Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Global food loss and waste embodies unrecognized harms to air quality and biodiversity hotspots

Abstract

Global food loss and waste (FLW) undermines the resilience and sustainability of food systems and is closely tied to the United Nation’s Sustainable Development Goals on climate, resource use and food security. Here we reveal strong yet under-discussed interconnections between FLW and two other Sustainable Development Goals of Human Health and Life on Land via the nitrogen cycle. We find that eliminating global FLW in 2015 would have reduced anthropogenic NH3 emissions associated with food production by 11.4 Tg (16%), decreased local PM2.5 concentrations by up to 5 μg m−3 and PM2.5-related years of life lost by 1.5 million years, and mitigated nitrogen critical load exceedances in global biodiversity hotspots by up to 19%. Halving FLW in 2030 will reduce years of life lost by 0.5–0.8 million years and nitrogen deposition by 4.7–6.0 Tg N per year (4%) (range for socioeconomic pathways). Complementary to near-term NH3 mitigation potential via technological measures, our study emphasizes incentivizing FLW reduction efforts from air quality and ecosystem health perspectives.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Contribution of global FL and FW to NH3 emissions in 2015.
Fig. 2: PM2.5 air quality and public health benefits of addressing global FLW in 2015 and 2030.
Fig. 3: Reductions in nitrogen deposition achieved through addressing global FLW in 2015 and 2030.
Fig. 4: Nitrogen deposition reductions in biodiversity hotspots achieved through FLW reductions.

Similar content being viewed by others

Data availability

The datasets generated or analysed during this study are available in the Mendeley Data repository at https://data.mendeley.com/datasets/jjfg7h8bvd/1 (https://doi.org/10.17632/jjfg7h8bvd.1). The FAOSTAT dataset is publicly available at https://www.fao.org/faostat/en/#home. Source data are provided with this paper.

Code availability

The GEOS-Chem atmospheric chemistry model is available at https://geoschem.github.io/. The GAINS model is available at https://gains.iiasa.ac.at/models/gains_models4.html. The MATLAB codes generated for data analyses and visualization are also available in the Mendeley Data repository at https://data.mendeley.com/datasets/jjfg7h8bvd/1 (https://doi.org/10.17632/jjfg7h8bvd.1).

References

  1. Transforming Our World: The 2030 Agenda for Sustainable Development (United Nations, 2015).

  2. Crippa, M. et al. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2, 198–209 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. AQUASTAT: FAO Global Information System on Water and Agriculture (2015); (FAO, accessed October 2022); www.fao.org/aquastat/

  4. Campbell, B. M. et al. Agriculture production as a major driver of the Earth system exceeding planetary boundaries. Ecol. Soc. 22 (2017); https://www.jstor.org/stable/26798991

  5. Liu, X. et al. Strategic thinking on China’s food system transition from perspective of Sustainable Development Goals. Bull. Chin. Acad. Sci. 38, 112–122 (2023) (in Chinese).

    ADS  Google Scholar 

  6. Springmann, M. et al. Health and nutritional aspects of sustainable diet strategies and their association with environmental impacts: a global modelling analysis with country-level detail. Lancet Planet. Health 2, e451–e461 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zhang, X. et al. Managing nitrogen for sustainable development. Nature 528, 51–59 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Chang, J. et al. Reconciling regional nitrogen boundaries with global food security. Nat. Food 2, 700–711 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Springmann, M. et al. Options for keeping the food system within environmental limits. Nature 562, 519–525 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Gustavsson, J. et al. Global Food Losses and Food Waste—Extent, Causes and Prevention (FAO, 2011).

  11. Creating a Sustainable Food Future. A Menu of Solutions to Sustainably Feed More than 9 Billion People by 2050 (World Resource Institute, 2014).

  12. Law of the People’s Republic of China on Food Waste. The National People’s Congress of the People’s Republic of China http://www.npc.gov.cn/englishnpc/c23934/202112/f4b687aa91b0432baa4b6bdee8aa1418.shtml (2021).

  13. Kummu, M. et al. Lost food, wasted resources: global food supply chain losses and their impacts on freshwater, cropland, and fertilizer use. Sci. Total Environ. 438, 477–489 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Liu, J. et al. Food losses and waste in China and their implication for water and land. Environ. Sci. Technol. 47, 10137–10144 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Munesue, Y. et al. The effects of reducing food losses and food waste on global food insecurity, natural resources, and greenhouse gas emissions. Environ. Econ. Policy Stud. 17, 43–77 (2015).

    Article  Google Scholar 

  16. Porter, S. D. et al. A half-century of production-phase greenhouse gas emissions from food loss & waste in the global food supply chain. Sci. Total Environ. 571, 721–729 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Li, B. et al. Food waste and the embedded phosphorus footprint in China. J. Clean. Prod. 252, 119909 (2020).

    Article  CAS  Google Scholar 

  18. Song, G. et al. Food consumption and waste and the embedded carbon, water and ecological footprints of households in China. Sci. Total Environ. 529, 191–197 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. ‘World Bank. 2020. Addressing Food Loss and Waste: A Global Problem with Local Solutions. World Bank, Washington, DC. © World Bank. https://openknowledge.worldbank.org/handle/10986/34521 License: CC BY 3.0 IGO.’ (2020).

  20. Hoesly, R. M. et al. Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS). Geosci. Model Dev. 11, 369–408 (2018).

    Article  ADS  CAS  Google Scholar 

  21. Pozzer, A. et al. Impact of agricultural emission reductions on fine-particulate matter and public health. Atmospheric Chem. Phys. 17, 12813 (2017).

    Article  ADS  CAS  Google Scholar 

  22. Guo, Y. et al. Air quality, nitrogen use efficiency and food security in China are improved by cost-effective agricultural nitrogen management. Nat. Food 1, 648–658 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Megaritis, A. G. et al. Response of fine particulate matter concentrations to changes of emissions and temperature in Europe. Atmospheric Chem. Phys. 13, 3423–3443 (2013).

    Article  ADS  Google Scholar 

  24. Pinder, R. W. et al. Environmental impact of atmospheric NH3 emissions under present and future conditions in the eastern United States. Geophys. Res. Lett. 35 L12808, (2008).

  25. Pinder, R. W. et al. Ammonia emission controls as a cost-effective strategy for reducing atmospheric particulate matter in the eastern United States. Environ. Sci. Technol. 41, 380–386 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Gu, B. et al. Abating ammonia is more cost-effective than nitrogen oxides for mitigating PM2.5 air pollution. Science 374, 758–762 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. WHO global air quality guidelines: particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. World Health Organization https://apps.who.int/iris/handle/10665/345329 (2021).

  28. Global Burden of Disease Study 2019 (GBD 2019) results. Institute for Health Metrics and Evaluation http://ghdx.healthdata.org/gbd-results-tool (2020).

  29. Nilsson, J. et al. in Air Pollution and Ecosystems (ed. Mathy, P.) 85–91 (Springer, 1988).

  30. Lovett, G. M. et al. Critical issues for critical loads. Proc. Natl Acad. Sci. USA 110, 808 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Hicks, W. K. et al. in Nitrogen Deposition, Critical Loads and Biodiversity (eds. Sutton, M. A. et al.) 1–4 (Springer, 2014).

  32. Reinds, G. J. et al. in Critical Loads and Dynamic Risk Assessments: Nitrogen, Acidity and Metals in Terrestrial and Aquatic Ecosystems (eds. de Vries, W., Hettelingh, J.-P. & Posch, M.) 403–417 (Springer, 2015).

  33. Hettelingh, J. P. et al. Critical load, dynamic modeling and impact assessment in Europe: CCE Status Report 2008, Coordination Center for Effects, Netherlands Environmental Assessment Agency, Bilthoven, Netherlands. Report No. 500090003. ISBN No. 978-90-6960-211-0. EEA https://www.eea.europa.eu/data-and-maps/indicators/exposure-of-ecosystems-to-acidification-2/critical-load-dynamic-modeling-and (2008).

  34. Bouwman, A. F. et al. A global analysis of acidification and eutrophication of terrestrial ecosystems. Water Air Soil Pollut. 141, 349–382 (2002).

    Article  ADS  CAS  Google Scholar 

  35. Payne, R. J. et al. Impact of nitrogen deposition at the species level. Proc. Natl Acad. Sci. USA 110, 984–987 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Vira, J. et al. An improved mechanistic model for ammonia volatilization in Earth system models: Flow of Agricultural Nitrogen version 2 (FANv2). Geosci. Model Dev. 13, 4459–4490 (2020).

    Article  ADS  CAS  Google Scholar 

  37. Riddick, S. N. et al. Estimate of changes in agricultural terrestrial nitrogen pathways and ammonia emissions from 1850 to present in the Community Earth System Model. Biogeosciences 13, 3397–3426 (2015).

  38. Feng, L. et al. The generation of gridded emissions data for CMIP6. Geosci. Model Dev. 13, 461–482 (2020).

    Article  ADS  CAS  Google Scholar 

  39. Zhang, X. et al. Societal benefits of halving agricultural ammonia emissions in China far exceed the abatement costs. Nat. Commun. 11, 4357 (2020).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  40. Ma, R. et al. Mitigation potential of global ammonia emissions and related health impacts in the trade network. Nat. Commun. 12, 6308 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gerten, D. et al. Feeding ten billion people is possible within four terrestrial planetary boundaries. Nat. Sustain. 3, 200–208 (2020).

    Article  Google Scholar 

  42. Aune, D. et al. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality—a systematic review and dose-response meta-analysis of prospective studies. Int. J. Epidemiol. 46, 1029–1056 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Guo, Y. et al. Environmental and human health trade-offs in potential Chinese dietary shifts. One Earth 5, 268–282 (2022).

    Article  ADS  Google Scholar 

  44. Wang, M. et al. Accounting for interactions between Sustainable Development Goals is essential for water pollution control in China. Nat. Commun. 13, 730 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jägermeyr, J. et al. Reconciling irrigated food production with environmental flows for Sustainable Development Goals implementation. Nat. Commun. 8, 15900 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  46. Hoehn, D. et al. A critical review on food loss and waste quantification approaches: is there a need to develop alternatives beyond the currently widespread pathways? Resour. Conserv. Recycl. 188, 106671 (2023).

    Article  Google Scholar 

  47. Xue, L. et al. Missing food, missing data? A critical review of global food losses and food waste data. Environ. Sci. Technol. 51, 6618–6633 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Magalhães, V. S. M. et al. Causes and mitigation strategies of food loss and waste: a systematic literature review and framework development. Sustain. Prod. Consum. 28, 1580–1599 (2021).

    Article  Google Scholar 

  49. Brander, M. et al. Improved on-farm storage reduces seasonal food insecurity of smallholder farmer households—evidence from a randomized control trial in Tanzania. Food Loss Waste Evid. Eff. Policies 98, 101891 (2021).

    Google Scholar 

  50. Attiq, S. et al. Antecedents of consumer food waste reduction behavior: psychological and financial concerns through the lens of the theory of interpersonal behavior. Int. J. Environ. Res. Public Health 18, 12457 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Min, S. et al. Does dietary knowledge affect household food waste in the developing economy of China? Food Loss Waste Evid. Eff. Policies 98, 101896 (2021).

    Google Scholar 

  52. Three-year action plan to win the battle for a blue sky [in Chinese]. National Development and Reform Commission of the State Council of China http://www.gov.cn/zhengce/content/2018-07/03/content_5303158.htm?gs_ws=weixin_636662351573937202&from=timeline&isappinstalled=0 (2018).

  53. Stokstad, E. et al. Nitrogen crisis threatens Dutch environment—and economy. Science 366, 1180–1181 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  54. Xue, L. et al. China’s food loss and waste embodies increasing environmental impacts. Nat. Food 2, 519–528 (2021).

    Article  PubMed  Google Scholar 

  55. Paulot, F. et al. Ammonia emissions in the United States, European Union, and China derived by high‐resolution inversion of ammonium wet deposition data: Interpretation with a new agricultural emissions inventory (MASAGE_NH3). J. Geophys. Res. Atmos. 119, 4343–4364 (2014).

    Article  ADS  CAS  Google Scholar 

  56. Zhu, L. et al. Global evaluation of ammonia bidirectional exchange and livestock diurnal variation schemes. Atmos. Chem. Phys. 15, 12823 (2015).

    Article  ADS  CAS  Google Scholar 

  57. Paulot, F. et al. Hidden cost of U.S. agricultural exports: particulate matter from ammonia emissions. Env. Sci. Technol. 48, 903–908 (2014).

    Article  CAS  Google Scholar 

  58. Nevison, C. et al. Denitrification, leaching, and river nitrogen export in the Community Earth System Model. J. Adv. Model. Earth Syst. 8, 272–291 (2016).

  59. Fung, K. M. et al. Modeling the interinfluence of fertilizer-induced NH3 emission, nitrogen deposition, and aerosol radiative effects using modified CESM2. Biogeosciences 19, 1635–1655 (2022).

  60. Vira, J. et al. Evaluation of interactive and prescribed agricultural ammonia emissions for simulating atmospheric composition in CAM-chem. Atmos. Chem. Phys. 22, 1883–1904 (2022).

    Article  ADS  CAS  Google Scholar 

  61. Hurtt, G. C. et al. Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim. Change 109, 117 (2011).

    Article  ADS  Google Scholar 

  62. Bey, I. et al. Global modeling of tropospheric chemistry with assimilated meteorology: model description and evaluation. J. Geophys. Res. Atmos. 106, 23073–23095 (2001).

    Article  ADS  CAS  Google Scholar 

  63. Hu, L. et al. Global simulation of tropospheric chemistry at 12.5 km resolution: performance and evaluation of the GEOS-Chem chemical module (v10-1) within the NASA GEOS Earth system model (GEOS-5 ESM). Geosci. Model Dev. 11, 4603–4620 (2018).

    Article  ADS  CAS  Google Scholar 

  64. McDuffie, E. E. et al. Source sector and fuel contributions to ambient PM2.5 and attributable mortality across multiple spatial scales. Nat. Commun. 12, 3594 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhai, S. et al. Control of particulate nitrate air pollution in China. Nat. Geosci. 14, 389–395 (2021).

    Article  ADS  CAS  Google Scholar 

  66. Ackerman, D. et al. Global estimates of inorganic nitrogen deposition across four decades. Glob. Biogeochem. Cycles 33, 100–107 (2019).

    Article  ADS  CAS  Google Scholar 

  67. Zhao, Y. et al. Atmospheric nitrogen deposition to China: a model analysis on nitrogen budget and critical load exceedance. Atmos. Environ. 153, 32–40 (2017).

    Article  ADS  CAS  Google Scholar 

  68. Li, M. et al. MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP. Atmos. Chem. Phys. 17, 935 (2017).

    Article  ADS  CAS  Google Scholar 

  69. Randerson, J. T. et al. Global Fire Emissions Database, Version 4.1 (GFEDv4). ORNL DAAC https://doi.org/10.3334/ORNLDAAC/1293 (2018).

  70. Xu, W. et al. A database of atmospheric nitrogen concentration and deposition from the nationwide monitoring network in China. Sci. Data 6, 51 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Hammer, M. S. et al. Global estimates and long-term trends of fine particulate matter concentrations (1998–2018). Environ. Sci. Technol. 54, 7879–7890 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  72. van Donkelaar, A. et al. Regional estimates of chemical composition of fine particulate matter using a combined geoscience-statistical method with information from satellites, models, and monitors. Environ. Sci. Technol. 53, 2595–2611 (2019).

    Article  ADS  PubMed  Google Scholar 

  73. Zhang, Q. et al. Drivers of improved PM2.5 air quality in China from 2013 to 2017. Proc. Natl Acad. Sci. USA 116, 24463–24469 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  74. Szopa, et al. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Masson-Delmotte, V. et al.) 817–922 (Cambridge Univ. Press, 2021).

  75. Burnett, R. et al. Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. Proc. Natl Acad. Sci. USA 115, 9592–9597 (2018).

  76. Zhou, M. et al. Environmental benefits and household costs of clean heating options in northern China. Nat. Sustain. 5, 329–338 (2022).

    Article  MathSciNet  Google Scholar 

  77. Vohra, K. et al. Rapid rise in premature mortality due to anthropogenic air pollution in fast-growing tropical cities from 2005 to 2018. Sci. Adv. 8, eabm4435 (2022)

  78. Shaddick, G. et al. Data integration for the assessment of population exposure to ambient air pollution for global burden of disease assessment. Environ. Sci. Technol. 52, 9069–9078 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  79. Gridded Population of the World, Version 4 (GPWv4): population count adjusted to match 2015 Revision of UN WPP Country Totals, Revision 11. NASA Socioeconomic Data and Applications Center (2018); https://doi.org/10.7927/H4PN93PB

  80. Du, E. et al. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 13, 221–226 (2020).

    Article  ADS  CAS  Google Scholar 

  81. Bobbink, R. et al. Effects and Empirical Critical Loads of Nitrogen for Europe. In Critical Loads and Dynamic Risk Assessments (eds de Vries, W., Hettelingh, J. P. & Posch, M.) (Springer Dordrecht, 2015).

  82. Bobbink, R. et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol. Appl. 20, 30–59 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. Myers, N. & Mittermeier et al. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  84. Koenig, K. Biodiversity hotspots map (English labels). Zenodo https://zenodo.org/record/4311850#.YbQUsC10cn1 (2016).

  85. Phoenix, G. K. et al. Atmospheric nitrogen deposition in world biodiversity hotspots: the need for a greater global perspective in assessing N deposition impacts. Glob. Change Biol. 12, 470–476 (2006).

    Article  ADS  Google Scholar 

  86. Global Modeling and Assimilation Office (GMAO) Modern-Era Retrospective analysis for Research and Applications Version 2 (Goddard Space Flight Center Distributed Active Archive Center (GSFC DAAC), accessed April 2020); https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/

  87. Lamsal, Lok N. et al. 2021. Ozone Monitoring Instrument (OMI) Aura nitrogen dioxide standard product version 4.0 with improved surface and cloud treatments. Atmos. Meas. Tech. https://doi.org/10.5194/amt-14-455-2021 (2021).

  88. Van Damme, M. et al. Level 2 dataset and Level 3 oversampled average map of the IASI/Metop-A ammonia (NH3) morning column measurements (ANNI-NH3-v2.1R-I) from 2008 to 2016. PANGAEA https://doi.org/10.1594/PANGAEA.894736 (2018).

  89. Amann, M. et al. Environmental improvements of the 2012 Revision of the Gothenburg Protocol. IIASA CIAM Rep. 1, (2012).

  90. Amann, M. et al. Reducing global air pollution: the scope for further policy interventions. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 378, 20190331 (2020).

    ADS  CAS  Google Scholar 

  91. Li, J. et al. Spatializing environmental footprint by integrating geographic information system into life cycle assessment: a review and practice recommendations. J. Clean. Prod. 323, 129113 (2021).

    Article  Google Scholar 

  92. Ercsey-Ravasz, M. et al. Complexity of the international agro-food trade network and its impact on food safety. PLoS ONE 7, e37810 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (41922037 and 71961137011), the PKU-IIASA (International Institute for Applied Systems Analysis) postdoctoral fellowship, International Fellowship for Postdoc Researchers (YJ20210002) and Special Support Fellowship (2022T150005) by China Postdoctoral Science Foundation, and High-performance Computing Platform of Peking University. This work was funded in part by the US Department of Energy (grant no. DE-SC0016361).

Author information

Authors and Affiliations

Authors

Contributions

Y.G., G.L. and L.Z. designed the study. Y.G., H.T. and M.Z. performed the research. L.Z., P.G.H., J.V., G.L., Xueying L., Xuejun L. and F.P. contributed data and analytical tools. Y.G., G.L. and L.Z. analysed the results and wrote the manuscript, with valuable suggestions contributed by all other co-authors.

Corresponding authors

Correspondence to Lin Zhang or Gang Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Food thanks Guobao Song and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–11 and Tables 1–6.

Reporting Summary

Source data

Source Data Fig. 1

Raw data for six map contours in Fig. 1.

Source Data Fig. 2

Raw data for one map contour in Fig. 2.

Source Data Fig. 3

Raw data for one map contour in Fig. 3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Tan, H., Zhang, L. et al. Global food loss and waste embodies unrecognized harms to air quality and biodiversity hotspots. Nat Food 4, 686–698 (2023). https://doi.org/10.1038/s43016-023-00810-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43016-023-00810-0

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene