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Multi-omics resources for targeted 
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Pigmented rice (Oryza sativa L.) is a rich source of nutrients, but pigmented 
lines typically have long life cycles and limited productivity. Here we 
generated genome assemblies of 5 pigmented rice varieties and evaluated 
the genetic variation among 51 pigmented rice varieties by resequencing 
an additional 46 varieties. Phylogenetic analyses divided the pigmented 
varieties into four varietal groups: Geng-japonica, Xian-indica, circum-Aus 
and circum-Basmati. Metabolomics and ionomics profiling revealed 
that black rice varieties are rich in aromatic secondary metabolites. We 
established a regeneration and transformation system and used CRISPR–
Cas9 to knock out three flowering time repressors (Hd2, Hd4 and Hd5) in the 
black Indonesian rice Cempo Ireng, resulting in an early maturing variety 
with shorter stature. Our study thus provides a multi-omics resource for 
understanding and improving Asian pigmented rice.

Rice landraces show great genetic and phenotypic diversity. Many 
forms have pigmented pericarps due to anthocyanins and proantho-
cyanidins1–4. These metabolites, as well as other micronutrients, fatty 
acids, pre-biotics, antioxidants and fibre, account for the tremendous 
nutritional value of whole-grain pigmented rice5. Despite its nutritional 
value, most pigmented rice varieties have long life cycles (4 to 6 months) 
and suboptimal plant height6,7. We also lack a detailed analysis of the 
nutrient composition of these diverse rice varieties8.

Our first step in enabling efforts to improve pigmented rice 
was to provide comprehensive genomic information. Although 
the genomes of several different japonica and indica rice varieties 
have been assembled over the past decade, full genome sequences 
are available for only a handful of pigmented varieties9,10, limiting 
their usage in gene discovery and genome editing. Here we selected 
three black (Cempo Ireng, Pulut Hitam-2 and Balatinaw) and two red  

(Zag and Cempo Abang) rice varieties for whole-genome sequenc-
ing using the PacBio Sequel IIe platform. A total of 1.21–1.63 million 
high-quality circular consensus sequencing reads were obtained with a 
sequencing depth of 41.5–59.8-fold coverage (Supplementary Table 1). 
The reads were assembled using HiFi ASM11, and contigs were ordered, 
oriented and, if needed, scaffolded using the Oryza sativa Nippon-
bare reference genome (IRGSP RefSeq) as a guide. The five genome 
assemblies showed remarkable contiguity, as shown by the high N50 
values and the small number of sequence gaps, and the genome sizes 
are comparable to the previously reported genome size of the IRGSP 
RefSeq12. The completeness of the five genome assemblies was assessed 
with the Benchmarking Universal Single-Copy Orthologue tool13, and 
this analysis was carried out using the gene dataset specific for Poales 
(poales_odb10.2020-08-05.tar.gz). This analysis identified 98.4% to 
98.6% complete genes (Supplementary Table 2 and Supplementary 
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Resequencing depth ranged from a 10.37-fold to 60.56-fold genome 
coverage, and a 22.32-fold average mapping coverage was obtained 
by aligning the filtered reads to the IRGSP RefSeq (Supplementary 
Table 4). The Illumina reads along with in-silico-generated 2× 150-bp 
paired-end reads from the five high-quality genome assemblies were 
used for single nucleotide polymorphism (SNP) calling. Comparing the 
pigmented rice genomes with the IRGSP RefSeq identified 3,788,476 
SNPs. The SNPs were used to assess the phylogenetic relationships of 
the pigmented varieties, taking advantage of the population structure 
and diversity revealed by the 3,000 Rice Genomes (3K-RG) project19. The 
51 pigmented varieties were assigned to subpopulations on the basis of 
their genetic similarity to the 3K-RG dataset (Fig. 1a and Supplementary 
Tables 5 and 6). Most of the varieties were assigned to Geng-japonica 
(GJ) and Xian-indica (XI) groups (22 and 20 varieties, respectively). 
Seven varieties clustered into circum-Aus (cA), and two clustered into 
circum-Basmati (cB). The varieties assigned to GJ or XI clustered irre-
spective of the grain pigmentation. This result is consistent with the 
principal component analysis, which differentiated the varieties into 
the four major varietal groups (Fig. 1b).

Our next step in enabling the improvement of pigmented rice was 
to comprehensively characterize the metabolites and elemental com-
position of these varieties; these data allow us (and other researchers 
aiming to improve these varieties) to identify varieties with superior 
nutrition for further improvement and to identify key traits to improve 
in selected varieties. To this end, we screened the metabolome profiles 
of 63 diverse pigmented Asian rice varieties to elucidate their com-
position. In total, 625 biochemicals were identified (Supplementary  
Data 3). About 60% of the compounds (375) significantly differed in 
abundance between black rice (BR) and red rice (RR), with the vast major-
ity of these being higher in BR, especially secondary metabolites from 

Fig. 1), and these values were on par with or better than those obtained 
for the 16 platinum standard reference genomes recently assembled 
for O. sativa (95.7–98.6%)14.

AUGUSTUS software15 predicted more than 38,000 protein-coding 
genes per genome, consistent with previous rice genome annota-
tions16,17 (Supplementary Table 1). The predicted protein-coding genes 
were unevenly distributed over the 12 chromosomes, with more genes 
on the chromosome arms/ends than towards the centromere (Supple-
mentary Fig. 2). More than 70.6% of the genes had functional descrip-
tions, including protein domains, motifs and homologues among 
the amino acid products annotated in IRGSP RefSeq. Gene ontology 
analyses assigned most of the genes to molecular functions (45–47%), 
followed by biological processes (38–41%) and functions associated 
with cellular components (14–15%) (Supplementary Data 1).

Insertions and deletions longer than 50 base pairs (bp) were iden-
tified by comparing the five assembled genomes with the IRGSP Ref-
Seq using an ad hoc pipeline based on the long-read mapper NGMLR 
(https://github.com/philres/ngmlr) and the structural variant caller 
SVIM18. The number of genomic regions not shared between each of 
the five varieties and the IRGSP RefSeq ranged from 10,689 to 37,176 
(Supplementary Table 3), probably reflecting the relative distance 
between the sequenced varieties. The overall content of transposable 
elements (TEs) and repetitive sequence of the five genome assemblies 
was 46.4–49.4% (Supplementary Data 2). The most represented TE class 
was the long terminal repeat retroelements, including the superfamily 
Ty3-gypsy.

To detect genetic variation among pigmented rice, we rese-
quenced an additional 46 varieties (2× 150-bp paired-end reads) using 
the Illumina NovaSeq 6000 platform and generated an average of 
42.35 million high-quality reads per variety (Supplementary Table 4). 
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Fig. 1 | Population genomic analysis of pigmented rice. a, Neighbour-joining 
tree for K = 15 subpopulations and one admixture group. The phenogram shows 
the clustering of the 474 accessions selected from the 3K-RG dataset (clockwise: 
GJ-temperate (okra), GJ-subtropical (orange), GJ-tropical2 (dark magenta), 
GJ-tropical1 (magenta), cB (goldenrod), cA1 (dark green), cA2 (light green), 
XI-2B (brown), XI-2A (pink), XI-adm (dark grey), XI-3A (light grey), XI-3B1 (brick 
red), XI-3B2 (turquoise), XI-1A (cyan), XI-1B2 (yellow) and XI-1B1 (sky blue)) 

and the 51 pigmented varieties (the red and black branches represent red- or 
black-pigmented varieties, respectively). O. sativa subpopulations are defined 
as described by Zhou et al.14. b, Principal component analysis plot showing the 
clustering of the pigmented varieties into the four main groups of O. sativa. The 
analysis was performed on 51 pigmented varieties and 474 accessions selected 
from the 3K-RG dataset, but only the 51 pigmented varieties are shown. Red and 
black names represent red and black pigmented varieties, respectively.
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the phenylpropanoid pathways and lipids (Fig. 2 and Supplementary  
Fig. 3). We identified 212 significantly different compounds between BR 
and brown rice (BrR) and 158 between BrR and RR. BR exhibited much 
higher levels of flavonoids from the proanthocyanin class, while RR had 
higher concentrations of proanthocyanidin pigments (Supplementary 
Fig. 3). The elevated production of other phenylpropanoid intermedi-
ates and chlorogenic acids were also associated with the BR group  
(Supplementary Fig. 4). Less expected were findings that lipid metabo-
lism differed between the genotype groups, specifically that both BR 
and BrR contained similarly high levels of several classes of lipid cata-
bolic products in comparison with RR, suggesting more active lipolysis 
in BR and BrR (Supplementary Fig. 5). In addition, a subset of the rice 
varieties was found to contain fagomine, an imino sugar alkaloid that 
has not been previously identified in rice. (Supplementary Data 3). This 
compound, first identified in buckwheat, has favourable bioactivities 
related to blood glucose management and insulin resistance20,21. Over-
all, our analysis reveals that BR is the most nutritious type of rice across 
a comprehensive suite of secondary metabolites, carbohydrates, amino 
acids, lipids, peptides and vitamins (Supplementary Fig. 3).

Moreover, we screened the metal ion profiles of the same rice 
varieties and identified and quantified 22 metal ions (Supplementary 
Data 4 and Supplementary Fig. 6). Essential microelements, such as Fe, 
Zn, Cu, Mn and Se, play key roles in numerous metabolic processes in 
the body. They are needed in trace amounts for proper human growth 
and development and are therefore considered potential candidates 
for crop biofortification to improve nutritional value and reduce the 
risk of deficiency-related diseases22. Fe and Zn deficiency is the most 
prevalent micronutrient deficiency, affecting more than two billion 
people globally, and is a major cause of early childhood mortality, 
mainly in developing countries23. Our analysis shows that dehusked, 
whole-grain pigmented rice, especially BR genotypes, are rich in these 
essential microelements. In particular, Cempo Ireng (the richest rice in 

Fe and the richest BR genotype in Zn) could provide the daily require-
ments of these essential elements.

We next used our metabolic and metal ion profiling data to identify 
several nutrient-rich varieties with higher levels of antioxidants and 
other healthy compounds and beneficial elements—namely, Pulut 
Arang, Pulut Hitam Siam, Cempo Ireng, Leukat Hitam, Pulut Hitam-2, 
Ketan Ireng-1 and Kum Kour. These can be considered candidate rice 
varieties for trait improvement. Cempo Ireng was the variety richest in 
Fe and vitamin B2 and was the BR variety with the highest Zn content. 
Despite its pest and disease resistance7,24, farmers are reluctant to 
cultivate Cempo Ireng due to its long life cycle (about five months) 
and long lax culm (up to 130 cm), making it prone to yield loss from 
lodging and bird attack. Flowering time (heading date in cereal crops) 
is one of the most important agronomic traits for rice cultivation and 
is controlled by several genetic and environmental factors. Three 
major photoperiodic flowering suppressors in the Early heading date 
1 (Ehd1) pathway of rice are Hd2/DTH7, Hd4/Ghd7 and Hd5/Ghd8/DTH8  
(refs. 25–29). These loci also affect plant height; therefore, we can 
improve flowering time and lodging resistance simultaneously.

Here we targeted the individual knockout of all three genes in 
Cempo Ireng using CRISPR–Cas9-mediated genome editing. To this 
end, we first established efficient regeneration and Agrobacterium–
mediated transformation protocols for Cempo Ireng (Supplementary 
Sections 4 and 5). Although efficient methods for regeneration and 
transformation have been established for the japonica variety Nip-
ponbare, the germplasm of other rice varieties (especially those used 
in agriculture) varies significantly in its response to callus induction, 
regeneration and transformation30,31. We next used this system to intro-
duce CRISPR–Cas reagents into this variety (Supplementary Table 7). 
Fifteen homozygous T1 mutants (five for each target) and five wild-type 
plants were analysed for their heading date and other phenotypic traits. 
The mutant plants flowered and set seeds normally but significantly 
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Fig. 2 | Global non-targeted metabolic screening of pigmented rice. Heat 
map visualization of differences in the median-scaled relative abundance of 
the identified metabolites in pigmented rice. Each cell represents a specific 
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earlier than the wild-type control. The heading dates of hd2, hd4 and 
hd5 were decreased by about 27, 33 and 32 days, respectively (Sup-
plementary Fig. 9), indicating the ability of CRISPR technology to 
accelerate the maturation cycle of BR. In addition, the mutant lines 
were 8–16 cm shorter than the wild type; however, this reduction was 
significant only for the hd4 mutants.

This work provides important resources that give a clear roadmap 
for stakeholders (including crop bioengineers and breeders) to install 
desirable traits of value and to introduce pigmented rice into the food 
chain to improve human health and reduce the burden of malnutri-
tion in developing and developed countries. However, whether these 
engineered traits can successfully co-exist with the traits of value in 
pigmented rice remains to be tested. Moreover, we identified several 
nutritious BR varieties worthy of further investigation as priorities 
for improvement by the targeted change of undesirable agronomic 
traits to enhance their overall productivity. However, more work is 
needed to establish Cempo Ireng and other pigmented rice varieties as 
superfoods. For example, the overall yield can be improved by target-
ing genes enhancing yield-related traits, such as GS3, GW2 and Gn1a, 
thereby encouraging farmers/investors to cultivate large areas. Also, 
heavy-metal uptake can be reduced by avoiding cultivation in contami-
nated soil and using clean water resources, or using genome-editing 
technology to alter membrane channels to selectively take up beneficial 
but not toxic metals. Other technologies may help expedite the gen-
eration of pigmented rice with these traits of value, including speed 
breeding32. Although improving the productivity and shortening the 
life cycle of pigmented rice requires multiple steps, our work enables 
efforts to support human health via an improved diet that includes 
pigmented rice rich in micronutrients and vitamins.

Methods
PacBio sequencing
We selected three BR (Cempo Ireng, Pulut Hitam-2 and Balatinaw) and 
two RR (Cempo Abang and Zag) varieties for genome sequencing. Leaf 
tissue (~20 g) was used for genomic DNA extraction using the CTAB 
method33. The DNA was gently sheared into fragments (10–30 kbp) 
using Covaris g-TUBE, followed by bead purification with PB Beads 
(PacBio). The sequencing libraries were then constructed following 
the manufacturer’s protocol using the SMRTbell Express Template Prep 
kit v.2.0. Sequencing was performed using SMRT Cell 1M chemistry 
v.3.0 on a PacBio Sequel II system in circular consensus sequencing 
mode. The genome assemblies were carried out using HiFi Asm v.0.7 
(ref. 11) with the default settings. Contigs from the primary assemblies 
were then mapped onto the O. sativa Nipponbare reference genome 
using the Mashmap tool34. The results were visualized as dot-plot 
comparisons, and the contigs were arranged into pseudomolecules. 
All reassembled genomes were compared with Nipponbare to search 
for structural variants using the ad hoc devised pipeline described by 
Zhou et al.14. Searching for TEs and repetitive sequences was carried 
out using RepeatMasker (http://www.repeatmasker.org/) run under 
the default parameters (except the qq option) and the rice TE library 
7.0.0.liban described by Zhou et al.14. Gene prediction was carried out 
using the OmicsBox tool35, which relies on AUGUSTUS software15. The 
gene predictions were made by referencing the publicly available train-
ing set devised for O. sativa, along with extrinsic data, including 77,217 
sequences and 67,138,695 paired-end RNA-seq sequences collected 
from four different tissues of O. sativa. The predictions were filtered 
using a 0.6 threshold for posterior probability, as provided by AUGUS-
TUS. Gene annotation was performed according to the best match for 
each predicted protein against the non-redundant National Center for 
Biotechnology Information protein database using Diamond BLASTp 
(v.0.9)36. A gene ontology analysis was performed using InterProScan 
v.5.39 with the default settings37. We sequenced another 46 pigmented 
rice varieties using the NovaSeq 6000 S1 Reagent Kit v.1.5 (Illumina) 
(Supplementary Section 1).

Non-targeted global metabolic screening
We screened the metabolic profiles of 24 BR, 35 RR and 4 BrR varieties. 
The mature grains were ground in liquid nitrogen and lyophilized for 
30 h, after which the samples were prepared by Metabolon Inc. Several 
recovery standards were added prior to the extraction process. The 
samples were extracted with 80% methanol under vigorous shak-
ing for 2 min (Glen Mills GenoGrinder 2000). The resulting extract 
was divided into four fractions: two for analysis by reversed-phase 
ultra-performance liquid chromatography–tandem mass spectrom-
etry (RP/UPLC–MS/MS) methods using positive ion mode electrospray 
ionization (ESI), one for analysis by RP/UPLC–MS/MS using negative 
ion mode ESI and one for analysis by HILIC/UPLC–MS/MS using nega-
tive ion mode ESI. All methods utilized a Waters ACQUITY UPLC and 
a Thermo Fisher Scientific Q-Exactive high-resolution/accurate mass 
spectrometer interfaced with a heated ESI (HESI-II) source and an 
Orbitrap mass analyser operated at 35,000 mass resolution. Each 
sample extract was dried and then reconstituted in solvents compatible 
with each of the four methods. Each reconstituted solvent contained 
a series of standards at fixed concentrations to ensure injection and 
chromatographic consistency. The MS analysis alternates between 
MS and data-dependent MSn scans using dynamic exclusion. The scan 
range varies slightly between methods but covers approximately 
70–1,000 m/z. Raw UPLC–MS/MS data were extracted and filtered to 
remove those representing system artefacts, misassignments, redun-
dancy and background noise. Peaks and compounds were identified by 
comparison to library entries of the purified standards, and the peaks 
were quantified as area-under-the-curve detector ion counts; Welch’s 
two-sample t-test was used to analyse the data.

Metal ion profiling
We quantified the metal ion content of the same 63 rice varieties. The 
grain powder was homogenized in water, and 4 mg per sample was 
mixed with 250 µl of nitric acid (16 M) and incubated for 2 h at 25 °C. 
Then, 25 µl of hydrochloric acid (12 M) was added, and the samples were 
centrifuged for 1 min at 1,500 g. The samples were heated at 90 °C for 
1 h and then cooled before adding 100 µl of hydrogen peroxide (9.8 M). 
The samples were dried at 90 °C and were reconstituted with 1 ml of 0.5% 
nitric acid. In addition to the experimental samples, quality control sam-
ples including six blanks (diH2O), eight technical replicates made from 
pooled experimental samples and two samples of well-characterized 
pooled human plasma were included in the digestion and analysis. The 
samples were introduced into the inductively coupled plasma MS via 
an ESI Prep-Fast autosampler. The Thermo Fisher Scientific ICAP-RQ 
instrument was operated in positive ionization and used a KED cell to 
reduce polyatomic interference. Quantitation was performed using a 
multi-point external calibration curve (Mn, Co and Mg used a 16-point 
curve to accommodate this specific matrix), and internal standards 
were used to account for sample-specific suppression38.

CRISPR–Cas9-targeted modification
We designed one single guide RNA to knock out Cempo Ireng Hd2, 
Hd4 and Hd5 genes and cloned it into the pRGEB32 vector under 
the OsU3 promoter (Supplementary Table 8). All binary vectors 
were used for rice transformation by Agrobacterium tumefaciens 
strain EHA105. We genotyped the transformed plants by PCR using 
transfer-DNA-sequence-specific primers (Cas9-F7 and Nos-R7). The 
PCR amplicons encompassing the targeted region were cloned into a 
pJET vector (Thermo Fisher Scientific). We conducted Sanger sequenc-
ing for individual clones to determine the nature of sequence modi-
fication. We phenotyped the modified plants for heading date and 
yield-related traits (Supplementary Section 4).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.
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Data availability
The data supporting the findings of this study are included within the 
article and its Supplementary Information files. The raw genomics 
sequences and assemblies have been deposited to the National Center 
for Biotechnology Information under the BioProject accession code 
PRJNA942452. The MS metabolomic data have been deposited to the 
MetaboLights database with the identifier number MTBLS3320.

Code availability
All custom code used in this study is available from the corresponding 
author upon request.
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