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Machine learning and metagenomics reveal 
shared antimicrobial resistance profiles 
across multiple chicken farms and abattoirs 
in China

Michelle Baker    1,12, Xibin Zhang2,12, Alexandre Maciel-Guerra1,12, Yinping Dong3, 
Wei Wang3, Yujie Hu    3, David Renney4, Yue Hu1, Longhai Liu5, Hui Li6, 
Zhiqin Tong6, Meimei Zhang7, Yingzhi Geng7, Li Zhao8, Zhihui Hao9, 
Nicola Senin    10, Junshi Chen3, Zixin Peng    3,13 , Fengqin Li    3,13  & 
Tania Dottorini    1,11 

China is the largest global consumer of antimicrobials and improving 
surveillance methods could help to reduce antimicrobial resistance (AMR) 
spread. Here we report the surveillance of ten large-scale chicken farms 
and four connected abattoirs in three Chinese provinces over 2.5 years. 
Using a data mining approach based on machine learning, we analysed 
461 microbiomes from birds, carcasses and environments, identifying 
145 potentially mobile antibiotic resistance genes (ARGs) shared between 
chickens and environments across all farms. A core set of 233 ARGs and 186 
microbial species extracted from the chicken gut microbiome correlated 
with the AMR profiles of Escherichia coli colonizing the same gut, including 
Arcobacter, Acinetobacter a nd S ph ingobacterium, clinically relevant for 
humans, and 38 clinically relevant ARGs. Temperature and humidity in 
the barns were also correlated with ARG presence. We reveal an intricate 
network of correlations between environments, microbial communities  
and AMR, suggesting multiple routes to improving AMR surveillance in 
livestock production.

Antimicrobial use in poultry production in China is five times higher 
than the international average1. Antibiotic use, even at low levels, 
alters and expands the gut resistome in livestock2, and the micro-
bial community can shape antimicrobial resistance (AMR) pheno-
types3. External events such as changes in diet, temperature and 
stress4,5 may result in the colonization of new resident species or 
AMR transfer between species6. Temperature, humidity and both 
bacterial species abundance and the presence of antibiotic resist-
ance genes (ARGs)7–9 can influence bacterial infection in broilers10. 
Links between environmental conditions and AMR are particularly 

relevant for China and low- and middle-income countries (LMICs), 
where maintaining stable environmental conditions in industrial- 
scale farming may be challenging compared with in high-income  
countries11.

AMR surveillance in non-healthcare domains has not been widely 
adopted12, but is key to understanding how food production systems 
contribute to the selection and dissemination of antibiotic-resistant 
bacteria (ARB) and ARGs. Machine learning (ML) and big data mining 
offer tools to advance precision poultry farming13,14. Culture-based 
approaches involving whole genome sequencing (WGS) of individual 
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Results
Birds and environment share clinically relevant mobile ARGs
Biological samples were collected from ten large-scale commercial 
poultry farms (see Methods, Supplementary Information, Supplemen-
tary Fig. 1 and Supplementary Tables 1 and 2). Microbial communities 
and ARGs were differentiated across farm sources and between farms 
and abattoir (Supplementary Information, Supplementary Figs. 2–5 
and Supplementary Tables 3–5). As gene mobility may influence ARG 
presence across sources and because of the potential importance of 
mobile genetic elements (MGEs) in the development of effective sur-
veillance systems29, we looked for ARGs that were within 5 kilobases 
(kb) of an MGE26 and considered these MGE–ARG combinations to 
be potentially mobile ARGs. In total, 661 different MGE–ARG combi-
nations (potentially mobile ARGs) were found, featuring 195 unique 
ARGs (Supplementary Table 6). Of these, 75 ARGs (38%) were found in 
only one MGE–ARG combination, while the remaining 120 (62%) were 
found in multiple combinations (2 to 22; Fig. 1a). Over half (56%) of the 
661 potentially mobile ARGs were present in more than one source  
(Fig. 1b), with three MGE–ARG combinations (IS1216-poxtA, 
IS15-APH(3′)-Ia and ISCfr1-AAC(3)-IId) present in all sources except 

pathogens, antibiotic susceptibility testing and ML techniques are  
effective predictors of genomic characteristics linked to AMR for  
both Escherichia coli isolates15–18 and other bacteria19–24. However, 
surveillance approaches focusing solely on WGS of individual patho-
gens may not capture the diversity of the microbial communities and 
resistomes within livestock production and ARG data may be missed25. 
In a recent proof-of-concept study, we observed that several ARGs 
present in the chicken faecal resistome were found to correlate with 
the resistance/susceptibility profiles of E. coli isolates cultured from 
the same samples26.

In this study, we developed a reference method for metagenomic- 
based surveillance targeting Chinese livestock farming, where AMR 
surveillance is particularly challenging, using an approach that takes 
into consideration the lack of laboratory resources commonly experi-
enced in China and LMICs27,28. We used E. coli as an indicator species for 
AMR within the wider context of the microbial community populating 
the chicken gut. To address wider contexts, we explored the impacts 
on the microbiomes of the surrounding and connected farm environ-
ments, barn temperature and humidity, and adopted antimicrobial 
administration protocols.
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Fig. 1 | Analysis of potentially mobile ARGs. a, Pie chart showing the proportion 
of ARGs (out of the 195 found) associated with one or multiple MGEs.  
b, Undirected network graph showing potentially mobile ARGs (small orange 
circles) associated with different sample sources (large green circles). The 
edges in the graph link the potentially mobile ARGs to the sources in which they 
were found. c, Number of potentially mobile ARGs per sample per source. Each 
circle represents a single sample, with circles coloured by farm. d, Venn diagram 

showing that 145 (out of 661) potentially mobile ARGs were found to be present in 
both chicken and environmental samples from the same farm, and 182 potentially 
mobile ARGs contained clinically relevant ARGs. An overlap of 46 clinically 
relevant30 potentially mobile ARGs was found in chicken and environmental 
sources obtained from the same farm. Note that in this analysis, samples from 
the same source collected at t1 (week 3) and t2 (week 6) were aggregated together, 
leading to a total of seven sources considered for each farm.
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feathers. Chicken faeces had the highest number of potentially mobile 
ARGs, but also the greatest variance (Fig. 1c). Feathers and barn floor 
also carried many potentially mobile ARGs, the mean number statisti-
cally equivalent to faeces (Dunn’s test adjusted P > 0.05). Outdoor soil, 
carcasses, processing line and wastewater generally had lower numbers 
of potentially mobile ARG patterns per sample, with these numbers 
differing significantly (Dunn’s test adjusted P < 0.01) from faeces and 
feather, but not from each other. In total, across all 10 farms, 145 dif-
ferent MGE–ARG combinations were found in bird and environmental 
sources on the same farm, with some of these appearing on multiple 
farms. Of these, 46 contained clinically relevant ARGs30 (Fig. 1d). Nota-
bly, we found blaNDM-5 in chicken faeces, feathers and environmental 
barn floor samples. This gene is commonly found on the IncX3 plasmid, 
which can be disseminated among humans, animals, food and environ-
ment31, although we did not confirm plasmid presence in our short-read 
metagenomic sequencing (MGS) data. Another important clinically rel-
evant gene, qnrS1, was found in chicken faeces, feather, environmental 
barn floor and wastewater samples. This plasmid-mediated quinolone 
resistance gene is known to be present in the chicken supply chain and 
is capable of being transferred to different bacteria32.

E. coli AMR correlates with the gut microbiome it inhabits
We further investigated whether there was a correlation between the 
bacterial species found in the chicken gut, the resistome (that is, the 
ARGs from all species) and the AMR profiles of E. coli isolates taken 
from the same samples as the metagenome data. We cultured E. coli 
isolates from 170 chicken faecal samples (a subset of the samples that 
had been used for metagenomics) and characterized their AMR profiles 
against a panel of 26 antibiotics. The proportion of isolates resistant 
to each antibiotic ranged from 1% to 98% (Supplementary Table 7). All 
isolates were resistant to at least one antibiotic, with 169 resistant to 
at least three.

To investigate the correlations between antibiotic resistance in  
E. coli and gut microbiome, we developed a bespoke data mining 
method based on ML (Fig. 2). The method consists of building an 
ML-powered ‘predictive function’ whose input is the aggregation of 
information from the gut microbial community (relative abundances 
of microbial species) and gut resistome (ARG count) and whose output 
is the resistance of E. coli to a specific antibiotic (true or false) from 
antimicrobial susceptibility testing (AST). The predictive function was 
trained by using experimental data (supervised learning) and swap-
ping different underlying ML technologies until optimal prediction 
performance was achieved. A set of the most informative features, also 
referred to as ‘predictors’, was extracted from the ML models. The set 
was then refined by analysis of the correlation with temperature and 
humidity (see later).

Out of the 26 antibiotics, only 17 had sufficient data (resistance and 
susceptibility cases) to allow proper ML training: amikacin, amoxicil-
lin–clavulanic acid, aztreonam, cefepime, cefoxitin, cefotaxime–clavu-
lanic acid, ceftazidime, ceftazidime–clavulanic acid, chloramphenicol, 
cefotaxime, gentamycin, kanamycin, minocycline, nalidixic acid, 
streptomycin, sulfafurazole and trimethoprim–sulfamethoxazole. 
For all, the best prediction performance (Nemenyi test) was observed 
with the extra tree classifier (ML technology; Supplementary Table 8 
and Supplementary Fig. 6). The prediction performance indicators 
computed using the extra tree method are reported in Fig. 3a and 
Supplementary Fig. 7. Ten predictive models (amikacin, aztreonam, 
cefoxitin, chloramphenicol, cefotaxime, kanamycin, nalidixic acid, 
streptomycin, sulfafurazole and trimethoprim–sulfamethoxazole) 
achieved performances exceeding AUC > 0.90.

Data mining showed that a core subset of the chicken gut 
resistome (all detectable ARGs from the chicken faeces metagen-
omic data) and microbial species (all bacterial species from the 
chicken faeces metagenomic data) exhibited strong predictive 
power for E. coli resistance. This core consisted of 419 features 

(186 microbial species and 233 ARGs) acting as strong predictors 
of E. coli resistance/susceptibility to 10 antibiotics (Fig. 3b,c and 
Supplementary Table 9) with an AUC of over 0.90. The 233 ARGs 
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Fig. 2 | Data mining pipeline to find correlations between gut microbiome, 
antibiotic resistance in E. coli, temperature and humidity. The full data 
analysis workflow of the bespoke data mining method based on ML. Input data 
are shown in green. Phase I involves metagenome data pre-processing (in yellow). 
The steps are described in detail in the Methods section. Phase II involves the 
training and testing of ML-powered predictive functions to isolate metagenomic 
features (that is, the ARG count and relative abundances of microbial species 
present in the sample) correlated with phenotypic resistance (in blue). Phase 
III involves fitting regression models (discussed in the next section) to isolate 
metagenomic features that better correlate with variations of temperature and 
humidity (in red). AUC, area under the curve.
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from the top 10 antibiotic models belonged to β-lactams (24% of 
the ARGs), aminoglycosides (18%), and macrolides, lincosamides 
and streptogramin B (MLSB; 18%), with other antibiotic classes 
accounting for less than 10% each. Of these 233 ARGs, based on 
the correlation of ARG read depth with species abundance (see  
Methods)33, 46 were found to be present in contigs identified as origi-
nating from E. coli. A further 16 ARGs (of the 233) were present only 
in contigs identified as other bacterial species (that is, they did not 
originate from E. coli). To further explore the relationship between 
core gut features and antibiotic resistance, the 419 features and 10 
antibiotic resistances were visualized as nodes of a graph, with edges 
only connecting predictors to predicted resistances (Fig. 3c). This 
analysis highlighted a core of 66 ARGs (15 clinically relevant, including 
blaNDM-5, blaCTX-M-15, dfrA15 and dfra5) acting as predictors of more than 

three antibiotic resistances. Three ARGs (aphA6, vat(A) and vgb(A)) 
were found to be predictors of eight antibiotic resistances. The same 
analysis revealed 28 microbial species in the gut acting as predictors 
of 5 antibiotic resistances (aztreonam, chloramphenicol, cefotaxime, 
kanamycin and nalidixic acid). These 28 species included the bacterial 
genera Arcobacter, Acinetobacter and Sphingobacterium in addition 
to other commensal bacteria.

Shapley additive explanation values were used to explain the 
AMR-related features selected by ML (Supplementary Fig. 8). The 
top ten most important features found to predict resistance for each 
antibiotic model indicated that 41% of the features had their presence 
positively associated with the prediction of resistant phenotypes, while 
59% had their absence positively associated with the prediction of the 
resistant phenotype, most notably for the antibiotic models nalidixic 
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Fig. 3 | ML performance and feature selection from correlations between  
gut microbial species, resistome and antibiotic resistance in E. coli.  
a, Performance of the ML-powered predictive functions of E. coli resistance 
to specific antibiotics (ML technology: extra tree classifier; see Methods). 
Performance indicators (AUC, accuracy and precision) were computed as 
the average of 30 iterations of nested cross-validation (see Methods). See 
Supplementary Fig. 2 for performance indicator sensitivity, specificity and 
Cohen’s kappa score. The violin plots show the distribution of the data, with each 
data point representing one antibiotic model. Inside each violin plot is a box plot, 
with the box showing the interquartile range (IQR), the whiskers showing the rest 
of the distribution as a proportion of 1.5 x IQR and the white circle representing 
the median value. b, Counts of metagenomic features (ARGs and microbial 
species) found as the strongest predictors of E. coli resistance/susceptibility 

profiles to each antibiotic. c, Undirected graph showing the strongest predictors 
(metagenomic features in the chicken gut) for each antibiotic model. The edges 
of the graph link ARG or bacteria species nodes (predictor variables) to the 
antibiotic model in which they were found to be predictive. Both the ARG and 
antibiotic model nodes are colour coded according to the antibiotic class that 
the antibiotic/ARG is known to be associated with. The ML models were run for 
the following antibiotics: amoxicillin–clavulanic acid (AMC), amikacin (AMI), 
aztreonam (AZM), ceftazidime (CAZ), ceftazidime–clavulanic acid (CAZ-C), 
cefotaxime (CTX), cefotaxime–clavulanic acid (CTX-C), cefoxitin (CFX), 
chloramphenicol (CHL), cefepime (FEP), gentamycin (GEN), kanamycin (KAN), 
minocycline (MIN), nalidixic acid (NAL), streptomycin (STR), sulfafurazole (SUL) 
and trimethoprim–sulfamethoxazole (SXT). MDR, multidrug resistant.
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acid and streptomycin. Conversely, eight of the top ten features in each 
model were negatively associated with the prediction of resistance. The 
chloramphenicol antibiotic model had the highest number of ARGs 
known to confer resistance to the same antibiotic class (phenicol; optrA 
(ref. 34), lsaE (ref. 35) and mel (ref. 35)) or known to facilitate resistance 
to it (oqxA (ref. 36)).

Temperature and humidity shape the gut microbiome linked 
to AMR
For the top ten antibiotic models, we developed bespoke regression 
models using individual gut features as independent variables (one 
model per variable) and temperature or humidity as dependent vari-
ables to ascertain whether model fitting would highlight a correlation 
(see phase III in Fig. 2 and Methods). Temperature and humidity were 
measured in all farms except Liaoning 1 (LN1) over a full chicken pro-
duction cycle (Supplementary Table 10 and Supplementary Fig. 9). 
Amongst the original 419 features, 130 ARGs and 48 microbial species 
correlated with humidity, whilst 39 ARGs and 20 microbial species cor-
related with temperature (Supplementary Fig. 10 and Supplementary 
Table 11). The correlation with humidity was on average stronger (higher 
R2 values in the regression analysis, Supplementary Fig. 10). Of the 130 
ARGs correlated with humidity, 22% were MLSB, 18% were β-lactams, 
17% were aminoglycosides and 11% were tetracyclines. Of the 39 ARGs 
correlated with temperature, 23% were β-lactams, 18% were MLSB, 15% 
were aminoglycosides and 13% were glycopeptides. Nineteen ARGs 
correlated with both temperature and humidity, four of them clini-
cally relevant (qnrA1, qnrS2, blaNDM-1 and catA8). Four microbial species 
from the phyla Proteobacteria (Helicobacter pullorum and Alcaligenes 
faecalis), Firmicutes (Bacillus cereus group) and Bacteroidetes (Bac-
teroides stercoris) correlated with both temperature and humidity. 
One species from Tenericutes (Mycoplasma yeatsii) correlated with 
temperature only, while other species from Proteobacteria, Firmicutes, 
Bacteroidetes and Actinobacteria correlated with either temperature 
or humidity (Supplementary Table 11).

We tested for the possibility that some ARGs found to be correlated 
with temperature or humidity might belong to microbial species that 
are also correlated with temperature and humidity. This was done by 
correlating ARG read depth with microbial species read depth as pro-
posed by Tong et al.33. The analysis highlighted two distinct subgraphs 
correlated with humidity (Fig. 4a) and one correlated with temperature 
(Fig. 4b). Notably, one of the subgraphs correlated with humidity 
contained Klebsiella pneumoniae and four related ARGs (kpnE, kpnF, 
kpnG and acrA). The subgraph containing A. faecalis and ARGs vga(C) 
and blaOXA-58 was found in both analyses (that is, it correlated with both 
temperature and humidity).

We then investigated whether the gut ARG features identified as 
predictors of resistance in E. coli, and further identified as correlated 
with humidity or temperature, were in close proximity to MGEs. Ten 
ARGs were found located in close proximity to MGEs (MLSB: optrA, 
mph(F) and erm(X); β-lactams: blaNDM-1 and blaOXA-58; amphenicol: catA8 
and catB2; aminoglycoside: aadA1; fluroquinolone: qnrS2 and qnrA1). 
Three of the ten ARGs were found to be associated with only one MGE 
(catB2 with ISPa25, mph(F) with IS15 and qnrA1 with IS15), whilst the 
other seven were associated with two to nine different MGEs. All the 
MGE–ARG pairs were investigated for conserved structure across farms 
or sources. For example, the clinically important blaNDM-1 was found 
in close proximity to IS15 in four samples (three chicken faeces from 
LN1 and one barn floor sample from Liaoning 3 (LN3); Supplementary 
Fig. 11). In 19 samples from chicken faeces and feather samples from 
LN1, LN3, Shandong 2 (SD2) and Shandong 4 (SD4), blaNDM-1 was found 
in proximity to MGE ISAba125 and located next to another ARG, ble, 
which is a known association for plasmid-borne blaNDM-1 in Enterobac-
teriaceae species from Asian regions37. Despite having found the same 
blaNDM-1–ISAba125 pattern in several farms (LN1, LN3, SD2 and SD4), 
there was no evidence of transmission between farms (Fig. 5). Instead, 
evolutionary analysis of the contigs (using a molecular clock model to 
predict the rate of molecular evolution on each branch of the phyloge-
netic tree38) suggested recent branching of isolates within individual 
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farms (most common recent ancestor (MCRA) less than 2 years on most 
branches) and much earlier MRCAs between different farms (greater 
than 20 years), indicating the likelihood of this potentially mobile ARG 
widely circulating in livestock throughout China.

The microbiome linked to AMR correlates with antibiotic use
We investigated whether the core chicken gut microbiome previously 
identified as predictors of resistance in E. coli may in turn be associated 
with antibiotic use on farms (measured by whether an antibiotic class 
was used or not used on the farm during the study period, Supplemen-
tary Table 12; see the Supplementary Information and Supplementary 
Fig 12 for additional details). We found that tetracycline, lincosamide or 
aminoglycoside use was associated with altered counts for 21 ARGs and 
20 microbial species (Supplementary Information). We also found that 
20 of the 21 ARGs for which the counts were significantly correlated with 
antibiotic use (indicated in Supplementary Fig. 13) were also correlated 

with humidity. Additionally, one of these genes, erm(X), was also cor-
related with temperature. Of the 20 microbial species that were found 
to have a statistically significant difference in relative abundance in 
relation to antibiotic use (Supplementary Table 13 and Supplementary 
Fig. 14), 7 were correlated with changes in humidity (Wohlfahrtiimonas 
chitiniclastica, Lachnoclostridium sp. An76, K. pneumoniae, Klebsiella 
variicola, Lysinibacillus sp. BF 4, Proteus hauseri and Proteus mirabilis) 
whilst four were correlated with changes in temperature (Alistipes 
sp. An66, Lactobacillus aviarius, Enterococcus cecorum and Enorma 
massiliensis) with the B. cereus group correlated with both temperature 
and humidity.

Discussion
Conventional AMR surveillance approaches fail to accurately assess 
bacterial and resistome diversity both within and between farms39. 
In our study, we used large-scale metagenomic sampling and E. coli 
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Fig. 5 | Gene structure and evolutionary analysis of the potentially mobile 
ARG pattern ISAba125–NDM-1. Bayesian evolutionary phylogenetic tree 
reconstructing the phylogeny of contigs containing the clinically important 
ARG blaNDM-1 and MGE ISAba125. Sample IDs (for example, LNPCJFT2-17) are 

given under the phylogenetic tree. The source type and location of the samples 
are indicated by coloured strips. The gene structure of each sample is shown 
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coloured yellow. The ARG ble is co-located with blaNDM-1 in all contigs.
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isolation in combination with statistical and ML methods to draw out 
complex correlations showing AMR trends and patterns. E. coli has an 
established role as a reference indicator of AMR26. We found that 38 
clinically relevant ARGs correlated with resistance to multiple antibi-
otics. Some of these antibiotics had no previously known association 
with these ARGs. In particular, 14 ARGs (aadA16, aph(3′)-Ia, aph(3′)-VIa, 
blaCARB-16, catQ, dfrA15, dfrA16, dfrA27, blaOXA-58, blaPER-1, qnrD1, tet(Z), 
tet(39) and blaSHV-110) found to be associated with resistance to the high-
est number of antibiotics had previously been found in earlier studies 
on poultry in China40–42, confirming our method. However, we found 
a cluster of gut bacteria that correlated well with E. coli resistance to 
five different antibiotics. These included Arcobacter (an emerging 
waterborne and foodborne zoonotic pathogen, responsible for gas-
troenteritis in humans43), Acinetobacter (commensal in the poultry 
gut, but capable of causing extraintestinal diseases in both humans 
and poultry44) and Sphingobacterium (clinically relevant in humans 
and animals45). This result suggests that, in agreement with previous 
studies12,29,46–50, focusing exclusively on E. coli within the farm for surveil-
lance purposes may not be as effective as monitoring a larger number 
of pathogens.

In our study, the farms that used tetracyclines, lincosamides and 
polypeptides were positively correlated with the presence of ARGs 
from a wide range of classes, beyond those specific to the selected 
antibiotics. This appears to be consistent with previous findings51,52, 
but contrasts with a recent study from the United States53. It is possible 
that the co-localization of AMR genes is playing an important role in 
AMR selection in our farms. Indeed, the co-localization of AMR genes 
in bacterial genomes in food animals has previously been observed and 
recognized as a food safety concern in China54 as well as elsewhere55,56.

The chickens in our study were housed in sheds that did not have an 
effective climate control system, and therefore experienced substantial 
temperature and humidity variations. Our results indicate that the core 
features of the gut microbial community and resistome, found to be 
correlated with resistance in E. coli, are also correlated with changes in 
temperature and humidity in chicken housing. Our results confirm and 
expand findings of previous studies7–9,26,57. Of note, the relative abun-
dance of A. faecalis and the ARGs vga(C) and blaOXA-58 originating from 
this species (via analysis of ARG and species read depths) were found to 
be correlated with changes in both temperature and humidity. A greater 
abundance of A. faecalis and more severe clinical symptoms in higher 
humidity conditions have been observed previously in a case–control 
study of turkeys kept at different humidity levels and inoculated with 
A. faecalis58. This bacterium is commonly found in birds59 and would 
not typically be monitored by conventional surveillance. However, it 
is considered an emerging pathogen, has been associated with infec-
tions in humans and is considered difficult to treat due to its capac-
ity to become extensively drug resistant60. Similarly, the important 
opportunistic pathogen K. pneumoniae and four ARGs (kpnE, kpnF, 
kpnG and acrA) originating from this bacterium and important for  
K. pneumoniae resistance61 were found to be correlated with changes in 
humidity. K. pneumoniae can be transmitted via airborne contamina-
tion and has previously been found to have increased survival in indoor 
high-humidity conditions, highlighting the importance of studying 
this bacterium in indoor environments62. The associations between 
environmental variables (easily monitorable and controllable) and the 
species and genes associated with AMR present opportunities for the 
development of novel AMR monitoring solutions, especially in LMICs 
where these variables are not controlled and pose a risk to the animals 
that are exposed to changes in them.

Ten potentially mobile ARGs in the gut resistome were found to 
correlate with E. coli resistance and with temperature and humidity. 
In addition, 67 potentially mobile ARGs were found to correlate with  
E. coli resistance and humidity. One of these, the gene cfr(C), encoding 
a ribosomal RNA methyltransferase conferring resistance to linezolid 
and phenicol antibiotics, was found near ISEc9 (within 5 kb) and is 

associated with CTX-M genes63,64 (as we also found). The association 
of drfA16 with the transposase IS6100 has previously been reported in 
only a single study with an association with Corynebacterium diphthe-
riae, the causative agent of cutaneous diphtheria65. These associations 
potentially indicate an environment-specific evolution of these MGEs, 
as has been hinted at in previous work on pig farms that showed the 
importance of MGEs for AMR varied according to the season66.

Even though our analysis relied on a large set of samples from many 
heterogeneous sources with geographical and seasonal variations, our 
scope was limited to E. coli, did not consider human samples and would 
benefit from extending the analysis to other indicator species such as 
Enterococcus67. Spatial and temporal variations in farm/slaughterhouse 
microbial communities and resistomes are mirrored in human faecal 
samples, as our previous work and that of others have shown26,68, but 
whether these observations would be generalizable and globally true 
is currently unknown.

Metagenomic sequencing has the potential to broaden our knowl-
edge of the factors driving resistance and improve AMR surveillance69. 
Metagenomic sequencing data are essential for developing new infec-
tion and resistance control policies, raising awareness of AMR and 
allowing the optimal use of antibiotics by veterinary professionals12,70. 
MGS shows great promise for AMR surveillance in environmental 
sectors, but methodologies need to be standardized and data gaps 
filled71,72, with few laboratories and countries at present having both 
the resources and expertise to use MGS for AMR surveillance73. With 
further development, metagenomic and ML approaches could be 
deployed to provide fast and reliable predictions of AMR outbreaks, 
emerging pathogens and transmission routes69.

Despite the increasing availability of low-cost precision farming 
technologies and metagenomics29,74, innovation and methodological  
advances must further enable the development of surveillance  
solutions capable of monitoring AMR dynamics12,29. Drug resistance 
arises from complex interactions across ARBs, microbial communities, 
geographical niches and environments, evolutionary forces, climate 
and human practices. We have demonstrated how methodologies can 
be developed that are capable of associating a wide array of microbial 
species and genes with observable AMR, and further assessed how 
those are associated with the environmental variables of temperature 
and humidity. Consideration of all relevant and interconnected AMR 
datasets in a 360° approach will drive forward our understanding and 
control of AMR spread.

Methods
Ethics statement
This study complied with all relevant ethical regulations and was  
specifically performed in accordance with protocols approved by the  
Ethics Committee of the State Key Laboratory of the China National Center 
for Food Safety Risk Assessment (ethical approval number: 2018018).  
Ethical approval was also obtained from the Research Ethics Committee 
of the School of Veterinary Medicine and Science at the Univer sity of  
Nottingham (application identification number: 2340 180613).

Collection of biological samples and environmental sensor 
data
For this study, we selected ten large-scale commercial poultry farms 
in three different provinces in China (Shandong, Henan and Liaoning; 
hereafter, the farms are denoted SDx, HNx and LNx, respectively), 
covering an area of 472,500 km2, each farm feeding into one of four 
regional abattoirs (two in Henan, one in Liaoning and one in Shandong). 
Each farm featured multiple barns, each barn containing between 
12,000 and 32,800 birds, leading to a total production capacity of 
110,730 to 380,000 birds per breeding cycle (depending on farm). 
Broiler production was based on self-breeding with broilers bred on 
the farm and moved to barns in same-aged batches. Of the ten selected 
farms, four (three in Liaoning and one in Shandong) used net housing 
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systems, whilst the other six used cage housing systems. During collec-
tion, the number of birds per barn did not significantly differ between 
the two housing systems (t-test, P = 0.07).

Sampling followed the same pooled birds over one breeding cycle, 
except for one farm in the Shandong province (Shandong 1), which 
was sampled over two cycles to conduct a pilot study to fine-tune the 
collection campaign and data analysis protocols26. Biological sam-
ples were collected at the same three time points in every breeding 
cycle (including both cycles in Shandong 1): t1 (week 3), t2 (week 6) 
and t3 (1–5 days after week 6). Biological samples consisted of pooled 
faeces and feathers (not necessarily from the same animals) from 
the droppings of live birds in the barns collected from the barn floor 
immediately after excretion at mid-life (t1) and at the end of life (t2) of 
the animals, as well as barn floor samples (litter) collected at the same 
time points. In the abattoirs, samples were collected on slaughtering 
day (t3) from carcasses, meat processing surfaces (referred to as the 
processing line) and wastewater. Soil samples were collected from 
outside areas surrounding the farms at t1 and t2. Details of the collection 
methods are available in the Supplementary Information.

All the farms involved in this study were equipped with heating/
air conditioning systems. Environmental sensor data (temperature 
and humidity) were collected at intervals of 5 min using the automated 
sensors and data loggers available in most farms (HN1, HN2, HN3, SD2, 
SD3 and SD4). Three farms (SD1, LN2 and LN3) were unequipped with 
automated solutions and manual measurements were performed using 
SMART SENSOR AS837 temperature/humidity devices either daily or 
every 6 h. Farm LN1 had technical issues with the sensor and did not 
acquire any measurements. In all cases, the temperature and humidity 
data were averaged over three measurements taken at different loca-
tions within the barn.

DNA library construction and sequencing
DNA extraction was performed on faeces, barn floor and outdoor 
soil samples using a magnetic bead genomic DNA extraction kit 
(DOP336-T3, TIANGEN Biotech). For carcass samples, the cetyltrimeth-
ylammonium bromide method75 was used. Samples with DNA content 
above 1 µg were used to construct the DNA library. The DNA concen-
tration was measured using a Qubit dsDNA Assay Kit and Qubit 2.0 
fluorometer (LifeTechnologies), and the integrity was measured using 
1% agarose gel electrophoresis. A total amount of 1 µg DNA per sample 
was used as input material for the DNA sample preparations. Sequenc-
ing libraries were generated using NEBNext Ultra DNA Library Prep Kit 
for Illumina (NEB). The DNA sample was fragmented into 350 bp, and 
then DNA fragments were end-polished, A-tailed and ligated with the 
full-length adaptor for Illumina sequencing with further PCR analysis.  
Finally, the PCR products were purified (AMPureXPsystem) and  
the libraries analysed for size distribution using an Agilent2100  
Bioanalyzer (Agilent Technologies) and quantified using real-time 
PCR. After cluster generation, the library preparations were sequenced  
on an Illumina Novaseq 6000 platform and 150 bp paired-end  
reads were produced.

Bioinformatics analysis
The raw sequence reads, obtained from the Illumina HiSeq sequencing 
platform, were pre-processed and filtered using Readfq (V8, https://
github.com/cjfields/readfq) to acquire high-quality data for sub-
sequent analysis. Host DNA was filtered using Bowtie 2 (v2.3.4.1)76 
and SAMtools (v1.9 (ref. 77); reference genome accession code: 
GCF_000002315.6). The microbiomes of samples were constructed 
by assembling the metagenome sequencing data for the different 
sample sources (chicken faeces, chicken feather, chicken carcass, 
barn floor, outdoor soil, wastewater and processing line) separately 
using binning and dereplication pipelines26,78. MEGAHIT (v1.1.2)79 soft-
ware was used to assemble the sequences. Single sample assemblies 
were generated for all samples with MEGAHIT default parameters. 

Co-assemblies were generated for each sample source group (chicken 
faeces, chicken feather, chicken carcass, barn floor, outdoor soil, waste-
water and processing line), each with the MEGAHIT setting parameters 
“--continue --kmin-1pass --min-contig-len 1000” as previously used for 
co-assemblies78. Filtered contigs (>2,000 bp) were mapped to single  
assemblies and co-assemblies using Burrows–Wheeler Aligner–Maximal  
Exact Match (BWA-MEM v2-2.1)80 and SAMtools (v1.9)77 to produce  
the Binary Alignment Map (BAM) files. METABAT2 (v2.15)81 was used 
obtain the depth of coverage. The taxonomic classification and compo-
sition (relative species abundances) of the metagenome reads were pro-
filed using MetaPhlAn (v3.0)82 with Bowtie 2 (v2.3.4.1)76 using the default 
settings –bowtie2out–input_type fastq. Nonmetric multidimensional 
scaling (NMDS) of the relative species abundance was performed  
in R (v3.6.2) using the vegan83 package with Bray–Curtis dissimilarity.  
Analysis of variance was performed in R using PERMANOVA from  
the vegan package83 with pairwise testing using the pairwise adonis 
function84 with Holm correction for multiple comparisons. Relative 
abundances were visually analysed by combining violin plots and 
categorical scatter plots, and differences were assessed by Wilcoxon 
rank sum test with Holm correction (adjusted P = 0.05).

As sequencing depth can affect the observed diversity in genomic 
sequencing, rarefaction is widely used to normalize samples before 
analysis across different sample types85. However, the use of rarefac-
tion is controversial as the subsampling leads to the loss of information 
available in the non-rarefied sample86. Hence, in this study, we used 
rarefied data only where necessary (to compare different sample types) 
and used non-rarefied data where only a single sample type was being 
considered. Host-removed reads were rarefied using the minimum 
sample depth using seqtk (https://github.com/lh3/seqtk), with the 
random seed fixed for each pair of reads.

Analysis of resistome and MGEs
Assembled genomes were searched for sequence similarity to anno-
tated ARGs present in the Comprehensive Antibiotic Resistance Data-
base (CARD)61 using Basic Local Alignment Search Tool–nucleotide 
(BLASTn)87 with an identity threshold of 95% and coverage threshold 
of 95% (stricter thresholds with respect to our previous study26) to 
minimize the likelihood of mislabelled ARG variants. NMDS analysis 
was performed on the resulting gene count matrix in the vegan R pack-
age83 using Bray–Curtis dissimilarity. Comparisons were made using 
(1) the total number of ARGs present per sample, (2) the actual count 
of individual ARGs per sample and (3) the relative ARG abundance per 
antibiotic class according to CARD (the number of ARGs present in 
the sample divided by the total number of ARGs in that class). These 
three approaches were visually analysed by combining violin plots and 
categorical scatter plots, and differences were assessed by Wilcoxon 
rank sum test with Holm correction (adjusted P = 0.05).

To identify the source bacteria from which the ARGs originated, 
in accord with a previous study33, rarefied reads from each metagen-
ome sample were mapped to their single assemblies using BWA-MEM 
(v2-2.1)80 and SAMtools (v1.9)77. The average depths were assigned to 
the ARG-carrying contigs and ARGs. The coverage of ARGs, normal-
ized by gene/contig length33, was then used to correlate with species 
abundance through the Spearman correlation test. ARG–species pairs 
were considered significantly correlated if P < 0.05 and the Pearson 
correlation coefficient ≥ 0.6.

To look for the presence of potentially mobile ARGs shared across 
different sources, ARGs carried by both the environment and chickens 
were considered. Filtered contigs (>500 bp) in each assembly were 
searched for ARGs and MGEs by a BLASTn search against the CARD61 
and ISfinder (https://isfinder.biotoul.fr/) databases using an identity 
threshold of 95% and coverage threshold of 95% to prevent false posi-
tives and variant uncertainty88. The distance between an ARG and MGE 
was calculated from the positions of the ARG and MGE in the contig26. 
ARG-carrying contigs with a distance of more than 5 kb between ARG 
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and MGE were discarded68,89–91, with the remaining contigs classed 
as potentially mobile ARGs. Contigs were annotated using Prokka 
(v1.14.6)92. Potentially mobile ARG patterns found in only a single sam-
ple were discounted in the analysis. ARGs were further classified as 
clinically important if the ARG was included in the Risk I category 
(clinically important ARGs dataset) according to Zhang et al.30. These 
genes were classed as Risk I if they were (1) present in human-associated 
environments, (2) potentially mobile genes and (3) present in ESKAPE 
pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella 
pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and 
Enterobacter species). The structures of the potentially mobile ARG 
patterns (MGE type, ARG carried, MGE carried, sample source, farm, 
number of samples carrying potentially mobile ARG and distance) are 
summarized in Supplementary Table 8. For ISAba125–blaNDM-1, the gene 
structure was visualized using EasyFig93.

Evolutionary phylogeny was reconstructed for contigs carrying 
the potentially mobile ARG ISAba125–NDM-1 using BEAST (v1.10.4)38. 
All combinations of three clock models (strict, uncorrelated log nor-
mal and uncorrelated exponential) and three tree priors (constant 
coalescent, logistic growth and Bayesian skyline) were tested using 
stepping-stone sampling on the contigs to identify the best model. The 
best model was found to be a random uncorrelated log-normal clock 
model with a Bayesian skyline growth model. The GTR-gamma nucleo-
tide substitution model was used, as selected by a maximum likelihood 
tree analysis in IQ-tree2 (v2.0.6) using automated model selection94. 
The analysis was conducted for three independent chains until the 
effective sample size, that is, the effective number of independent 
draws from the posterior distribution, for all parameters was greater 
than 200 per chain. This entailed each chain running for 100 million 
steps. Convergence was assessed in Tracer (v1.7.1)95, and chains were 
subsequently combined using LogCombiner (v1.10.4)96. The maximum 
clade credibility tree was selected using TreeAnnotator (v1.10.4) and 
then visualized in iTOL (v5)97.

Investigation of correlations between faecal metagenomic 
features, antibacterial resistance and temperature/humidity
E. coli strains were taken from the same samples as the chicken gut 
metagenome data and cultured and used as indicator species for 
AMR98 for each chicken faeces sample (see Supplementary Information  
for details of the culture and AST methodology). Only 191 of the 223 
samples were positive for an E. coli isolate. Of these 191 samples, a 
further 21 (from LN1) were discarded from this analysis as technical 
issues with the environmental sensors resulted in these samples not 
having the necessary temperature and humidity data needed for the 
ML pipeline. Therefore, 170 samples remained to be analysed by the 
ML pipeline.

The antibiotic susceptibility/resistance profiles of the E. coli 
strains were evaluated against a panel of 26 antibiotics (Supplementary  
Table 1) using broth microdilution and interpreted according to the 
criteria of the Clinical and Laboratory Standards Institute99. The overall 
data analysis pipeline, implemented in Python (v3.9.15)100 and SciPy 
(v1.9.3)101 consisted of three phases (Fig. 2):

•	 Phase I: pre-selection of metagenomic features. For each anti-
biotic, isolation of a first set of faecal metagenome features (that 
is, ARG counts and relative abundance of microbial species) 
showing correlation with the resistance/susceptibility profiles of  
E. coli based on a chi-squared test.

•	 Phase II: assessment of the feature predicting power through the 
development of ML-powered predictive functions. Development 
of ML-based predictive functions of resistance/susceptibility 
(one predictive function per antibiotic) that operate from the 
pre-selected features (see below for more details), supervised 
training with available samples and then inspection of the best- 
fit state of each predictive function to retrieve the predictive  

influence of each feature, that is, the relative weight of the feature 
in driving the prediction result.

•	 Phase III: assessment of feature dependency on temperature/
humidity through the development of ML-powered regressors. 
Development of ML-based regressors to identify correlations 
between the set of faecal metagenome features identified in phase 
II and temperature/humidity conditions.

The three phases are described in detail below.

Phase I
An initial set of features was considered for each of the 26 antibiotics 
and comprised all data on ARG count and microbial species abundance 
in the faecal metagenome. The following steps were applied to process 
and reduce such sets using the Python package Scikit-learn102:

 1. Abundances were turned into relative abundances (0–1 range) 
using min–max normalization.

 2. For each specific antibiotic, imbalances in sample size between 
resistance and susceptibility observations were compensated 
with synthetically generated data using the synthetic minority  
oversampling technique (SMOTE)103, adopting five-nearest 
neighbours as the default parameter.

 3. Features (ARG count and relative abundance of species) with a 
variance equal to zero (that is, features that had the same value 
in all samples) were removed as redundant (incapable of acting 
as effective predictors).

 4. Features that did not show strong association with the predic-
tion result (resistance/susceptibility profile), according to a 
chi-squared test, were removed (all the features with a P value 
greater than 0.01 were removed). No multiple comparison  
correction was used as we were looking to assess each feature  
in its own right104.

 5. The remaining set of features were subjected to visual inspec-
tion via a graph representation designed to create spatial 
clusters that highlight correlation. The analysis was performed 
using the NetworkX105 library in python. In the resulting graph, 
nodes representing features (ARG count or relative abundance 
of species) are connected to nodes representing resistance/ 
susceptibility to a specific antibiotic if the existence of a  
correlation had been demonstrated by the chi-squared test  
(see the previous step). The nodes were spatially arranged  
using the Kamada–Kawai path-length cost function106.

Phase II
Predictive functions based on multiple underlying ML technologies 
were developed and tested, each trained to predict resistance/suscep-
tibility to a specific antibiotic, using the features pre-selected in Phase I  
as input of supervised learning. A predictive function was trained and 
validated for each of the 26 antibiotics tested. Upon successful training 
and validation, inspection of the best-fit state of each predictive func-
tion allowed retrieval of the quantitative influence of each feature (that 
is, relative weight) in relation to predicting resistance/susceptibility 
to each antibiotic.

The following ML technologies were tested for implementation 
of the predictive functions: logistic regression, linear support vector 
machine, radial basis function support vector machine, extra tree clas-
sifier, random forest, Adaboost and XGBoost, all implemented using 
the Python package Scikit-learn102. Nested cross-validation (NCV)107 
was used to assess the performance and select the optimal hyperpa-
rameters for each technology. NCV is an iterative procedure in which 
different configurations of the predictive function (that is, different 
hyperparameters driving the selected technology) are repeatedly 
tested for performance whilst reshuffling the training and testing 
sets. NCV consists of an outer loop dedicated to randomly reallocating 
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observations into new training and testing sets, and an inner loop where 
different configurations (sets of hyperparameters) for the predictive 
function are tested with the current training and testing set. In our 
analysis, we ran an NCV with a fivefold outer loop (five reshuffles of the 
training and testing sets) and a threefold inner loop (three reshuffles 
of the training set) for each different ML technology. Prediction per-
formance was measured via the receiver operating characteristic area 
under the curve (ROC-AUC, referred to simply as AUC in the following), 
accuracy, sensitivity, specificity and precision, all computed at each 
iteration of the outer loop108. Thirty iterations of the NCV assessments 
were completed for each ML technology. The technologies were then 
compared by running an F-test on the mean quantitative results for 
each using the AUC metric. A minimum of 12 samples in the minority 
class were required for the classification for SMOTE and NCV. Nine 
antibiotics (ampicillin, ampicillin–sulbactam, cefazolin, ciprofloxacin, 
doxycycline, imipenem, levofloxacin, meropenem and tetracycline) 
lacked sufficient samples in one class to allow cross-validation and 
SMOTE, and so were not taken further. We compared the seven ML 
architectures to avoid bias in the analysis related to choosing a specific 
ML technology. Prediction performance was measured using 30 NCV 
iterations, with the final performance score defined as the mean of all 
runs. The Nemenyi test was used to verify which predictive function 
performed best out of the seven ML methods. The extra tree predictive 
functions ranked best according to all studied performance indicators 
apart from sensitivity (where all the predictive functions were consid-
ered statistically equivalent) and were finally selected to produce the 
correlation results. As the extra tree method had been selected to power 
the final predictive functions, Gini importance was used to extract the 
strongest predictors from the final, trained models.

Phase III
The last phase of the analysis consisted of the development of regres-
sion models to identify correlations between the set of faecal metage-
nome features identified in Phase II (predictors) and temperature/
humidity conditions. Only the predictors extracted from ML-powered 
models with AUC > 0.9 were considered.

A separate regression model was created to represent the relation-
ship of each predictor (considered as the input/explanatory variable) 
with either temperature or humidity (considered as the dependent 
variable). The predictor was treated as continuous if related to either a 
relative microbial abundance or ARG count. Temperature and humidity 
values were collected at each farm and averaged from the 7 days before 
the two time points t1 and t2.

Each regression model was developed using linear least-squares 
fitting (using the Python package SciPy101) using the coefficient of 
determination (r2) to assess the goodness of fit. Metagenome fea-
tures were considered to be significantly correlated with temperature 
or humidity if the slope of the regression line statistically differed 
from zero (P < 0.05 using the Wald test with t-distribution of the test 
statistic). We looked for correlations between the ARG read depth 
and species read depth, which would indicate the likelihood of ARGs 
originating from a particular species, as proposed by Tong et al.33. An 
undirected graph was created using NetworkX (v2.8.4)105 to visualize  
the interconnected ARGs and species selected by the regression  
framework for humidity and temperature.

Analysis of antibiotic use bias
The correlations observed between the metagenomic data in chicken 
faeces and the resistance profiles observed in E. coli may be influenced 
by the different antibiotic protocols that each farm adopted (Supple-
mentary Table 13). To identify whether the differences in antibiotic 
treatment in each farm led to bias in the selected metagenomic fea-
tures, we calculated the relative abundance of ARGs expressed by first 
grouping ARGs by relationship to each specific antibiotic, and then by 
computing ratios of ARGs present in the sample, divided by the total 

number of ARGs for each antibiotic, and then calculated the relative 
abundance of the microbial species. For these three cases, we used 
the Wilcoxon rank sum test to verify whether there was a difference 
between the samples from farms that received an antibiotic against 
the samples that did not receive that antibiotic.

Statistical analysis
For details of all statistical analyses, see the Supplementary 
Information.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The metagenomic sequencing data supporting the conclusions of this 
article are available in the NCBI database under Bioproject accession 
numbers PRJNA678871 (for Shandong 1_1 and 1_2) and PRJNA841806 
(for all other farms). In addition, the reference genome used for filter-
ing host DNA is available in the NBCI database under accession code 
GCF_000002315.6. All source data needed to recreate the figures are 
provided in the Supplementary Data 1.

Code availability
The code is available via Github at https://github.com/tan0101/ 
Commercial_MGS2023. The code was used for the machine learning 
classification, regression analysis and network analysis.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.
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Policy information about availability of computer code

Data collection Sensor data collected through vendor-proprietary data loggers, available in xls or csv formats
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Data analysis Our code is available on Github: https://github.com/tan0101/Commercial_MGS2023 
For the bioinformatics analysis the following software were used: 
Readfq (V8, https://github.com/cjfields/readfq) 
Bowtie2 v2.3.4.1 
SAMtools v1.9 
MEGAHIT software v1.1.2 
BWA MEM v2-2.1 
METABAT2v2.15 
MetaPhlAn v3.0 
Rv3.6.2 
To perform the ML and data analysis anaylsis the following software were used: 
IQ-tree2v2.0.6 
BEASTv1.10.4 
Tracer v1.7.1 
python (v3.9.15) 
scikit-learn(v1.0.2), 
scipy (v1.9.3) 
networkx (v2.8.4)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The metagenomic sequencing data supporting the conclusions of this article are available in the NCBI database under Bioproject accession numbers PRJNA678871 
(for Shandong 1_1 and 1_2) and PRJNA841806 (for all other farms) available on: https://www.ncbi.nlm.nih.gov/bioproject/PRJNA678871 and https://
www.ncbi.nlm.nih.gov/bioproject/PRJNA841806. In addition the reference genome used for filtering host DNA is available in NBCI database under accession 
GCF_000002315.6 https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_000002315.6/.

Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender n/a

Reporting on race, ethnicity, or 
other socially relevant 
groupings

n/a

Population characteristics n/a

Recruitment n/a

Ethics oversight n/a

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size For the analysis of how microbial communities and resistomes are differentiated across farm sources and between farm and abattoir, we did 
not perform sample size calculation as this was an observational/exploratory study. 
For the results demonstrating the proposed approach to the AMR surveillance (based on ML prediction of resistant phenotypes), sample size 
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is based on achieving desired power in the predictor. For binary classifiers, power is the sensitivity (true positive rate, defined as 1-beta, 
where beta is the false negative rate, i.e. type II error (Banerjee, A. et al. 2009, Industrial psychiatry journal). Note that the type II error is 
particularly relevant for resistance, as it implies a resistant phenotype escaping detection (Mahfouz, N. et al. 2020, Journal of Antimicrobial 
Chemotherapy). Using 191 samples, we achieved an average power of 92% for the 11 antibiotic models studied. We also wanted to identify 
the minimum number of samples required to achieve at least 80% sensitivity (power). Because for classifiers based on ML (e.g. SVMs, decision 
trees, random forest, adaboost, neural networks), sample size calculation to achieve power is not directly possible using conventional 
analytical methods (Li. J. et al. 2020, Patterns), we applied a bespoke iterative method (wrapper backward selection - WBS, Figueroa, R et al. 
2012, BMC Medical Informatics and Decision Making) as done in our previous paper (Maciel-Guerra, A. et al. 2022, The ISME Journal). The 
method estimates how power decreases with smaller sample sizes. In our case, WBS estimated the need of 160 samples on average, to 
achieve 80% power, which is less to what we used (191).

Data exclusions No data were excluded.

Replication At least three biological replicates per sample were taken, all were successful.

Randomization Biological samples were collected randomly without knowing the AMR phenotypes. 
For the analysis of how microbial communities and resistomes are differentiated across farm sources and between farm and abattoir, random 
assignment to groups was not performed as this is an exploratory/observational study. 
For the ML classification the samples were randomly assigned to training and testing groups using a nested cross validation procedure (30 
iterations per classifier).

Blinding Biological samples were collected randomly without knowing the AMR phenotypes.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods
n/a Involved in the study

ChIP-seq
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MRI-based neuroimaging
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