Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Sustainable irrigation and climate feedbacks

Abstract

Agricultural irrigation induces greenhouse gas emissions directly from soils or indirectly through the use of energy or construction of dams and irrigation infrastructure, while climate change affects irrigation demand, water availability and the greenhouse gas intensity of irrigation energy. Here, we present a scoping review to elaborate on these irrigation–climate linkages by synthesizing knowledge across different fields, emphasizing the growing role climate change may have in driving future irrigation expansion and reinforcing some of the positive feedbacks. This Review underscores the urgent need to promote and adopt sustainable irrigation, especially in regions dominated by strong, positive feedbacks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustration of the climate impacts of irrigation.
Fig. 2: Conceptual models of climate–irrigation feedbacks.
Fig. 3: Examples of floating photovoltaics.

Rebecca Hernandez (a); iStockphoto.com/Sjo (b)

Similar content being viewed by others

References

  1. Wang, X. et al. Global irrigation contribution to wheat and maize yield. Nat. Commun. 12, 1235 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Siebert, S. & Döll, P. Quantifying blue and green virtual water contents in global crop production as well as potential production losses without irrigation. J. Hydrol. 384, 198–217 (2010).

    Article  ADS  Google Scholar 

  3. Berrang-Ford, L. et al. A systematic global stocktake of evidence on human adaptation to climate change. Nat. Clim. Change 11, 989–1000 (2021).

    Article  ADS  Google Scholar 

  4. Mayanja, M. N., Rubaire-Akiiki, C., Morton, J. & Kabasa, J. D. Pastoral community coping and adaptation strategies to manage household food insecurity consequent to climatic hazards in the cattle corridor of Uganda. Clim. Dev. 12, 110–119 (2020).

    Article  Google Scholar 

  5. Rajan, A., Ghosh, K. & Shah, A. Carbon footprint of India’s groundwater irrigation. Carbon Manag. 11, 265–280 (2020).

    Article  CAS  Google Scholar 

  6. Siyal, A. W., Gerbens-Leenes, P. W. & Nonhebel, S. Energy and carbon footprints for irrigation water in the Lower Indus Basin in Pakistan, comparing water supply by gravity fed canal networks and groundwater pumping. J. Clean. Prod. 286, 125489 (2021).

    Article  CAS  Google Scholar 

  7. Zou, X. et al. Greenhouse gas emissions from agricultural irrigation in China. Mitig. Adapt. Strateg. Glob. Change 20, 295–315 (2015).

    Article  Google Scholar 

  8. Trost, B. et al. Irrigation, soil organic carbon and N2O emissions. A review. Agron. Sustain. Dev. 33, 733–749 (2013).

    Article  CAS  Google Scholar 

  9. Greenhouse Gases from Reservoirs Caused by Biogeochemical Processes (World Bank, 2017).

  10. Mueller, N. D. et al. Cooling of US Midwest summer temperature extremes from cropland intensification. Nat. Clim. Change 6, 317–322 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  11. Burney, J. A., Davis, S. J. & Lobell, D. B. Greenhouse gas mitigation by agricultural intensification. Proc. Natl Acad. Sci. USA 107, 12052–12057 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hong, C. et al. Global and regional drivers of land-use emissions in 1961–2017. Nature 589, 554–561 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Schewe, J. et al. State-of-the-art global models underestimate impacts from climate extremes. Nat. Commun. 10, 1005 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  14. Diffenbaugh, N. S. Verification of extreme event attribution: using out-of-sample observations to assess changes in probabilities of unprecedented events. Sci. Adv. 6, eaay2368 (2020).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  15. D’Odorico, P. et al. The global food–energy–water nexus. Rev. Geophys. 56, 456–531 (2018).

    Article  ADS  Google Scholar 

  16. Siebert, S. et al. Groundwater use for irrigation – a global inventory. Hydrol. Earth Syst. Sci. 14, 1863–1880 (2010).

    Article  ADS  Google Scholar 

  17. Li, X., Liu, J., Zheng, C., Han, G. & Hoff, H. Energy for water utilization in China and policy implications for integrated planning. Int. J. Water Resour. Dev. 32, 477–494 (2016).

    Article  CAS  Google Scholar 

  18. Shumilova, O., Tockner, K., Thieme, M., Koska, A. & Zarfl, C. Global water transfer megaprojects: a potential solution for the water–food–energy nexus? Front. Environ. Sci. 6, 150 (2018).

    Article  Google Scholar 

  19. Zhang, B. et al. Methane emissions from global rice fields: magnitude, spatiotemporal patterns, and environmental controls. Glob. Biogeochem. Cycles 30, 1246–1263 (2016).

    Article  ADS  CAS  Google Scholar 

  20. McGill, B. M., Hamilton, S. K., Millar, N. & Robertson, G. P. The greenhouse gas cost of agricultural intensification with groundwater irrigation in a Midwest U.S. row cropping system. Glob. Change Biol. 24, 5948–5960 (2018).

    Article  ADS  Google Scholar 

  21. Li, Y., Wang, Y.-G., Houghton, R. A. & Tang, L.-S. Hidden carbon sink beneath desert. Geophys. Res. Lett. 42, 5880–5887 (2015).

    Article  ADS  CAS  Google Scholar 

  22. Denef, K., Stewart, C. E., Brenner, J. & Paustian, K. Does long-term center-pivot irrigation increase soil carbon stocks in semi-arid agro-ecosystems? Geoderma 145, 121–129 (2008).

    Article  ADS  CAS  Google Scholar 

  23. Biemans, H. et al. Impact of reservoirs on river discharge and irrigation water supply during the 20th century. Water Resour. Res. 47, W03509 (2011).

    Article  ADS  Google Scholar 

  24. Zeng, R., Cai, X., Ringler, C. & Zhu, T. Hydropower versus irrigation—an analysis of global patterns. Environ. Res. Lett. 12, 034006 (2017).

    Article  ADS  Google Scholar 

  25. Linkhorst, A. et al. Comparing methane ebullition variability across space and time in a Brazilian reservoir. Limnol. Oceanogr. 65, 1623–1634 (2020).

    Article  ADS  CAS  Google Scholar 

  26. Aguilera, E. et al. Methane emissions from artificial waterbodies dominate the carbon footprint of irrigation: a study of transitions in the food–energy–water–climate nexus (Spain, 1900–2014). Environ. Sci. Technol. 53, 5091–5101 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Flecker, A. S. et al. Reducing adverse impacts of Amazon hydropower expansion. Science 375, 753–760 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Lesk, C. et al. Compound heat and moisture extreme impacts on global crop yields under climate change. Nat. Rev. Earth Environ. 3, 872–889 (2022).

    Article  ADS  Google Scholar 

  29. Cook, B. I., Shukla, S. P., Puma, M. J. & Nazarenko, L. S. Irrigation as an historical climate forcing. Clim. Dyn. 44, 1715–1730 (2015).

    Article  Google Scholar 

  30. Li, H., Lo, M.-H., Ryu, D., Peel, M. & Zhang, Y. Possible increase of air temperature by irrigation. Geophys. Res. Lett. 49, e2022GL100427 (2022).

    Article  ADS  Google Scholar 

  31. Ambika, A. K. & Mishra, V. Observational evidence of irrigation influence on vegetation health and land surface temperature in India. Geophys. Res. Lett. 46, 13441–13451 (2019).

    Article  ADS  Google Scholar 

  32. Bonfils, C. & Lobell, D. Empirical evidence for a recent slowdown in irrigation-induced cooling. Proc. Natl Acad. Sci. USA 104, 13582–13587 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Luan, X. & Vico, G. Canopy temperature and heat stress are increased by compound high air temperature and water stress and reduced by irrigation – a modeling analysis. Hydrol. Earth Syst. Sci. 25, 1411–1423 (2021).

    Article  ADS  CAS  Google Scholar 

  34. Chen, X. & Jeong, S.-J. Irrigation enhances local warming with greater nocturnal warming effects than daytime cooling effects. Environ. Res. Lett. 13, 024005 (2018).

    Article  ADS  Google Scholar 

  35. te Wierik, S. A., Cammeraat, E. L. H., Gupta, J. & Artzy-Randrup, Y. A. Reviewing the impact of land use and land-use change on moisture recycling and precipitation patterns. Water Resour. Res. 57, e2020WR029234 (2021).

    Article  ADS  Google Scholar 

  36. Wang-Erlandsson, L. et al. Remote land use impacts on river flows through atmospheric teleconnections. Hydrol. Earth Syst. Sci. 22, 4311–4328 (2018).

    Article  ADS  Google Scholar 

  37. Kang, S. & Eltahir, E. A. B. North China Plain threatened by deadly heatwaves due to climate change and irrigation. Nat. Commun. 9, 2894 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  38. Krakauer, N. Y., Cook, B. I. & Puma, M. J. Effect of irrigation on humid heat extremes. Environ. Res. Lett. 15, 094010 (2020).

    Article  ADS  Google Scholar 

  39. Mishra, V. et al. Moist heat stress extremes in India enhanced by irrigation. Nat. Geosci. 13, 722–728 (2020).

    Article  ADS  CAS  Google Scholar 

  40. Ting, M. et al. Contrasting impacts of dry versus humid heat on US corn and soybean yields. Sci. Rep. 13, 710 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li, Y. et al. Quantifying irrigation cooling benefits to maize yield in the US Midwest. Glob. Change Biol. 26, 3065–3078 (2020).

    Article  ADS  Google Scholar 

  42. Byerlee, D., Stevenson, J. & Villoria, N. Does intensification slow crop land expansion or encourage deforestation? Glob. Food Secur. 3, 92–98 (2014).

    Article  Google Scholar 

  43. Villoria, N. B. Technology spillovers and land use change: empirical evidence from global agriculture. Am. J. Agric. Econ. 101, 870–893 (2019).

    Article  Google Scholar 

  44. Hertel, T. W., Ramankutty, N. & Baldos, U. L. C. Global market integration increases likelihood that a future African Green Revolution could increase crop land use and CO2 emissions. Proc. Natl Acad. Sci. USA 111, 13799–13804 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. West, P. C. et al. Trading carbon for food: global comparison of carbon stocks vs. crop yields on agricultural land. Proc. Natl Acad. Sci. USA 107, 19645–19648 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rosegrant, M. W. & Msangi, S. Consensus and contention in the food-versus-fuel debate. Annu. Rev. Environ. Resour. 39, 271–294 (2014).

    Article  Google Scholar 

  47. Lawrence, D., Coe, M., Walker, W., Verchot, L. & Vandecar, K. The unseen effects of deforestation: biophysical effects on climate. Front. For. Glob. Change 5, 756115 (2022).

    Article  Google Scholar 

  48. Xu, S. et al. Delayed use of bioenergy crops might threaten climate and food security. Nature 609, 299–306 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Turner, P. A., Field, C. B., Lobell, D. B., Sanchez, D. L. & Mach, K. J. Unprecedented rates of land-use transformation in modelled climate change mitigation pathways. Nat. Sustain. 1, 240–245 (2018).

    Article  Google Scholar 

  50. Stenzel, F., Gerten, D. & Hanasaki, N. Global scenarios of irrigation water abstractions for bioenergy production: a systematic review. Hydrol. Earth Syst. Sci. 25, 1711–1726 (2021).

    Article  ADS  Google Scholar 

  51. Searchinger, T. et al. Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319, 1238–1240 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  52. Lesk, C., Coffel, E. & Horton, R. Net benefits to US soy and maize yields from intensifying hourly rainfall. Nat. Clim. Change 10, 819–822 (2020).

    Article  ADS  Google Scholar 

  53. Christian, J. I. et al. Global distribution, trends, and drivers of flash drought occurrence. Nat. Commun. 12, 6330 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  54. Elliott, J. et al. Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proc. Natl Acad. Sci. USA 111, 3239–3244 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  55. Konzmann, M., Gerten, D. & Heinke, J. Climate impacts on global irrigation requirements under 19 GCMs, simulated with a vegetation and hydrology model. Hydrol. Sci. J. 58, 88–105 (2013).

    Article  Google Scholar 

  56. Gray, S. B. et al. Intensifying drought eliminates the expected benefits of elevated carbon dioxide for soybean. Nat. Plants 2, 16132 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Jin, Z., Ainsworth, E. A., Leakey, A. D. B. & Lobell, D. B. Increasing drought and diminishing benefits of elevated carbon dioxide for soybean yields across the US Midwest. Glob. Change Biol. 24, e522–e533 (2018).

    Article  ADS  Google Scholar 

  58. Ainsworth, E. A. & Long, S. P. 30 years of free‐air carbon dioxide enrichment (FACE): what have we learned about future crop productivity and its potential for adaptation? Glob. Change Biol. 27, 27–49 (2021).

    Article  ADS  CAS  Google Scholar 

  59. Wang, S. et al. Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science 370, 1295–1300 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  60. Berg, A., Sheffield, J. & Milly, P. C. D. Divergent surface and total soil moisture projections under global warming. Geophys. Res. Lett. 44, 236–244 (2017).

    Article  ADS  Google Scholar 

  61. Ficklin, D. L. & Novick, K. A. Historic and projected changes in vapor pressure deficit suggest a continental-scale drying of the United States atmosphere. J. Geophys. Res. Atmos. 122, 2061–2079 (2017).

    Article  ADS  Google Scholar 

  62. Qin, Y. et al. Agricultural risks from changing snowmelt. Nat. Clim. Change 10, 459–465 (2020).

    Article  ADS  Google Scholar 

  63. Taylor, R. G. et al. Ground water and climate change. Nat. Clim. Change 3, 322–329 (2013).

    Article  ADS  Google Scholar 

  64. Kundzewicz, Z. W. et al. The implications of projected climate change for freshwater resources and their management. Hydrol. Sci. J. 53, 3–10 (2008).

    Article  Google Scholar 

  65. Stokstad, E. Deep deficit. Science 368, 230–233 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  66. Scott, C. A. Electricity for groundwater use: constraints and opportunities for adaptive response to climate change. Environ. Res. Lett. 8, 035005 (2013).

    Article  ADS  Google Scholar 

  67. Qiu, G. Y., Zhang, X., Yu, X. & Zou, Z. The increasing effects in energy and GHG emission caused by groundwater level declines in North China’s main food production plain. Agric. Water Manag. 203, 138–150 (2018).

    Article  Google Scholar 

  68. Kaur, S., Aggarwal, R. & Lal, R. Assessment and mitigation of greenhouse gas emissions from groundwater irrigation. Irrig. Drain. 65, 762–770 (2016).

    Article  Google Scholar 

  69. Wood, W. W. & Hyndman, D. W. Groundwater depletion: a significant unreported source of atmospheric carbon dioxide. Earth’s Future 5, 1133–1135 (2017).

    Article  ADS  Google Scholar 

  70. Minamikawa, K. et al. Groundwater-induced emissions of nitrous oxide through the soil surface and from subsurface drainage in an Andosol upland field: a monolith lysimeter study. Soil Sci. Plant Nutr. 59, 87–95 (2013).

    Article  CAS  Google Scholar 

  71. Schipanski, M. E. et al. Moving from measurement to governance of shared groundwater resources. Nat. Water 1, 30–36 (2023).

    Article  Google Scholar 

  72. Gleeson, T., Wada, Y., Bierkens, M. F. P. & van Beek, L. P. H. Water balance of global aquifers revealed by groundwater footprint. Nature 488, 197–200 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  73. Gleick, P. Impacts of California’s Five-Year (2012–2016) Drought on Hydroelectricity Generation (Pacific Institute, 2017).

  74. Renewable Energy in the Spainish Electricity System 2017 (REE, 2017).

  75. Herrera-Estrada, J. E., Diffenbaugh, N. S., Wagner, F., Craft, A. & Sheffield, J. Response of electricity sector air pollution emissions to drought conditions in the western United States. Environ. Res. Lett. 13, 124032 (2018).

    Article  Google Scholar 

  76. Adaptation Challenges and Opportunities for the European Energy System: Building a Climate Resilient Low Carbon Energy System (European Environmental Agency, 2019).

  77. Griffis, T. J. et al. Nitrous oxide emissions are enhanced in a warmer and wetter world. Proc. Natl Acad. Sci. USA 114, 12081–12085 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  78. van Groenigen, K. J., van Kessel, C. & Hungate, B. A. Increased greenhouse-gas intensity of rice production under future atmospheric conditions. Nat. Clim. Change 3, 288–291 (2013).

    Article  ADS  Google Scholar 

  79. Qian, H. et al. Lower‐than‐expected CH4 emissions from rice paddies with rising CO2 concentrations. Glob. Change Biol. 26, 2368–2376 (2020).

    Article  ADS  Google Scholar 

  80. Rosa, L. et al. Potential for sustainable irrigation expansion in a 3 °C warmer climate. Proc. Natl Acad. Sci. USA 117, 29526–29534 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  81. Padedda, B. M. et al. Consequences of eutrophication in the management of water resources in Mediterranean reservoirs: a case study of Lake Cedrino (Sardinia, Italy). Glob. Ecol. Conserv. 12, 21–35 (2017).

    Article  Google Scholar 

  82. Yan, X. et al. Climate warming and cyanobacteria blooms: looks at their relationships from a new perspective. Wat. Res. 125, 449–457 (2017).

    Article  CAS  Google Scholar 

  83. Paerl, H. W. & Huisman, J. Blooms like it hot. Science 320, 57–58 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Jansen, J. et al. Global increase in methane production under future warming of lake bottom waters. Glob. Change Biol. 28, 5427–5440 (2022).

    Article  CAS  Google Scholar 

  85. Carrijo, D. R., Lundy, M. E. & Linquist, B. A. Rice yields and water use under alternate wetting and drying irrigation: a meta-analysis. Field Crops Res. 203, 173–180 (2017).

    Article  Google Scholar 

  86. Kritee, K. et al. High nitrous oxide fluxes from rice indicate the need to manage water for both long- and short-term climate impacts. Proc. Natl Acad. Sci. USA 115, 9720–9725 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lehmann, J. et al. Biochar in climate change mitigation. Nat. Geosci. 14, 883–892 (2021).

    Article  ADS  CAS  Google Scholar 

  88. Kuang, W., Gao, X., Tenuta, M. & Zeng, F. A global meta‐analysis of nitrous oxide emission from drip‐irrigated cropping system. Glob. Change Biol. 27, 3244–3256 (2021).

    Article  Google Scholar 

  89. Almeida, R. M. et al. Floating solar power could help fight climate change — let’s get it right. Nature 606, 246–249 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  90. Exley, G., Armstrong, A., Page, T. & Jones, I. D. Floating photovoltaics could mitigate climate change impacts on water body temperature and stratification. Solar Energy 219, 24–33 (2021).

    Article  ADS  Google Scholar 

  91. Rathore, P. K. S., Das, S. S. & Chauhan, D. S. Perspectives of solar photovoltaic water pumping for irrigation in India. Energy Strategy Rev. 22, 385–395 (2018).

    Article  Google Scholar 

  92. Hoffacker, M. K. & Hernandez, R. R. Local energy: spatial proximity of energy providers to their power resources. Front. Sustain. 1, 585110 (2020).

    Article  Google Scholar 

  93. Xie, H., Ringler, C. & Mondal, M. D. A. H. Solar or diesel: a comparison of costs for groundwater‐fed irrigation in sub‐Saharan africa under two energy solutions. Earth’s Future 9, e2020EF001611 (2021).

    Article  ADS  Google Scholar 

  94. Lefore, N., Closas, A. & Schmitter, P. Solar for all: a framework to deliver inclusive and environmentally sustainable solar irrigation for smallholder agriculture. Energy Policy 154, 112313 (2021).

    Article  Google Scholar 

  95. Shim, H.-S. Case Study: Solar-Powered Irrigation Pumps in India — Capital Subsidy Policies and the Water–Energy Efficiency Nexus (Global Green Growth Institute, 2017).

  96. Hartung, H. & Pluschke, L. The Benefits and Risks of Solar Powered Irrigation - A Global Overview (Food and Agriculture Organization of the United Nations, 2018).

  97. Lesk, C. & Kornhuber, K. An effective clean energy transition must anticipate growing climate disruptions. Environ. Res. Clim. 1, 013002 (2022).

    Article  Google Scholar 

  98. Hernandez, R. R. et al. Techno–ecological synergies of solar energy for global sustainability. Nat. Sustain. 2, 560–568 (2019).

    Article  Google Scholar 

  99. Ravi, S. et al. Colocation opportunities for large solar infrastructures and agriculture in drylands. Appl. Energy 165, 383–392 (2016).

    Article  Google Scholar 

  100. Barron-Gafford, G. A. et al. Agrivoltaics provide mutual benefits across the food–energy–water nexus in drylands. Nat. Sustain. 2, 848–855 (2019).

    Article  Google Scholar 

  101. Hoffacker, M. K., Allen, M. F. & Hernandez, R. R. Land-sparing opportunities for solar energy development in agricultural landscapes: a case study of the Great Central Valley, CA, United States. Environ. Sci. Technol. 51, 14472–14482 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  102. Yang, Y. et al. Restoring abandoned farmland to mitigate climate change on a full Earth. One Earth 3, 176–186 (2020).

    Article  ADS  Google Scholar 

  103. Grodsky, S. M. Matching renewable energy and conservation targets for a sustainable future. One Earth 4, 924–926 (2021).

    Article  ADS  Google Scholar 

  104. Walston, L. J. et al. Examining the potential for agricultural benefits from pollinator habitat at solar facilities in the United States. Environ. Sci. Technol. 52, 7566–7576 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  105. Roberts, B. Potential for Photovoltaic Solar Installation in Non-Irrigated Corners of Center Pivot Irrigation Fields in the State of Colorado (National Renewable Energy Laboratory, 2011).

  106. Suraci, J. P. et al. Achieving conservation targets by jointly addressing climate change and biodiversity loss. Ecosphere 14, e4490 (2023).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Y.Y., Z.J. and N.D.M. conceived and designed the experiments, analysed the data and wrote the paper. A.W.D., R.R.H., S.M.G., L.L.S., M.V.C., Y.-G.Z. and D.B.L. contributed materials and wrote the paper.

Corresponding authors

Correspondence to Zhenong Jin or Nathaniel D. Mueller.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Food thanks Corey Lesk and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Jin, Z., Mueller, N.D. et al. Sustainable irrigation and climate feedbacks. Nat Food 4, 654–663 (2023). https://doi.org/10.1038/s43016-023-00821-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43016-023-00821-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing