oversight We did not have human research participants

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.
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For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description In this study, we modelled the effects of agricultural input shocks on global crop production. We utilized global gridded data on crop 
yields, fertilisers, machinery and pesticides using a random forest machine learning algorithm.

Research sample Twelve globally important food crops were selected for analysis for which all necessary data was found: barley, cassava, groundnut, 
maize, millet, potato, rice, sorghum, soybean, sugar beet, sugarcane and wheat. The data collected for each crop include: yield, 
machinery, fertilizer application rate, pesticide application rate, share of harvested area under irrigation, as well as average 
precipitation and temperature of the investigated areas.

Sampling strategy The availability of global gridded crop yield and agricultural input data limited the selection of food crops for the analysis. The 
resolution of the global data were 5 arc-minutes for all data, but the exact sample size varied across crops depending on the extent 
of their cultivation.

Data collection Aino Ahvo collected the data from openly available online resources.

Timing and spatial scale The data was downloaded during 2021-2023. All data utilized were of global extent.

Data exclusions No data were excluded from the analysis.

Reproducibility All the processing codes to reproduce the results are available at https://github.com/ahvoa/shock_pub

Randomization When evaluating the quality of the model outputs, to minimise any effects of overfitting and spatial autocorrelation, the data in each 
climatological region were divided into 60 arc-min grids, which were randomly assigned to training and testing samples (75% and 
25%, respectively).

Blinding Blinding was not relevant because the study was built upon openly available data.

Did the study involve field work? Yes No

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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