Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Chitin and omega-3 fatty acids in edible insects have underexplored benefits for the gut microbiome and human health

Abstract

A healthy gut microbiome is critical for nutrient metabolism, pathogen inhibition and immune regulation, and is highly influenced by diet. Edible insects are good sources of protein and micronutrients, but unlike other animal-derived foods, they also contain both dietary fibre and omega-3 fatty acids that can modulate gut microbiota. Here we explore the potential impacts of insect consumption on the microbiome. Laboratory, animal and human studies indicate that insect fibre in the form of chitin and its derivatives can modify gut microbiota with beneficial outcomes. Some insects also contain favourable omega-3/omega-6 ratios. We identify gaps in the literature—especially a dearth of human studies—that must be addressed to better understand health impacts of entomophagy. Insects, already eaten across the globe, can be farmed using fewer resources than conventional livestock. Widening the research scope offers an opportunity to advance use of edible insects to address interconnected environmental and health challenges.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. van Huis, A. et al. Edible Insects: Future Prospects for Food and Feed Security (FAO, 2013); https://www.fao.org/3/i3253e/i3253e.pdf

  2. Ramos-Elorduy, J. Anthropo-entomophagy: cultures, evolution and sustainability. Entomol. Res. 39, 271–288 (2009).

    Article  Google Scholar 

  3. Jongema, Y. List of Edible Insects of the World (April 1, 2017) (WUR, 2017); http://www.wageningenur.nl/en/Expertise-Services/Chair-groups/Plant-Sciences/Laboratory-of-Entomology/Edible-insects/Worldwide-species-list.htm

  4. Oonincx, D. G. A. B. et al. An exploration on greenhouse gas and ammonia production by insect species suitable for animal or human consumption. PLoS ONE 5, e14445 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Meyer-Rochow, V. B., Gahukar, R. T., Ghosh, S. & Jung, C. Chemical composition, nutrient quality and acceptability of edible insects are affected by species, developmental stage, gender, diet, and processing method. Foods 10, 1036 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Belluco, S. et al. Edible insects: a food security solution or a food safety concern? Anim. Front. 5, 25–30 (2015).

    Google Scholar 

  7. Finke, M. D. Complete nutrient content of four species of feeder insects. Zoo Biol. 32, 27–36 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Finke, M. D. & Oonincx, D. G. A. B. in Insects as Food and Feed: From Production to Consumption (eds van Huis, A. & Tomberlin, J. K.) 291–316 (Wageningen Academic, 2017).

  9. Mwangi, M. N. et al. Insects as sources of iron and zinc in human nutrition. Nutr. Res. Rev. https://doi.org/10.1017/S0954422418000094 (2018)

  10. Roos, N. & van Huis, A. Consuming insects: are there health benefits? J. Insects Food Feed 3, 225–229 (2017).

    Article  Google Scholar 

  11. Finke, M. D. Estimate of chitin in raw whole insects. Zoo Biol. 26, 105–115 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Rumpold, B. A. & Schlüter, O. K. Nutritional composition and safety aspects of edible insects. Mol. Nutr. Food Res. 57, 802–823 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. FoodData Central (USDA, 2019); https://fdc.nal.usda.gov/fdc-app.html#/food-details/168580/nutrients

  14. Mack, I. et al. The role of chitin, chitinases, and chitinase-like proteins in pediatric lung diseases. Mol. Cell. Pediatr. 2, 3 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Paoletti, M. G., Norberto, L., Damini, R. & Musumeci, S. Human gastric juice contains chitinase that can degrade chitin. Ann. Nutr. Metab. 51, 244–251 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Janiak, M. C., Chaney, M. E. & Tosi, A. J. Evolution of acidic mammalian chitinase genes (CHIA) is related to body mass and insectivory in primates. Mol. Biol. Evol. https://doi.org/10.1093/molbev/msx312 (2017).

  17. Tabata, E. et al. Chitin digestibility is dependent on feeding behaviors, which determine acidic chitinase mRNA levels in mammalian and poultry stomachs. Sci. Rep. 8, 1461 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  18. Kumar, M. N. V. R. A review of chitin and chitosan applications. React. Funct. Polym. 46, 1–27 (2000).

    Article  CAS  Google Scholar 

  19. Ibitoye, E. B. et al. Extraction and physicochemical characterization of chitin and chitosan isolated from house cricket. Biomed. Mater. 13, 025009 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Marei, N. H., El-Samie, E. A., Salah, T., Saad, G. R. & Elwahy, A. H. M. Isolation and characterization of chitosan from different local insects in Egypt. Int. J. Biol. Macromol. 82, 871–877 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Mohan, K. et al. Recent insights into the extraction, characterization, and bioactivities of chitin and chitosan from insects. Trends Food Sci. Technol. 105, 17–42 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Alessandri, G. et al. Ability of bifidobacteria to metabolize chitin–glucan and its impact on the gut microbiota. Sci Rep. 9, 5755 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  23. Rodriguez, J. et al. Metabolite profiling reveals the interaction of chitin–glucan with the gut microbiota. Gut Microbes 12, 1810530 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Khoushab, F. & Yamabhai, M. Chitin research revisited. Mar. Drugs 8, 1988–2012 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Prajapati, B., Rajput, P., Kumar Jena, P. & Seshadri, S. Investigation of chitosan for prevention of diabetic progression through gut microbiota alteration in sugar rich diet induced diabetic rats. Curr. Pharm. Biotechnol. 17, 173–184 (2016).

    Article  CAS  Google Scholar 

  26. Wu, X., Kim, M. J., Yang, H. J. & Park, S. Chitosan alleviated menopausal symptoms and modulated the gut microbiota in estrogen-deficient rats. Eur. J. Nutr. 60, 1907–1919 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Zheng, J. et al. Chitosan oligosaccharides improve the disturbance in glucose metabolism and reverse the dysbiosis of gut microbiota in diabetic mice. Carbohydr. Polym. 190, 77–86 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Kong, X. F. et al. Dietary supplementation with chitooligosaccharides alters gut microbiota and modifies intestinal luminal metabolites in weaned Huanjiang mini-piglets. Livest. Sci. 160, 97–101 (2014).

    Article  Google Scholar 

  29. Young, W. et al. Feeding bugs to bugs: edible insects modify the human gut microbiome in an in vitro fermentation model. Front. Microbiol. 11, 1763 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  30. de Carvalho, N. M., Teixeira, F., Silva, S., Madureira, A. R. & Pintado, M. E. Potential prebiotic activity of Tenebrio molitor insect flour using an optimized in vitro gut microbiota model. Food Funct. 10, 3909–3922 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Stull, V. J. et al. Impact of edible cricket consumption on gut microbiota in healthy adults, a double-blind, randomized crossover trial. Sci. Rep. 8, 10762 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  32. Kipkoech, C., Kinyuru, J. N., Imathiu, S., Meyer-Rochow, V. B. & Roos, N. In vitro study of cricket chitosan’s potential as a prebiotic and a promoter of probiotic microorganisms to control pathogenic bacteria in the human gut. Foods 10, 2310 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jeon, Y.-J., Park, P.-J. & Kim, S.-K. Antimicrobial effect of chitooligosaccharides produced by bioreactor. Carbohydr. Polym. 44, 71–76 (2001).

    Article  CAS  Google Scholar 

  34. Gil, G., Mónaco, S., Cerrutti, P. & Galvagno, M. Selective antimicrobial activity of chitosan on beer spoilage bacteria and brewing yeasts. Biotechnol. Lett. 26, 569–574 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Chien, R.-C., Yen, M.-T. & Mau, J.-L. Antimicrobial and antitumor activities of chitosan from shiitake stipes, compared to commercial chitosan from crab shells. Carbohydr. Polym. 138, 259–264 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Fernandes, J. C. et al. Antimicrobial effects of chitosans and chitooligosaccharides, upon Staphylococcus aureus and Escherichia coli, in food model systems. Food Microbiol. 25, 922–928 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Selenius, O., Korpela, J., Salminen, S. & Gallego, C. G. Effect of chitin and chitooligosaccharide on in vitro growth of Lactobacillus rhamnosus GG and Escherichia coli TG. Appl. Food Biotechnol. 5, 163–172 (2018).

  38. Lopez-Santamarina, A. et al. Animal-origin prebiotics based on chitin: an alternative for the future? A critical review. Foods 9, 782 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mateos-Aparicio, I., Mengíbar, M. & Heras, A. Effect of chito-oligosaccharides over human faecal microbiota during fermentation in batch cultures. Carbohydr. Polym. 137, 617–624 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Li, J. & Zhuang, S. Antibacterial activity of chitosan and its derivatives and their interaction mechanism with bacteria: current state and perspectives. Eur. Polym. J. 138, 109984 (2020).

    Article  CAS  Google Scholar 

  41. Costantini, L., Molinari, R., Farinon, B. & Merendino, N. Impact of omega-3 fatty acids on the gut microbiota. Int. J. Mol. Sci. 18, 2645 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Watson, H. et al. A randomised trial of the effect of omega-3 polyunsaturated fatty acid supplements on the human intestinal microbiota. Gut 67, 1974–1983 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Robertson, R. C. et al. Omega-3 polyunsaturated fatty acids critically regulate behaviour and gut microbiota development in adolescence and adulthood. Brain Behav. Immun. 59, 21–37 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Paul, A. et al. Insect fatty acids: a comparison of lipids from three orthopterans and Tenebrio molitor L. larvae. J. Asia-Pac. Entomol. 20, 337–340 (2017).

    Article  Google Scholar 

  45. Yang, L.-F., Siriamornpun, S. & Li, D. Polyunsaturated fatty acid content of edible insects in Thailand. J. Food Lipids 13, 277–285 (2006).

    Article  CAS  Google Scholar 

  46. Paul, A. et al. Nutritional composition and rearing potential of the meadow grasshopper (Chorthippus parallelus Zetterstedt). J. Asia Pac. Entomol. 19, 1111–1116 (2016).

    Article  Google Scholar 

  47. Wathne, A. M., Devle, H., Naess-Andresen, C. F. & Ekeberg, D. Identification and quantification of fatty acids in T. viridissima, C. biguttulus, and C. brunneus by GC–MS. J. Lipids 2018, 3679247 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Oonincx, D. G. A. B., Laurent, S., Veenenbos, M. E. & van Loon, J. J. A. Dietary enrichment of edible insects with omega 3 fatty acids. Insect Sci. https://doi.org/10.1111/1744-7917.12669 (2019).

  49. Gentile, C. L. & Weir, T. L. The gut microbiota at the intersection of diet and human health. Science 362, 776–780 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Smith, M. R., Stull, V. J., Patz, J. A. & Myers, S. S. Nutritional and environmental benefits of increasing insect consumption in Africa and Asia. Environ. Res. Lett. 16, 065001 (2021).

    Article  ADS  CAS  Google Scholar 

  51. Harti, A. S., Haryati, D. S., Sunarto, Setyaningsih, W. & Yatmihatun, S. The potential chito-oligosaccharide (COS) as natural prebiotic and preservatives on synbiotic tofu in Indonesia. Int. J. Pharma Med. Biol. Sci. 4, 204–208 (2015).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerie J. Stull.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Food thanks Matthew Moore and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stull, V.J., Weir, T.L. Chitin and omega-3 fatty acids in edible insects have underexplored benefits for the gut microbiome and human health. Nat Food 4, 283–287 (2023). https://doi.org/10.1038/s43016-023-00728-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43016-023-00728-7

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research