Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Agricultural diversification promotes sustainable and resilient global rice production

Abstract

Rice is a staple food for half of the human population, but the effects of diversification on yields, economy, biodiversity and ecosystem services have not been synthesized. Here we quantify diversification effects on environmental and socio-economic aspects of global rice production. We performed a second-order meta-analysis based on 25 first-order meta-analyses covering four decades of research, showing that diversification can maintain soil fertility, nutrient cycling, carbon sequestration and yield. We used three individual first-order meta-analyses based on 39 articles to close major research gaps on the effects of diversification on economy, biodiversity and pest control, showing that agricultural diversification can increase biodiversity by 40%, improve economy by 26% and reduce crop damage by 31%. Trade-off analysis showed that agricultural diversification in rice production promotes win–win scenarios between yield and other ecosystem services in 81% of all cases. Knowledge gaps remain in understanding the spatial and temporal effects of specific diversification practices and trade-offs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Vote counting shows that agricultural diversification practices generally have a positive effect on ecosystem services and yields.
Fig. 2: Effects of agricultural diversification on socio-economic and environmental variables in global rice production.
Fig. 3: Agricultural diversification effects on crop yield and at least one other ecosystem service.
Fig. 4: Effects of agricultural diversification on economy, biodiversity and pest control.

Similar content being viewed by others

Data availability

All data used in this study are publicly available at the Web of Science (www.webofscience.com) and the China National Knowledge Infrastructure database (https://www.cnki.net). The dataset54 for this article is available at https://doi.org/10.6084/m9.figshare.22915232. Source data are provided with this paper.

Code availability

All analyses were done in R (v.4.2.0) with the package metafor (v.3.4-0) for the meta-analyses. The R code is available from the corresponding author upon reasonable request.

References

  1. Godfray, H. C. J. et al. Food security: the challenge of feeding 9 billion people. Science 327, 812–818 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. He, X. et al. Integrating agricultural diversification in China’s major policies. Trends Ecol. Evol. 37, 819–822 (2022).

    Article  PubMed  Google Scholar 

  3. von Braun, J., Afsana, K., Fresco, L. O. & Hassan, M. Food systems: seven priorities to end hunger and protect the planet. Nature 597, 28–30 (2021).

    Article  ADS  Google Scholar 

  4. Wanger, T. C. et al. Integrating agroecological production in a robust post-2020 Global Biodiversity Framework. Nat. Ecol. Evol. 4, 1150–1152 (2020).

    Article  PubMed  Google Scholar 

  5. Kremen, C., Iles, A. & Bacon, C. Diversified farming systems: an agroecological, systems-based alternative to modern industrial agriculture. Ecol. Soc. 17, 44 (2012).

    Article  Google Scholar 

  6. Tamburini, G. et al. Agricultural diversification promotes multiple ecosystem services without compromising yield. Sci. Adv. 6, eaba1715 (2020).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  7. Rosa-Schleich, J., Loos, J., Mußhoff, O. & Tscharntke, T. Ecological–economic trade-offs of diversified farming systems—a review. Ecol. Econ. 160, 251–263 (2019).

    Article  Google Scholar 

  8. GRiSP Global Rice Science Partnership, Rice Almanac (International Rice Research Institute, 2013).

  9. A Regional Rice Strategy for Sustainable Food Security in Asia and the Pacific (FAO, 2014); https://www.fao.org/3/i3643e/i3643e00.htm

  10. Zhu, Y. et al. Genetic diversity and disease control in rice. Nature 406, 718–722 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Xie, J. et al. Ecological mechanisms underlying the sustainability of the agricultural heritage rice–fish coculture system. Proc. Natl Acad. Sci. USA 108, E1381–E1387 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gurr, G. M. et al. Multi-country evidence that crop diversification promotes ecological intensification of agriculture. Nat. Plants 2, 16014 (2016).

    Article  PubMed  Google Scholar 

  13. Sun, G. et al. Ecological rice-cropping systems mitigate global warming—a meta-analysis. Sci. Total Environ. 789, 147900 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Zhu, P. et al. Ecological engineering for rice pest suppression in China: a review. Agron. Sustain. Dev. 42, 69 (2022).

    Article  MathSciNet  CAS  Google Scholar 

  15. Liu, Y., Duan, M. & Yu, Z. Agricultural landscapes and biodiversity in China. Agric. Ecosyst. Environ. 166, 46–54 (2013).

    Article  Google Scholar 

  16. Kumar, R. et al. Crop rotation and tillage management options for sustainable intensification of rice-fallow agro-ecosystem in eastern India. Sci. Rep. 10, 11146 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang, L. et al. Integrating cover crops with chicken grazing to improve soil nitrogen in rice fields and increase economic output. Sci. Total Environ. 713, 135218 (2019).

    Article  ADS  PubMed  Google Scholar 

  18. Kant, S. R., Singh, B. J., Triyugi, N., Yeshwant, S. & Kalyan, S. Integrated assessment of diversification of rice–wheat cropping system in Indo-Gangetic plain. Arch. Agron. Soil Sci. 57, 489–506 (2011).

    Article  Google Scholar 

  19. Dainese, M. et al. A global synthesis reveals biodiversity-mediated benefits for crop production. Sci. Adv. 5, aax0121 (2019).

    Article  ADS  Google Scholar 

  20. Singh, P., Benbi, D. K. & Verma, G. Nutrient management impacts on nutrient use efficiency and energy, carbon, and net ecosystem economic budget of a rice–wheat cropping system in northwestern India. J. Soil Sci. Plant Nutr. 21, 559–577 (2021).

    Article  CAS  Google Scholar 

  21. Sun, L., Deng, J., Fan, C., Li, J. & Liu, Y. Combined effects of nitrogen fertilizer and biochar on greenhouse gas emissions and net ecosystem economic budget from a coastal saline rice field in southeastern China. Environ. Sci. Pollut. Res. 27, 17013–17022 (2020).

    Article  CAS  Google Scholar 

  22. Sparta, A. et al. Potential economic and nutritional benefits of complex rice systems for small-scale farmers in West Sumatra. Indones. Biol. Agric. Hortic. 37, 40–54 (2020).

    Article  Google Scholar 

  23. Qian, P. et al. Effects of integrated rice–duck farming on weed pressure, herbivore–predator interactions and economic benefits. Biocontrol Sci. Technol. 32, 715–730 (2022).

    Article  Google Scholar 

  24. Zhao, X. et al. Management-induced greenhouse gases emission mitigation in global rice production. Sci. Total Environ. 649, 1299–1306 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Fan, F. et al. Cover crops promote primary crop yield in China: a meta-regression of factors affecting yield gain. Field Crops Res. 271, 108237 (2021).

    Article  Google Scholar 

  26. Chen, Y., Camps-Arbestain, M., Shen, Q., Singh, B. & Cayuela, M. L. The long-term role of organic amendments in building soil nutrient fertility: a meta-analysis and review. Nutr. Cycl. Agroecosyst. 111, 103–125 (2018).

    Article  Google Scholar 

  27. Ali, M. P., Bari, M. N. & Haque, S. S. Establishing next-generation pest control services in rice fields: eco-agriculture. Sci. Rep. 9, 10180 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ibrahim, E. & Mugiasih, A. Diversity of pests and natural enemies in rice field agroecosystem with ecological engineering and without ecological engineering. IOP Conf. Ser. Earth Environ Sci. 484, 012108 (2020).

    Article  Google Scholar 

  29. Brotodjojo, R. R. R., Arochman, T. & Solichah, C. Effect of flowering plants on population dynamics of rice stem borers and their natural enemies. IOP Conf. Ser.: Earth Environ. Sci. 250, 012015 (2019).

    Article  Google Scholar 

  30. Wang, Y. et al. Does continuous straw returning keep China farmland soil organic carbon continued increase? A meta-analysis. J. Environ. Manage. 288, 112391 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Liu, P. et al. Effect of straw retention on crop yield, soil properties, water use efficiency and greenhouse gas emission in China: a meta-analysis. Int. J. Plant Prod. 13, 347–367 (2019).

    Article  Google Scholar 

  32. Wu, Z., Zhang, X., Dong, Y., Li, B. & Xiong, Z. Biochar amendment reduced greenhouse gas intensities in the rice–wheat rotation system: six-year field observation and meta-analysis. Agric. For. Meteorol. 278, 107625 (2019).

    Article  ADS  Google Scholar 

  33. Harbo, L. S., Schulz, G., Heinemann, H., Dechow, R. & Poeplau, C. Flower strips as a carbon sequestration measure in temperate croplands. Plant Soil 482, 647–663 (2022).

    Article  Google Scholar 

  34. Qian, P. et al. Diversified bund vegetation coupled with flowering plants enhances predator population and early-season pest control. Environ. Entomol. 50, 842–851 (2021).

    Article  PubMed  Google Scholar 

  35. Shcherbak, I., Millar, N. & Philip Robertson, G. Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proc. Natl Acad. Sci. USA 111, 9199–9204 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhu, P., Lu, Z., Chen, G. & Heong, K. L. in Integrative Biological Control: Ecostacking for Enhanced Ecosystem Services (eds Gao, Y. et al.) 73–84 (Springer International, 2020); https://doi.org/10.1007/978-3-030-44838-7_5

  37. Li, L. et al. A farmland biodiversity strategy is needed for China. Nat. Ecol. Evol. 4, 772–774 (2020).

    Article  PubMed  Google Scholar 

  38. Winter, S. et al. Effects of vegetation management intensity on biodiversity and ecosystem services in vineyards: a meta-analysis. J. Appl. Ecol. 55, 2484–2495 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ahmed, N., Zander, K. K. & Garnett, S. T. Socioeconomic aspects of rice–fish farming in Bangladesh: opportunities, challenges and production efficiency. Aust. J. Agric. Resour. Econ. 55, 199–219 (2011).

    Article  Google Scholar 

  40. Dawe, D., Pandey, S. & Nelson, A. Emerging trends and spatial patterns of rice production in Rice in the Global Economy: Strategic Research and Policy Issues for Food Security (eds Pandey, S. et al.) 15–35 (International Rice Research Institute, 2010).

  41. Pfiffner, L. et al. Design, implementation and management of perennial flower strips to promote functional agrobiodiversity in organic apple orchards: a pan-European study. Agric. Ecosyst. Environ. 278, 61–71 (2019).

    Article  Google Scholar 

  42. Hufnagel, J., Reckling, M. & Ewert, F. Diverse approaches to crop diversification in agricultural research: a review. Agron. Sustain. Dev. 40, 14 (2020).

    Article  Google Scholar 

  43. Hegwood, M., Langendorf, R. E. & Burgess, M. G. Why win–wins are rare in complex environmental management. Nat. Sustain. 5, 674–680 (2022).

    Article  Google Scholar 

  44. Tscharntke, T. et al. Beyond organic farming - harnessing biodiversity-friendly landscapes. Trends Ecol. Evol. 36, 919–930 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Estrada-Carmona, N., Sánchez, A. C., Remans, R. & Jones, S. K. Complex agricultural landscapes host more biodiversity than simple ones: a global meta-analysis. Proc. Natl Acad. Sci. USA 119, e2203385119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ruckelshaus, M. H. et al. The IPBES Global Assessment: pathways to action. Trends Ecol. Evol. 35, 407–414 (2020).

    Article  PubMed  Google Scholar 

  47. Zhang, W. et al. Closing yield gaps in China by empowering smallholder farmers. Nature 537, 671–674 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Agroecology Coalition (Agroecology Coalition); accessed 20 August 2022, https://agroecology-coalition.org/

  49. Kiran Kumara, T. M., Kandpal, A. & Pal, S. A meta-analysis of economic and environmental benefits of conservation agriculture in South Asia. J. Environ. Manage. 269, 110773 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw 36, 1–48 (2010).

    Article  Google Scholar 

  51. Borenstein, M., Hedges, L. V., Higgins, J. P. T. & Rothstein, H. R. in Introduction to Meta-analysis 21–32 (John Wiley & Sons, 2009); https://doi.org/10.1002/9780470743386.ch4

  52. R Core Team. R: A Language and Environment for Statistical Computing v.4.2.0 (R Foundation for Statistical Computing, 2022).

  53. Wickham, H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. ISBN 978-3-319-24277-4, https://ggplot2.tidyverse.org (2016).

  54. He, X. et al. Agricultural diversification promotes sustainable and resilient global rice production. Figshare https://doi.org/10.6084/m9.figshare.22915232 (2023).

Download references

Acknowledgements

We thank collaborators from China Rice Network for discussions on the study conceptualization, data collection and analysis. We thank P. Zhao (Department of Health and Environmental Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, China) for helping with the figure visualization. We thank F. Guo (PhD student, Westlake University) for helping with ASReview during the paper selection process. T.C.W. was funded by a Westlake University start-up fund. P.B. was supported by the Hungarian National Research and Development and Innovation Office (NKFIH KKP 133839).

Author information

Authors and Affiliations

Authors

Contributions

X.H. and T.C.W. conceptualized and designed the study and wrote the original draft. X.H., T.C.W. and S.G. collected the data. X.H., P.B. and T.C.W. developed the methodology and performed the analyses and the visualization. T.C.W. secured the funding and supervised the project. X.H., T.C.W., P.B., Y.Z., W.Z., G.W., Z.L., Y.B., Z. Zhu, J.S., Z. Zhang, Z.Q., Z.P., M.M., J.L. and H.C. reviewed and edited the paper.

Corresponding authors

Correspondence to Xueqing He or Thomas Cherico Wanger.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Food thanks Jay Ram Lamichhane, Yang Zhou, David Edwards and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text 1–4, Figs. 1–12, Tables 1–19 and references.

Reporting Summary

Supplementary Data 1

Reference list for the vote counting, second-order meta-analysis and first-order meta-analysis.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Batáry, P., Zou, Y. et al. Agricultural diversification promotes sustainable and resilient global rice production. Nat Food 4, 788–796 (2023). https://doi.org/10.1038/s43016-023-00836-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43016-023-00836-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing