Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Pathways framework identifies wildfire impacts on agriculture


Wildfires are a growing concern to society and the environment in many parts of the world. Within the United States, the land area burned by wildfires has steadily increased over the past 40 years. Agricultural land management is widely understood as a force that alters fire regimes, but less is known about how wildfires, in turn, impact the agriculture sector. Based on an extensive literature review, we identify three pathways of impact—direct, downwind and downstream—through which wildfires influence agricultural resources (soil, water, air and photosynthetically active radiation), labour (agricultural workers) and products (crops and livestock). Through our pathways framework, we highlight the complexity of wildfire–agriculture interactions and the need for collaborative, systems-oriented research to better quantify the magnitude of wildfire impacts and inform the adaptation of agricultural systems to an increasingly fire-prone future.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Trends in burned area.
Fig. 2: Land cover and fire intensity in the western United States and Sonoma County.
Fig. 3: Pathways of wildfire impacts on agricultural systems.

Data availability

The annual burned area datasets used were open access and obtained from the Global Fire Emissions Database analysis tool (1997–2016)116 and the National Interagency Fire Center (1983–2020)13. Burned areas were converted and reported in square kilometres per year. Land-cover data and fire intensity data in Fig. 2 were extracted from two open-access sites: land-cover data were derived from the National Land Cover Database (NLCD) 2019 (ref. 117) and fire intensity data were derived from the Monitoring Trends in Burned Severity (MTBS) dataset, where fire intensity is rated from 1–4 (low–high) each year118.


  1. Bowman, D. M. J. S. et al. The human dimension of fire regimes on Earth. J. Biogeogr. 38, 2223–2236 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  2. McLauchlan, K. K. et al. Fire as a fundamental ecological process: research advances and frontiers. J. Ecol. 108, 2047–2069 (2020).

    Article  Google Scholar 

  3. Lake, F. K. & Christianson, A. C. in Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires 1–9 (Springer, Cham, 2020).

  4. Vinyeta, K. Under the guise of science: how the US Forest Service deployed settler colonial and racist logics to advance an unsubstantiated fire suppression agenda. Environ. Sociol. 8, 134–148 (2021).

    Article  Google Scholar 

  5. Spies, T. A. et al. Examining fire-prone forest landscapes as coupled human and natural systems. Ecol. Soc. (2014).

  6. Glenn, E. N. Settler colonialism as structure: a framework for comparative studies of U.S. race and gender formation. Sociol. Race Ethnic. 1, 52–72 (2015).

    Article  Google Scholar 

  7. Impacts, Risks, and Adaptations in the United States: Fourth National Climate Assessment Vol. 2 (US Global Change Research Program, 2018).

  8. Climate Change Indicators: Wildfires (US EPA, 2016);

  9. Wehner, M. F., Arnold, J. R., Knutson, T., Kunkel, K. E. & LeGrande, A. N. in Climate Science Special Report: Fourth National Climate Assessment Vol. 1 (eds Wuebbles, D. J. et al.) 231–256 (U.S. Global Change Research Program, 2017).

  10. Andela, N. et al. A human-driven decline in global burned area. Science 356, 1356–1362 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl Acad. Sci. USA 113, 11770–11775 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Spreading Like Wildfire: The Rising Threat of Extraordinary Landscape Fires (United Nations Environment Programme, 2022).

  13. Wildfires and Acres: Total Wildland Fires and Acres (1983-2020) (National Interagency Coordination Center, 2020);

  14. Cause of Loss (United States Department of Agriculture Risk Management Agency, 2020);

  15. Brey, S. J., Barnes, E. A., Pierce, J. R., Swann, A. L. S. & Fischer, E. V. Past variance and future projections of the environmental conditions driving western U.S. summertime wildfire burn area. Earth Future 9, e2020EF001645 (2021).

    Article  ADS  Google Scholar 

  16. 2017 Census of Agriculture (USDA National Agricultural Statistics Service, 2019).

  17. The Impact of Natural Hazards and Disasters on Agriculture, Food Security and Nutrition (FAO, 2015);

  18. The Impact of Disasters and Crises on Agriculture and Food Security (FAO, 2017);

  19. Confronting the Wildfire Crisis: A Strategy for Protecting Communities and Improving Resilience in America’s Forests (USDA Forest Service, 2022);

  20. Rethorst, D. N., Spare, R. K. & Kellenberger, J. L. Wildfire response in range cattle. Vet. Clin. N. Am. Food Animal Pract. 34, 281–288 (2018).

    Article  Google Scholar 

  21. Disaster Assistance: Livestock Indemnity Program (US Department of Agriculture Farm Service Agency, 2021);,market%20value%20of%20the%20livestock

  22. Franklin, K. A. et al. Buffelgrass (Pennisetum ciliare) land conversion and productivity in the plains of Sonora, Mexico. Biol. Conserv. 127, 62–71 (2006).

    Article  Google Scholar 

  23. Butler, B. D. W. & Fairfax, R. J. Buffel grass and fire in a Gidgee and Brigalow woodland: a case study from central Queensland. Ecol. Manage. Restor. 4, 120–125 (2003).

    Article  Google Scholar 

  24. Davison, J. Livestock grazing in wildland fuel management programs. Rangelands 18, 242–245 (1996).

    Google Scholar 

  25. Lasanta, T. et al. Clearing shrubland and extensive livestock farming: active prevention to control wildfires in the Mediterranean mountains. J. Environ. Manage. 227, 256–266 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Davies, K. W., Boyd, C. S., Bates, J. D. & Hulet, A. Winter grazing can reduce wildfire size, intensity and behaviour in a shrub-grassland. Int. J. Wildland Fire 25, 191–199 (2015).

    Article  Google Scholar 

  27. Forrest, T. Use of livestock to mitigate risk of wildfire and for restoration. In Restoring the West Conference 2015 - Restoration and Fire in the Interior West (Utah State Univ., 2015);

  28. The Impact of Wildfires on California Agriculture Report (California State Assembly Committee, 2020);

  29. Bittle, J. As wildfires worsen, more California farms are deemed too risky to insure. Grist (28 July 2021).

  30. Rubio, S. SB-11 The California FAIR Plan Association: Basic Property Insurance: Exclusions. California Insurance Code 10091-10094.5 (California State Senate, 2021).

  31. Flavelle, C. Wildfires hasten another climate crisis: homeowners who can’t get insurance. The New York Times (10 Sep 2020).

  32. Flavelle, C. Scorched, parched and now uninsurable: climate change hits wine country. The New York Times (18 July 2021).

  33. Martichoux, A., Feingold, L. & Behle, B. Glass Fire map shows wineries, landmarks destroyed in wine country. ABC7 News (14 October 2021);

  34. Disaster Assistance: Noninsured Crop Disaster Assistance Program (US Department of Agriculture Farm Service Agency, 2020);

  35. Soil Health (United States Department of Agriculture Natural Resources Conservation Service, 2019);

  36. Hrelja, I., Šestak, I. & Bogunović, I. Wildfire impacts on soil physical and chemical properties: a short review of recent studies. Agricult. Conspect. Sci. 85, 293–301 (2020).

    Google Scholar 

  37. Pellegrini, A. F. A. et al. Low-intensity frequent fires in coniferous forests transform soil organic matter in ways that may offset ecosystem carbon losses. Glob. Change Biol. 27, 3810–3823 (2021).

    Article  CAS  Google Scholar 

  38. Muñoz-Rojas, M., Erickson, T. E., Martini, D., Dixon, K. W. & Merritt, D. J. Soil physicochemical and microbiological indicators of short, medium and long term post-fire recovery in semi-arid ecosystems. Ecol. Indic. 63, 14–22 (2016).

    Article  Google Scholar 

  39. Jiménez-González, M. A. et al. Post-fire recovery of soil organic matter in a cambisol from typical Mediterranean forest in Southwestern Spain. Sci. Total Environ. 572, 1414–1421 (2016).

    Article  ADS  PubMed  Google Scholar 

  40. Rhoades, C. C. et al. The legacy of a severe wildfire on stream nitrogen and carbon in headwater catchments. Ecosystems 22, 643–657 (2019).

    Article  CAS  Google Scholar 

  41. Doerr, S. H., Shakesby, R. A. & Walsh, R. P. D. Soil water repellency: its causes, characteristics and hydro-geomorphological significance. Earth Sci. Rev. 51, 33–65 (2000).

    Article  ADS  Google Scholar 

  42. Moody, J. A. et al. Relations between soil hydraulic properties and burn severity. Int. J. Wildland Fire 25, 279 (2015).

    Article  Google Scholar 

  43. Larsen, I. J. et al. Causes of post-fire runoff and erosion: water repellency, cover, or soil sealing? Soil Sci. Soc. Am. 73, 1393–1407 (2009).

    Article  CAS  Google Scholar 

  44. Letey, J. Causes and consequences of fire-induced soil water repellency. Hydrol. Process. 15, 2867–2875 (2001).

    Article  ADS  Google Scholar 

  45. Bladon, K. D., Emelko, M. B., Silins, U. & Stone, M. Wildfire and the future of water supply. Environ. Sci. Technol. 48, 8936–8943 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  46. González-Pérez, J. A., González-Vila, F. J., Almendros, G. & Knicker, H. The effect of fire on soil organic matter—a review. Environ. Int. 30, 855–870 (2004).

    Article  PubMed  Google Scholar 

  47. Moench, R. & Fusaro, J. Soil Erosion Control after Wildfire 6.308 (Colorado State Univ., 2012);

  48. Stavi, I. et al. Fire impact on soil-water repellency and functioning of semi-arid croplands and rangelands: Implications for prescribed burnings and wildfires. Geomorphology 280, 67–75 (2017).

    Article  ADS  Google Scholar 

  49. Pressler, Y., Moore, J. C. & Cotrufo, F. Belowground community responses to fire: meta-analysis reveals contrasting responses of soil microorganisms and mesofauna. Oikos 128, 309–327 (2018).

    Article  Google Scholar 

  50. Whitman, T. et al. Soil bacterial and fungal response to wildfires in the Canadian boreal forest across a burn severity gradient. Soil Biol. Biochem. (2019).

  51. Glassman, S. I., Levine, C. R., DiRocco, A. M., Battles, J. J. & Bruns, T. D. Ectomycorrhizal fungal spore bank recovery after a severe forest fire: some like it hot. ISME J. 10, 1228–1239 (2016).

    Article  PubMed  Google Scholar 

  52. Nelson, A. R. et al. Wildfire-dependent changes in soil microbiome diversity and function. Nat. Microbiol. 7, 1419–1430 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cobo-Díaz, J. F. et al. Metagenomic assessment of the potential microbial nitrogen pathways in the rhizosphere of a Mediterranean forest after a wildfire. Microb. Ecol. 69, 895–904 (2015).

    Article  PubMed  Google Scholar 

  54. Niboyet, A. et al. Global change could amplify fire effects on soil greenhouse gas emissions. PLoS ONE (2011).

  55. Liao, X., Inglett, P. W. & Inglett, K. S. Fire effects on nitrogen cycling in native and restored in calcareous wetlands. Fire Ecol. 9, 6–20 (2013).

    Article  Google Scholar 

  56. Dove, N. C., Safford, H. D., Bohlman, G. N., Estes, B. L. & Hart, S. C. High-severity wildfire leads to multi-decadal impacts on soil biogeochemistry in mixed-conifer forests. Ecol. Adapt. (2020).

  57. Ball, P. N., Mackenzie, M. D., DeLuca, T. H. & Holben Montana, W. E. Wildfire and charcoal enhance nitrification and ammonium-oxidizing bacterial abundance in dry montane forest soils. J. Environ. Qual. (2010).

  58. Pulido-Chavez, M. F., Alvarado, E. C., DeLuca, T. H., Edmonds, R. L. & Glassman, S. I. High-severity wildfire reduces richness and alters composition of ectomycorrhizal fungi in low-severity adapted ponderosa pine forests. For. Ecol. Manage. (2021).

  59. Dove, N. C., Safford, H. D., Bohlman, G. N., Estes, B. L. & Hart, S. C. High-severity wildfire leads to multi-decadal impacts on soil biogeochemistry in mixed-conifer forests. Ecol. Appl. 30, e02072 (2020).

    Article  PubMed  Google Scholar 

  60. O’Dell, K. et al. Estimated mortality and morbidity attributable to smoke plumes in the United States: not just a western US problem. Geohealth 5, e2021GH000457 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Prendergast-Miller, M. T. et al. Wildfire impact: natural experiment reveals differential short-term changes in soil microbial communities. Soil Biol. Biochem. 109, 1–13 (2017).

    Article  CAS  Google Scholar 

  62. Fenske, R. A. & Pinkerton, K. E. Climate change and the amplification of agricultural worker health risks. J. Agromed. 26, 15–17 (2021).

    Article  Google Scholar 

  63. Austin, E., Kasner, E., Seto, E. & Spector, J. Combined burden of heat and particulate matter air quality in WA agriculture. J. Agromed. 26, 18–27 (2020).

    Article  Google Scholar 

  64. Reid, C. E. et al. Critical review of health impacts of wildfire smoke exposure. Environ. Health Perspect. 124, 1334–1343 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Riden, H. E. et al. Wildfire smoke exposure: awareness and safety responses in the agricultural workplace. J. Agromed. 25, 330–338 (2020).

    Article  Google Scholar 

  66. Facts About Agricultural Workers (National Center for Farmworker Health, Inc., 2020);

  67. Spector, J. T. Heat Stress and Safety Issues for Farmers and Farmworkers in the Context of Climate Change (Climate Adaptation Research Center, 2020).

  68. Jackson, L. L. & Rosenberg, H. R. Preventing heat-related illness among agricultural workers. J. Agromed. 15, 200–215 (2010).

    Article  Google Scholar 

  69. Spector, J. T. et al. A case-crossover study of heat exposure and injury risk in outdoor agricultural workers. PLoS ONE 11, e0164498 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Layton, K. Proposed federal OSHA standards for wildfire smoke. Seattle J. Technol. Environ. Innov. Law 10, 5 (2020).

  71. Tigchelaar, M., Battisti, D. S. & Spector, J. T. Work adaptations insufficient to address growing heat risk for U.S. agricultural workers. Environ. Res. Lett. 15, 94035 (2020).

    Article  Google Scholar 

  72. Martin, P. US farm employment and farm workers. Wilson Center (24 June 2020);

  73. Hernandez, T. & Gabbard, S. Findings from the National Agricultural Workers Survey (NAWS) 2015-2016: A Demographic and Employment Profile of United States Farmworkers (US Department of Labor, 2018);

  74. Farmworkers’ Health Fact Sheet: Data from the National Agricultural Workers Survey (Farmworker Justice & The National Center for Farmworker Health, 2015);

  75. Davies, I. P., Haugo, R. D., Robertson, J. C. & Levin, P. S. The unequal vulnerability of communities of color to wildfire. PLoS ONE 13, e0205825 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Anderson, A., Rezamand, P. & Skibiel, A. L. Effects of wildfire smoke exposure on innate immunity, metabolism, and milk production in lactating dairy cows. J. Dairy Sci. 105, 7047–7060 (2022).

    Article  CAS  PubMed  Google Scholar 

  77. Worker Protection from Wildfire Smoke (California Department of Industrial Relations, 2021);

  78. Cotton, S. & Mcbride, T. Caring for Livestock During Disaster - 1.815 (Colorado State Univ., 2010).

  79. Beaupied, B. L. et al. Cows as canaries: the effects of ambient air pollution exposure on milk production and somatic cell count in dairy cows. Environ. Res. (2021).

  80. Cox, B. et al. Ambient air pollution-related mortality in dairy cattle: does it corroborate human findings? Epidemiology 27, 779–786 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Bertyn, F. Le brouillard et le bétail. Ann. Gembloux 25, 153–173 (1913).

    Google Scholar 

  82. Nemery, B., Hoet, P. H. & Nemmar, A. The Meuse Valley fog of 1930: an air pollution disaster. Lancet 357, 704–708 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Jaffe, D. A. & Wigder, N. L. Ozone production from wildfires: a critical review. Atmos. Environ. 51, 1–10 (2012).

    Article  ADS  CAS  Google Scholar 

  84. Hemes, K. S., Verfaillie, J. & Baldocchi, D. D. Wildfire‐smoke aerosols lead to increased light use efficiency among agricultural and restored wetland land uses in California’s Central Valley. J. Geophys. Res. Biogeosci. (2020).

  85. Robinson, M. A. et al. Variability and time of day dependence of ozone photochemistry in western wildfire plumes. Environ. Sci. Technol. 55, 10280–10290 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  86. Ninneman, M. & Jaffe, D. A. The impact of wildfire smoke on ozone production in an urban area: insights from field observations and photochemical box modeling. Atmos. Environ. (2021).

  87. Brey, S. J. & Fischer, E. V. Smoke in the city: how often and where does smoke impact summertime ozone in the United States? Environ. Sci. Technol. 50, 1288–1294 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  88. Hong, C. et al. Impacts of ozone and climate change on yields of perennial crops in California. Nat. Food 1, 166–172 (2020).

    Article  CAS  Google Scholar 

  89. McGrath, J. M. et al. An analysis of ozone damage to historical maize and soybean yields in the United States. Proc. Natl Acad. Sci. USA 112, 14390–14395 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  90. Mauzerall, D. L. & Wang, X. Protecting agricultural crops from the effects of tropospheric ozone exposure: reconciling science and standard setting in the United States, Europe, and Asia. Annu. Rev. Energy Environ. 26, 237–268 (2001).

    Article  Google Scholar 

  91. Zhang, J. et al. Effects of increasing aerosol optical depth on the gross primary productivity in China during 2000–2014. Ecol. Indic. 108, 105761 (2020).

    Article  Google Scholar 

  92. Greenwald, R. et al. The influence of aerosols on crop production: a study using the CERES crop model. Agric. Syst. 89, 390–413 (2006).

    Article  Google Scholar 

  93. Kanniah, K. D., Beringer, J., North, P. & Hutley, L. Control of atmospheric particles on diffuse radiation and terrestrial plant productivity: a review. Progr. Phys. Geogr. Earth Environ. 36, 209–237 (2012).

    Article  Google Scholar 

  94. Schiferl, L. D. & Heald, C. L. Particulate matter air pollution may offset ozone damage to global crop production. Atmos. Chem. Phys. 18, 5953–5966 (2018).

    Article  ADS  CAS  Google Scholar 

  95. Maleknia, S. D. & Adams, M. A. Impact of volatile organic compounds from wildfires on crop production and quality. Asp. Appl. Biol. 88, 93–98 (2008).

  96. Huber-Stearns, H. R. & Cheng, A. S. The evolving role of government in the adaptive governance of freshwater social-ecological systems in the western US. Environ. Sci. Policy 77, 40–48 (2017).

    Article  Google Scholar 

  97. Huber-Stearns, H. R., Schultz, C. & Cheng, A. S. A multiple streams analysis of institutional innovation in forest watershed governance. Rev. Policy Res. 36, 781–804 (2019).

    Article  Google Scholar 

  98. Nolan, R. H., Lane, P. N. J., Benyon, R. G., Bradstock, R. A. & Mitchell, P. J. Changes in evapotranspiration following wildfire in resprouting eucalypt forests. Ecohydrology 7, 1363–1377 (2013).

    Google Scholar 

  99. Harpold, A. A. et al. Changes in snow accumulation and ablation following the Las Conchas forest fire, New Mexico, USA. Ecohydrology 7, 440–452 (2013).

    Article  Google Scholar 

  100. Maxwell, J. D., Call, A. & st. Clair, S. B. Wildfire and topography impacts on snow accumulation and retention in montane forests. For. Ecol. Manage. 432, 256–263 (2019).

    Article  Google Scholar 

  101. Brogan, D. J., Nelson, P. A. & MacDonald, L. H. Reconstructing extreme post-wildfire floods: a comparison of convective and mesoscale events. Earth Surf. Process. Landf. 42, 2505–2522 (2017).

    Article  ADS  Google Scholar 

  102. Cannon, S. H., Gartner, J. E., Parrett, C. & Parise, M. Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment 71–82 (Millpress, 2003).

  103. Moody, J. A. & Martin, R. G. Measurements of the initiation of post-wildfire runoff during rainstorms using in situ overland flow detectors. Earth Surf. Process. Landf. 40, 1043–1056 (2015).

    Article  ADS  Google Scholar 

  104. Goeking, S. A. & Tarboton, D. G. Forests and water yield: a synthesis of disturbance effects on streamflow and snowpack in western coniferous forests. J. For. 118, 172–192 (2020).

    Google Scholar 

  105. Moody, J. A. & Martin, D. A. Wildfire impacts on reservoir sedimentation in the western United States. In Proc. Ninth International Symposium on River Sedimentation 1095–1102 (Tsinghua Univ. Press, 2004).

  106. Wohl, E., McConnell, R., Skinner, J. & Stenzel, R. Inheriting Our Past: River Sediment Sources and Sediment Hazards in Colorado (Colorado Water Resources Research Institute, 1998);

  107. Moody, J. A., Shakesby, R. A., Robichaud, P. R., Cannon, S. H. & Martin, D. A. Current research issues related to post-wildfire runoff and erosion processes. Earth Sci. Rev. 122, 10–37 (2013).

  108. Rust, A. J., Hogue, T. S., Saxe, S. & McCray, J. Post-fire water-quality response in the western United States. Int. J. Wildland Fire 27, 203–216 (2018).

    Article  Google Scholar 

  109. Waskom, R., Kallenberger, J., Grotz, B. & Bauder, T. Addressing the Impacts of Wildfire on Water Resources Fact Sheet No. 6.706. (Colorado State Univ., 2013);

  110. Moritz, M. A. et al. Learning to coexist with wildfire. Nature 515, 58–66 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  111. Isaacson, K. P. et al. Drinking water contamination from the thermal degradation of plastics: implications for wildfire and structure fire response. Environ. Sci. 7, 274–284 (2021).

    CAS  Google Scholar 

  112. Alexakis, D. E. Suburban areas in flames: dispersion of potentially toxic elements from burned vegetation and buildings. Estimation of the associated ecological and human health risk. Environ. Res. (2020).

  113. Schultz, C. A. et al. Policy design to support forest restoration: the value of focused investment and collaboration. Forests (2018).

  114. Lander, E. S. & Mallory, B. Indigenous Traditional Ecological Knowledge and Federal Decision Making (Executive Office of the United States President, Office of Science and Technology Policy, Council on Environmental Quality, 2021).

  115. Duncan, Z. M. et al. Effects of prescribed fire timing on grazing performance of yearling beef cattle, forage biomass accumulation, and plant community characteristics on native tallgrass prairie in the Kansas Flint Hills. Transl Anim. Sci. 5, txab077 (2021).

  116. van der Werf, G. R. et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 9, 697–720 (2017).

    Article  ADS  Google Scholar 

  117. Dewitz, J. & US Geological Survey. National Land Cover Database (NLCD) 2019 Products (ver. 2.0) (US Geological Survey, 2021).

  118. Monitoring Trends in Burn Severity (MTBS) Thematic Burn Severity (USD Forest Service and US Geological Survey, 2022);

Download references


We thank A. Vitt for assistance in preparing Fig. 3 and S. Hansen for advice regarding the GFED dataset. We acknowledge support from the USDA NIFA Interdisciplinary Engagement in Animal Systems Program (grant number 2021-68014-34141 to N.D.M.), the Foundation for Food and Agriculture Research (grant number FF-NIA19-0000000003 to N.D.M.), the Colorado State University School of Global Environmental Sustainability Global Challenges Research Teams (to E.V.F. and N.D.M.), and the BII: Regional OneHealth Aerobiome Discovery Network (BROADN) and NASA Health and Air Quality Applied Sciences Team (HAQAST) Tiger Team (NSF award number 2120117 to S.M.).

Author information

Authors and Affiliations



L.K., L.L.S. and N.D.M. designed the study. E.V.F., S.K., S.M., C.S. and M.J.W. contributed content expertise regarding wildfire smoke, human and livestock health, federal fire policy and soil health. E.K. developed Fig. 2. L.K. led the literature review and writing with assistance from all co-authors.

Corresponding author

Correspondence to Lena Kabeshita.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Food thanks Qingqing Xu and Danielle Touma for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Code

Code for Fig. 2.

Supplementary Data

Source data for Fig. 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabeshita, L., Sloat, L.L., Fischer, E.V. et al. Pathways framework identifies wildfire impacts on agriculture. Nat Food 4, 664–672 (2023).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing