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Limiting grazing periods combined with 
proper housing can reduce nutrient losses 
from dairy systems

R. W. McDowell    1,2 , C. A. Rotz3, J. Oenema4 & K. A. Macintosh    5

Pasture-based and grass-fed branding are often associated with consumer 
perceptions of improved human health, environmental performance 
and animal welfare. Here, to examine the impacts of dairy production in 
detail, we contrasted global observational (n = 156) data for nitrogen and 
phosphorus losses from land by the duration of outdoor livestock grazing 
in confined, grazed and hybrid systems. Observational nitrogen losses 
for confined systems were lowest on a productivity—but not area—basis. 
No differences were noted for phosphorus losses between the systems. 
Modelling of the three dairy systems in New Zealand, the United States and 
the Netherlands yielded similar results. We found insufficient evidence that 
grazed dairy systems have lower nutrient losses than confined ones, but 
trade-offs exist between systems at farm scale. The use of a hybrid system 
may allow for uniform distribution of stored excreta, controlled dietary 
intake, high productivity and mitigation of animal welfare issues arising 
from climatic extremes.

An increasingly affluent global population is demanding more 
livestock-derived produce, but in tandem with improving environ-
mental and animal welfare standards1,2. Demand for dairy products, 
in particular, has been globally forecast to increase by 1.6% per year 
between 2020 and 2029 (ref. 3). Boosting international dairy production 
to meet this growing global demand will be achieved by a combination 
of the expansion of land used for dairying and increased intensifica-
tion of existing dairying operations, alongside production efficiency 
gains4. However, there are growing concerns that some intensive dairy 
production systems may impair the environment by decreasing water 
quality5,6, compromising animal welfare7 and increasing greenhouse 
gas (GHG) emissions8.

Dairying has been identified as a contributor to water quality 
deterioration in many jurisdictions5,9–11. Nutrient losses as nitrogen 
(N) and phosphorus (P) are important factors contributing to poor 
water quality via algal blooms and direct toxicity effects from nitrate 
N 12,13. Literature reviews have shown that the annual loss of N and P 

from dairy farmland varies greatly from about 5 to 200 kg N ha−1 and 
from 0.5 to 10 kg P ha−1 (refs. 14–16). This variation in contaminant loss is 
driven by contrasting climates, soils and landscapes, as well as on-farm 
management practice17.

Over time, three general types of dairy production system have 
developed14. Grazing systems endeavour to match cow numbers with 
forage production on-farm and graze livestock outdoors most of the 
year (≥9 months). Hybrid systems use a combination of housing and 
enough land to support a few months (3–8) of grazing with forage 
preservation for non-growing periods. Confined systems house ani-
mals with most or all feed harvested and brought to the animals with 
minimal use of grazing (≤2 months).

Some studies, and consumer marketing campaigns, have sug-
gested that grazing systems perform better in some regions than 
confined systems by certain ‘sustainability’ metrics, including animal 
health and welfare, reduced labour demands, profitability and nutrient 
losses to air and water, compared with confined systems18–20. In addition 
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Results
Empirical observational data
Data were available to contrast N and P losses through runoff and leach-
ing across the three different dairy systems for 156 sites (Supplemen-
tary Table 1) spread across 17 countries (Fig. 1) and 7 terrestrial biomes 
(Supplementary Table 2). Most data were available for New Zealand 
(n = 45), the United States (n = 40) and Australia (n = 19), with European 
countries (including the United Kingdom) accounting for 38 of the 
remaining sites (Supplementary Table 1). Across systems, most data 
were available for grazed (n = 75), followed by the hybrid (n = 49) and 
confined systems (n = 32). Across biomes, 104 sites were in the Temper-
ate broadleaf forest biome, followed by 30 sites within the temperate 
grassland, savanna and shrubland biome (Supplementary Table 2). Sites 
were more evenly distributed within biomes for the confined systems 
than either the grazed or hybrid systems. For example, the temperate 
biomes accounted for 56% of sites for the confined system but 95% and 
92% of the grazed and hybrid systems, respectively. Similarly, systems 
were more evenly spread in the United States and in Europe, whereas 
countries like Australia and New Zealand contained data exclusively 
from the grazed system.

Sufficient data were available to contrast the characteristics of 
each system (Table 1), although caution should be applied if contrasting 
the characteristics of systems with few data (for example, n < 5 for N 
surplus—confined, P fertilizer input—confined, and P surplus—grazed). 
Typically, confined systems were larger in size, stocked at a higher rate 
and had greater total N input to the soil (caused by manure not ferti-
lizer) and N surplus, than hybrid or grazed systems. Nitrogen losses 
for confined systems were lower on a productivity basis (g kg−1 fat- and 
protein-corrected milk; FPCM) but not on an area basis. For P, P fertilizer 
and total P input were lower in confined than hybrid or grazed systems, 
but P losses on an area and productivity basis did not differ. Nitrogen 

to some human health benefits, these metrics have been combined to 
infer that some grazed, grass-fed dairy systems are more ‘environmen-
tally and animal welfare friendly’ than other systems from a consumer 
perspective21, and therefore used to attract product premiums (https://
www.origingreen.ie/) 22,23. However, few empirical data exist to sup-
port these claims with respect to nutrient losses to water, especially 
in intensive systems where the potential for nutrient loss is greater 
than in systems with lower stocking rates24. Moreover, in a preliminary 
analysis conducted over a decade ago, Kleinman and Soder14 hypoth-
esized that hybrid systems may offer the ability to reduce nutrient 
losses by using housing to capture animal excreta and apply it to land 
to avoid storm events or wet times of the year when nutrient loss risks 
are high. Furthermore, hybrid and confined systems offer the ability 
to control and regulate dietary intake for higher milk production and 
the administration of feed additives to improve production or reduce 
enteric methane emission25.

With an increased spotlight on dairying and nutrient losses, much 
more data are now available to compare systems. In this Analysis, hence, 
we aimed to determine whether differences exist between the three 
contrasting intensive dairy production systems based on the duration 
of outdoor grazing, with a focus on their N and P losses as indicators 
of water quality. However, we acknowledge that empirical data, from 
global studies, can be variable, being influenced by biophysical condi-
tions and local management decisions. Therefore, we also modelled 
the likelihood of N and P losses from common dairy farming systems 
representative of those used in three major dairy-producing jurisdic-
tions within the same terrestrial biome (New Zealand, the Netherlands, 
and the north-eastern United States). These were termed ‘real’ farms. 
We contrasted these real farms with hypothetical farms representa-
tive of the two less common systems to create outputs for the three 
production systems in each jurisdiction.
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Fig. 1 | Location of the different dairy systems covered in the study. Data 
points used in the meta-analysis are indicated by coloured dots, including 
confined (n = 32), hybrid (n = 49) and grazed (n = 75) systems. Note that where 
data points are too close to be differentiated (<100 km), points are amalgamated, 

increasing the size of the mapped dots. The base map used data sourced from 
OpenStreetMap contributors available under an Open Database License  
(https://www.openstreetmap.org/copyright).
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loss per hectare was correlated to stocking rate and N surplus (Table 2). 
However, there were no substantial correlations between P inputs or P 
surplus and P losses per hectare. A paucity of significant correlations 
was expected given the diversity of farms within each system.

A paucity of data limited comparisons between all countries (Sup-
plementary Table 1). However, sufficient data (n > 5) were available for 
Australia, Denmark, New Zealand and the United States. The analysis 
of these data indicated no differences in P losses, but a greater loss 
of N (g kg−1 FPCM) in Denmark (dominated by hybrid systems whose 
covered manure facilities and subsurface manure application reduce N 
losses as ammonia emissions to air over N losses to water26) compared 

with Australia (dominated by grazed systems) (Supplementary Table 
3). Stocking rate was highest in New Zealand compared with the four 
other countries, as was median N surplus (which included N fixation by 
clover), but this was not reflected in N losses on neither a productivity 
nor an area basis. These data would suggest, on average, that there is 
no clear advantage of one system over another for reducing nutrient 
losses to water.

Modelled data
We used real and hypothetical farm characteristics to model and con-
trast N and P losses from the three different systems in representative 

Table 1 | Descriptive statistics of the variables included in the study

Variable System N N* Median Mean s.e.m. CV Min Max

Farm size (ha) Grazed 75 0 30 401a 100 217 <1 4,100

Hybrid 46 3 64 248a 153 418 1 6,900

Confined 25 7 223 713b 222 155 39 3,739

Stocking rate (cows ha−1 yr−1) Grazed 59 16 3 2.9a 0.1 33 1.0 5

Hybrid 40 9 1.9 1.9b 0.1 35 0.8 3.8

Confined 25 7 2 3.3ab 0.8 123 0.6 17.5

N input fertilizer (kg ha−1 yr−1) Grazed 57 18 170 190b 17 69 0 684

Hybrid 27 22 150 145ab 14 50 4 250

Confined 18 14 93 116a 20 73 16 280

Total N input (kg ha−1 yr−1) Grazed 58 17 170 200a 18 69 - 684

Hybrid 31 18 170 174a 18 58 20 465

Confined 19 13 169 272a 79 127 16 1,180

N surplus (kg ha−1 yr−1) Grazed 16 59 311 261a 28 42 −20 372

Hybrid 22 27 132 155b 20 59 7 385

Confined 3 30 455 412ab 248 85 164 660

N loss (kg ha−1 yr−1) Grazed 63 12 35 44a 4 78 4 175

Hybrid 32 17 31 41a 6 101 9 237

Confined 24 8 42 106a 29 136 7 486

N loss (g kg−1 FPCM yr−1) Grazed 29 46 2.91 3.05a 0.29 51 0.67 6.87

Hybrid 18 31 2.70 4.17a 0.77 78 1.24 12.37

Confined 4 28 0.94 0.92b 0.24 52 0.39 1.4

P input fertilizer (kg ha−1 yr−1) Grazed 30 45 37 39b 3 44 5 68

Hybrid 14 35 14 27b 7 101 5 90

Confined 4 28 12 12a 5 77 1 24

Total P input (kg ha−1 yr−1) Grazed 29 46 40 42b 3 36 15 68

Hybrid 15 34 15 34b 8 91 5 92

Confined 6 26 18 18a 3 34 10 25

P surplus (kg ha−1 yr−1) Grazed 2 73 9.2 9.2a 6.8 104 2.4 16

Hybrid 16 33 3.4 10.1a 4.4 173 −7.0 53.7

Confined 8 24 1.5 2.8a 1.3 129 −0.5 11

P loss (kg ha−1 yr−1) Grazed 26 49 1.11 1.4a 0.4 139 0.01 10

Hybrid 26 23 1.21 4.3a 2 242 0.02 50

Confined 22 10 0.60 20.2a 12.9 298 0.01 239

P loss (g kg−1 FPCM yr−1) Grazed 7 68 0.09 0.09a 0.02 71 0.01 0.17

Hybrid 10 39 0.12 0.11a 0.03 84 0.01 0.21

Confined 5 27 0.14 0.37a 0.22 134 0.03 1.2

For each, we include the number of data points present (N) and missing (N*), mean, standard error of the mean (s.e.m.), coefficient of variation (CV), minimum (Min), median and maximum 
(Max) for stocking rate, and N and P inputs (fertilizer or fertilizer plus manure = total), surplus and loss in runoff and leaching by each system. All units are in kg (N or P) ha−1 yr−1 except stocking 
rate, which was recorded as across the farm. Means for dairy systems within a variable followed by the same letter are not different from one another (in log space) using Tukey’s honestly 
significant difference at the P < 0.05 level.
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dairying areas across three jurisdictions (varying in climate and soils). 
We used farm size, stocking rate and other characteristics (for example, 
soil types) representative of real farms found in each jurisdiction. The 
two hypothetical farms used the same farm size, stocking rate and 
characteristics but modified production according to typical practice 
for the system (Table 3).

As a check of model performance, we compared modelled and 
observed data (where available). Observed N losses were available for 
3 years at the Manawatu site (8–21 kg N ha−1 yr−1) (ref. 27) and for 2 years 
at the Canterbury site (23–33 kg N ha−1 yr−1) (ref. 28). The modelled 
losses, averaged over 25 years of weather, compared well at 16 and 
32 kg N ha−1 yr−1 for the Manawatu and Canterbury grazed farms, respec-
tively. Modelled P losses averaged over 25 years for the Manawatu and 
Canterbury grazed farms were 1.68 and 0.42 kg ha−1 yr−1 (Table 4). No 
observations exist for P losses from these farms in the same years; how-
ever, measured losses in 2003 for the Manawatu farm were 1.68 kg P ha−1  
(ref. 29), and 0.25 kg P ha−1 yr−1 from 2001 to 2015 for the Canterbury 
farm30, both of which are comparable to modelled outputs (Table 4). No 
data exist to compare across systems, and although the Integrated Farm 
System Model (IFSM) has been calibrated to a range of different systems 
in the United States and the Netherlands8,31,32, we acknowledge that previ-
ous evaluation or calibration has not occurred for New Zealand systems.

In examining the different systems, N losses for most jurisdictions 
were lower from the hybrid or confined systems compared with the 
grazed system when expressed on a productivity basis (FPCM), rang-
ing from a reduction of 0.5 g N kg−1 FPCM in Canterbury to 1.4 g N kg−1 
FPCM in Pennsylvania (Table 4). The exception to this was an increase 
of 0.4 g N kg−1 FPCM for the hybrid compared with grazed system in the 
Netherlands. There was no consistent pattern in N losses across the three 
system types when expressed on an area basis. In contrast to N, P losses 
from grazed systems were generally lower than hybrid (mean reductions 
of 0.395 kg P ha−1 and 0.027 g P kg−1 FPCM) or confined (mean reduc-
tions of 0.766 kg P ha−1 and 0.038 g P kg−1 FPCM) systems on an area 
and productivity basis (Table 4). The exceptions were lower losses of 
0.11 kg P ha−1 and 0.022 g P kg−1 FPCM for the hybrid system in Manawatu 
and 0.005 g kg−1 FPCM for the confined system in Pennsylvania.

As the amount of purchased grain varies across the three production 
systems and locations, another consideration is the nutrient losses that 
occur in the production of grain imported to the farm. Although we had 
no information of the production systems nor biophysical characteris-
tics of these farms, we attempted to account for their contribution to 
nutrient losses. We used average crop yields from Table 3 and median 

N and P losses per hectare from Table 1 and multiplied these data by the 
amount of purchased grain in each system (Supplementary Information). 
This increased nutrient losses for production systems that required more 
purchased grain, which were primarily the confined feeding systems in 
New Zealand and all systems in the Netherlands. However, in general, 
the trends across production systems were like those found without 
considering the losses for purchased grain (Supplementary Table 6).

Discussion
Enhanced leaching and runoff N losses under grazing potentially 
reflect the non-uniform deposition of N-rich urine patches (600–
1,000 kg N ha−1), which exceed the nutrient requirements of pasture 
(200 kg N ha−1) and are lost beyond the root zone, especially outside of 
the grass growing season33. Nitrogen losses from pasture systems, such 
as those in Australia and New Zealand, can be boosted by a high N sur-
plus fed through a greater proportion of legume (20–40% clover) and 
therefore protein N in forage than pastures in, for example, the United 
States or Europe8. Uniquely, many grazed dairy farms in southern New 
Zealand also maintain a small area of crop (usually Brassica) used as 
forage in winter when pasture production is low. However, grazing these 
small areas in winter leads to urine being deposited onto the ground 
when nothing is growing, resulting in the mobilization of soil inorganic 
N and substantial N leaching (>100 kg N ha−1) (ref. 34).

In contrast to grazed systems, most N losses in hybrid and con-
fined systems come from areas of the farm that are tilled and sown 
in crops (including off-farm losses associated with purchased grain), 
especially maize8. Other areas sown in alfalfa are not grazed in situ, 
but instead cut and fed in the housing system as part of a total mixed 
ration. Infrastructure within the housing system is used to capture and 
store excreta as solid or liquid manure that is then applied back to land 
as an organic nutrient source when soil moisture conditions are suit-
able, leaching risk is lower and plant growth is conducive to nutrient 
uptake35. This should in theory lower the potential for N losses to water 
on an area basis. However, no consistent pattern was noted on an area 
basis across the observations or the modelled farms. Instead, greater 
leaching losses from more highly fertilized tilled areas, that support 
hybrid and confined systems, potentially offset the lower urine patch 
deposition onto grazed pastures. However, total mixed rations, which 
are a common feeding strategy in housed systems, increase milk pro-
duction per cow23 and therefore reduce N losses on a productivity basis.

Contrasts between systems for P losses are less obvious than for N 
losses. This is caused by the strong influence of P loss processes such 

Table 2 | Spearman correlation coefficients between selected variables

Stocking rate P input 
fertilizer

Total P input P surplus P loss P loss 
(FPCM)

N input 
fertilizer

Total N 
input

N surplus N loss

P input 
fertilizer

0.459**

Total P input 0.550*** 0.894***

P surplus 0.036 0.685** 0.774***

P loss −0.144 −0.261 −0.163 −0.193

P loss (FPCM) −0.323 −0.664* −0.664* −0.336 0.932***

N input 
fertilizer

0.449*** 0.154 0.039 −0.336 −0.064 −0.090

Total N input 0.451*** 0.142 0.119 −0.203 0.004 0.055 0.828***

N surplus 0.823*** −0.293 −0.160 −0.332 0.108 −0.147 0.717*** 0.803***

N loss 0.284** 0.159 0.019 0.225 −0.278 −0.342 0.082 0.171 0.369***

N loss (FPCM) −0.122 −0.506 −0.506 0.550 −0.383 0.174 0.034 −0.097 −0.112 0.847***

In this analysis we consider stocking rate (cow ha−1) as well as N and P inputs (fertilizer or fertilizer plus manure indicates total, all in kg ha−1 yr−1), surplus (kg ha−1 yr−1) and loss by leaching and 
runoff (kg ha−1 yr−1 and g FPCM yr−1). All units are in kg (N or P) ha−1 yr−1 except N and P losses as kg FPCM−1 and stocking rate, which was recorded as cow ha−1 yr−1 across the farm. *P < 0.05,  
**P < 0.01, ***P < 0.001.
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as erosion and runoff that vary considerably in space and time. Our 
modelling suggested that P losses would be greater in the hybrid and 
confined systems than for a grazed system on an area basis (Table 4). 
This was driven by erosion of P from crop areas, but also by the rate and 
form of surface-applied manures, slurries and fertilizers36. However, 
the IFSM is not spatial37. While this does not matter for nitrate N, which 
is highly mobile and primarily lost by leaching, P can be retained either 
by sorption or filtration during runoff. Hence, P loss will be highly 
sensitive to the distance runoff must travel between being lost and 
entering the stream, as well as soil P retention capacities, and rates of 
soil erosion. Variation in P losses in grazed systems also comes from 
freshly grazed or senescent pasture, and from the treading action of 
grazing cattle that disturb the soil38. The presence of grazing animals 
in wet periods can greatly increase P and sediment losses39,40, meaning 
that their location on a property, and distance away from a waterway, 
is another factor causing variation in the measurement of P losses. 
These factors help explain why contrasts in P losses were not detected 
in our observed data.

Implications for policy
Data suggesting a link between N and P surplus, and N and P loss, has 
been used to compare likely losses in Organisation for Economic 
Co-operation and Development and European Union countries and 
to guide water quality policy at the national and regional level, with 
some extrapolating this to the farm scale41–43. Policy aims to decrease 
N and P losses by reducing surpluses and P build-up in the soil44,45. For 
example, implementation of the European Union Water Framework 
Directive has halved the surplus of N since a peak of 250 kg N ha−1 in the 
mid-1990s by restricting the quantity of N that can be applied through 
manure and fertilizer46. However, as N and P are lost by different mecha-
nisms that are expressed to different magnitudes in each dairy system, 
inter-country comparisons using nutrient surpluses might not give 
a true picture of nutrient losses to water, especially if countries are 
dominated by one system.

Supporting the use of an N surplus in policy, we found signifi-
cant but weak correlations between observed N surplus, stocking 
rate and N loss across systems and locations. However, assuming the 

Table 3 | Characteristics of farms modelled and evaluated using the ISFM

Parameter Manawatu, New Zealand Canterbury, New Zealand Pennsylvania, United States New York, United States The Netherlands

Grazed 
(real)

Hybrid Confined Grazed 
(real)

Hybrid Confined Grazed Hybrid Confined 
(real)

Grazed Hybrid Confined 
(real)

Grazed Hybrid 
(real)

Confined

Cow numbers 650 650 650 560 560 560 100 100 100 500 500 500 100 100 100

Farm area (ha) 255 255 255 285 285 285 100 100 100 530 530 530 63 63 63

Grass area (ha) 232 215 192 260 200 115 100 50 30 530 200 50 63 55 54

Grass yield (t 
DM ha−1)

13.6 13.4 13.4 17.4 17.5 17.4 7.3 6.6 6.3 8.7 8.3 6.0 9.6 9.7 10.4

Small grains or 
Brassica (ha)

23 40 63 25 85 170 – – – – – – – – –

Corn (ha) – – – – – – – 30 50 – 180 280 – 8 9

Alfalfa (ha) – – – – – – – 20 20 – 150 200 – – –

Farm N fertilizer 
(kg ha−1)

42 80 100 137 142 103 80 62 62 90 30 11 81 121 131

Farm P fertilizer 
(kg ha−1)

10 10 – 30 22 – – 5 – – – – – – –

Replacement 
rate (%)

22 28 30 21 25 30 25 32 36 25 32 38 32 32 32

Milk production 
(kg FPCM 
cow−1)

6,021 7,000 9,000 6,377 7,500 8,600 6,000 8,700 10,000 7,600 9,500 11,500 7,916 9,755 11,114

Milk fat (%) 4.7 4.4 4.3 4.8 4.4 4.0 4.5 3.8 3.6 4.9 3.9 3.8 4.5 4.5 4.4

Grazed forage 
(t DM)

2,417 1,769 – 2,689 1,725 – 295 145 – 1,392 535 – 239 105 –

Harvested 
forage (t DM)

318 1,175 2,175 370 570 1,735 160 302 448 1,138 2,818 3,725 273 445 478

Harvested grain 
(t DM)

– – 471 – 655 1,308 – 259 255 – 439 1,006 – – 69

Imported grain 
(t DM)

– 658 1,111 51 241 239 57 – – 1,043 214 – 120 237 196

Imported other 
feed (t DM)

920 544 911 337 450 664 50 7 69 150 674 666 131 48 124

Manure 
handling

Slurry Slurry Slurry Slurry Slurry Slurry Solid Liquid Liquid Solid Slurry Liquid Slurry Slurry Slurry

Soil P content High High High High High High Very 
high

Very 
high

Very 
high

High High High High High High

Additional weather and soil characteristics are available in Supplementary Tables 4 and 5. For farms in the Manawatu, Canterbury, Pennsylvania, New York, and the Netherlands, mean annual 
temperature was 13.4, 12.0, 12.1, 8.1 and 12.1 °C, respectively. Commensurate values of mean annual precipitation were 1,034, 613, 1,074, 1,001 and 1,074 mm and soil pH 5.8, 5.7, 6.5, 5.5 and 6.0. 
Soil texture for all farms was silt loam except for the clay loam in the farm from the Netherlands. Small grains are usually barley except for the grazed and hybrid systems in New Zealand where 
crops (usually Brassica) are grazed in situ to supplement winter feed. Grazed forage (t dry matter (DM) offered) consists of pasture and the grazed forage crops. Soil P content in New Zealand 
and the Netherlands is measured as Olsen P with high encompassing a range of 35–45 mg kg−1. Soil P content in the United States was measured as Mehlich-3 P, with high and very high 
representing concentrations of 100–150 and >150 mg kg−1, respectively.
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same total N application rate, soil type and climate, N losses result-
ing from the even spread of stored manure at times conducive to 
plant uptake should intuitively result in less N loss compared with 
losses from sporadic and concentrated urine patches in grazed 
systems. Our modelling of the different dairy systems also suggests 
the N surplus policy requires more interpretation. For instance, 
comparing the two most different systems (grazed and confined), 
our intuition was supported by the greater modelled N losses in the 
grazed over confined systems in New Zealand and the Netherlands. 
This did not happen in the US systems owing to the lower stocking 
rate (≤1 cow ha−1, compared with 1.6 cows ha−1 in the Netherlands 
and 2.0–2.6 cows ha−1 in New Zealand) which probably decreased the 
influence of urine patches in N losses. However, an emphasis on N 
surplus is warranted if also considering emissions to air where high 
N losses from land to water in the grazed system in New Zealand and 
the Netherlands was balanced by lower ammonia emissions to air 
(Supplementary Fig. 1).

In contrast to N, P losses come from a wider array of sources. A 
focus on P surplus is understandable for a confined system where a 
P surplus will probably increase soil P concentrations and, if evenly 
distributed across the farm, P losses. Increased soil P is of particular 
concern as it can take many years to decline, thus sustaining high  
P losses for many decades in the interim47. However, while a P surplus 
could increase soil P concentrations in a grazed system, greater tread-
ing damage and stock excretal returns can account for the majority of 
farm P losses48. This means that, under the same P surplus, P losses from 
a grazed system have the potential to be lower, the same or greater than 
a confined system depending on if, for example, treading damage and 
excretal returns occur close to a stream. This variation in losses will be 
important to consider in policy decisions where the excessive growth 
of periphyton or phytoplankton in rivers and lakes is severely limited 
or co-limited by P or N (refs. 49,50). When considering off-farm losses 
(Supplementary Table 6), there may be an opportunity to utilize spatial 
variation to purchase grain from areas known to have low potential for 
nutrient losses43.

Wider implications
Most regions have derived a system that is profitable and therefore 
optimized, from the farmer’s perspective to a particular geographical 

location, but some regions have the ability and the freedom to adopt 
multiple systems. There are many other drivers, in addition to policy, 
that influence the adoption of different dairy systems. When consider-
ing the modification of an existing system, it is important to consider 
wider implications such as animal welfare, efficiency and other envi-
ronmental effects such as ammonia and GHG emissions, but especially 
improved profitability that may come from product premiums and 
lower on-farm costs for milk produced under grazing. In the United 
States, grass-fed organic milk attracts a substantial premium (approxi-
mately 100% in 2016 (ref. 51)) over milk produced from confined opera-
tions52, similarly all grass-fed milk receives a premium of €0.50 per 
100 kg of milk in the Netherlands53. New Zealand milk, and especially 
organic milk, gets a small premium (approximately 5–10% depending 
on year54,55) as dairy systems are almost entirely grazed and perceived by 
consumers to already capture many environmental and animal welfare 
benefits over confined systems overseas1. While these premiums can 
be linked to improved outcomes associated with many of these wider 
implications18–20, from an N (and to a lesser extent P) loss perspective, 
we see insufficient evidence to substantiate this consumer perception. 
Moreover, on a productivity basis, we see evidence that N leaching and 
runoff losses from the farm are in fact greater from systems that incor-
porate grazing than not, because milk production is generally lower.

Global demand for milk products is growing. In areas concerned 
with nutrient losses, system choices may need to be based on environ-
mental and economic metrics that are expressed on a productivity or 
area basis, and that include any off-farm losses from the production of 
purchased feed. Furthermore, grazing may be economically benefi-
cial where the risk of nutrient loss is low and receiving waters are less 
susceptible to eutrophication, or where there is sufficient consumer 
concern over using confined systems that may result in poorer milk 
quality, animal welfare or enhanced GHG emissions (Table 4)56.

Off-farm losses are spatially dependent and hence could be 
avoided if grain is purchased only from areas of low nutrient loss. To 
aid the consumer in choosing products with low nutrient losses, the 
productivity metric for on- and off-farm losses could be displayed. 
Some data have recently been produced for >57,000 food products sold 
in the United Kingdom, which incorporates eutrophication potential 
measured as P loss on an area basis. However, this does not consider 
losses from different dairy systems57. If producers chose a grazing 

Table 4 | Nitrogen and phosphorus combined runoff and leaching losses from each location and system per hectare on-farm 
area and per kilogram of FPCM, along with annual surplus N and P and GHG emissions

Location System N loss 
(kg ha1)

N loss (g kg−1 
FPCM)

N surplus  
(kg ha−1)

P loss  
(kg ha1)

P loss (g kg−1 
FPCM)

P surplus  
(kg P ha−1)

Annual GHG losses 
(t CO2-eq ha−1)

Annual GHG losses  
(kg CO2-eq kg FPCM−1)

Manawatu,  
New Zealand

Grazed 16 1.1 146 1.68 0.110 15 16 1.04

Hybrid 8 0.5 204 1.57 0.088 13 21 1.15

Confined 12 0.5 268 3.45 0.150 28 26 1.12

Canterbury,  
New Zealand

Grazed 32 2.6 157 0.42 0.034 40 14 1.09

Hybrid 27 1.8 200 0.56 0.038 26 16 1.06

Confined 11 0.6 202 0.73 0.043 13 18 1.04

Pennsylvania, 
United States

Grazed 36 6.0 130 1.05 0.175 4 7 1.15

Hybrid 41 4.7 110 1.76 0.202 1 8 0.92

Confined 46 4.6 136 1.70 0.170 1 10 0.99

New York, 
United States

Grazed 35 4.8 122 0.15 0.021 8 6 0.86

Hybrid 35 3.9 125 0.86 0.096 4 10 1.08

Confined 39 3.7 123 1.23 0.116 2 9 0.89

Friesland, the 
Netherlands

Grazed 31 2.4 97 0.15 0.007 2 12 0.98

Hybrid 43 2.8 121 0.15 0.009 2 14 0.91

Confined 29 1.6 146 0.13 0.012 0 15 0.84
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system, there is some evidence to show that intensive grazing systems 
(for example, >3.5 cows ha−1) can reduce their stocking rate (for exam-
ple, to 2.2 cows ha−1) and be more profitable58. However, even lowering 
stocking rates to 2.2 cows ha−1 may not be low enough to reduce N losses 
per hectare and per kilogram product below that of systems using 
housing. Perhaps the optimal system is a hybrid system that adopts 
partial housing during high-risk nutrient loss periods and has capacity 
to sustainably increase production using total mixed rations without 
increasing stocking rates23. If used, for example, in winter and early 
spring, partial housing could provide improved animal welfare out-
comes59 and capture and store excreta before being uniformly applied 
to land when plants are growing, and leaching and runoff are unlikely 
thereby reducing the likelihood of N and P losses34. Such trade-offs need 
to be considered for workable policy, and meeting consumer demand 
for dairy products with valid environmental and animal welfare claims, 
while maintaining viable farm businesses.

Methods
Data search and filters
We interrogated the SCOPUS and Web of Science databases and Google 
Scholar using combinations of N or P and runoff or leaching and dairy as 
search terms. We restricted our search to only those studies published 
in peer-reviewed journals between 1995 and 2020. We undertook to 
focus on empirical data or data generated from mechanistic-based and 
validated models of real farms. Focusing on the most recent 25 year 
period ensures that we obtained data characteristic of a generation 
of contemporary farming and farm practice. The use of empirical and 
validated models increases the likelihood that the data were generated 
with accuracy and precision60. In contrast, we excluded mass balance 
approaches. These approaches tend to calculate leaching and runoff 
losses by difference from inputs and all other outputs. Errors in inputs 
and outputs are therefore accumulated, meaning that losses can be 
highly uncertain. We also excluded studies of large catchments where 
dairy farm losses are likely to be diluted by other land uses or processes 
such as attenuation or lag times between on-farm practice and water 
quality response associated with convoluted flow pathways. Our fil-
tered data therefore included:

•	 Current, unaltered and established (>3 years old) farm systems, 
excluding those that were optimized (for example, using a strat-
egy to mitigate N or P losses);

•	 Studies whose data were obtained from scales ranging from 
large plot (0.1 ha) to catchments (2,000 ha), where catchments 
were dominated by ≥66% dairy land use. This recognized that, 
while it is a common perception that N loss is dominated by sub-
surface flow of nitrate and P loss is dominated by surface runoff 
of particulate P (ref. 12), substantial losses of N and P occur via a 
mix of flow paths at different scales61; and

•	 Only mean annual losses as kg N or P ha−1 yr−1, excluding losses 
that were identified by the authors as generated in years charac-
terized by hydrological drought or floods.

We collected the following parameters: farm size, stocking rate, 
P fertility (as Olsen P concentration or via a conversion) and N and P 
inputs as feed, fertilizer and manure (including land-applied dirty 
water or dairy shed effluent), N or P surplus and N or P losses on an 
annual per hectare basis. Studies were further characterized by location 
(latitude and longitude), terrestrial biome62 and dairy farm system class 
as grazed (grazing for ≥9 months), hybrid (grazed 3 and 8 months) or 
confined (grazed ≤2 months).

In addition to measured observations of N or P loss, we accepted 
modelled estimates of N and P loss (kg ha−1 yr−1) from the following 
models that had been calibrated and verified for dairy farm systems: 
Annual P Loss Estimator (APLE)63, Agricultural Policy Extender (APEX)64, 
Agricultural Production Systems Simulator (APSIM)65, Dairy Forage Sys-
tem Model (DAFOSYM)66, DeNitrification-DeComposition (DNDC)67,68, 

Groundwater Loading Effects of Agricultural Management Systems 
(GLEAMS)69, Integrated Farm System Model (IFSM)37, Nitrate Leach-
ing and Economic Analysis Package (NLEAP)70 and OVERSEER71. We 
also calculated N and P losses, standardized to 4% fat and 3.4% protein 
as grams of N or P lost per kilogram of FPCM as per the International 
Dairy Federation72.

Data analyses
General descriptive statistics were generated for each param-
eter. Owing to the highly skewed nature of most data, values were 
log-transformed before contrasting parameter means across system 
classes by an analysis of variance and the results presented as Tukey’s 
honestly significant difference. To show the strength of associations 
between parameters, Spearman correlation coefficients were also 
generated.

Modelling
Additional information was obtained for the likelihood of N and P 
losses across the three different systems in New Zealand (Manawatu 
and Canterbury), the north-eastern United States (Pennsylvania and 
New York) and the Netherlands (Friesland) through modelling. As dairy 
production systems have generally been developed and attuned to a 
geographical region, one of the systems often dominates in each region 
but the others may be found, particularly for specialty markets such as 
organic and grass-fed milk. With some exclusions (for example, graz-
ing in very cold climates), farm management and infrastructure have 
developed sufficiently to enable each system to be used, across many 
jurisdictions. To test the environmental performance of each system, 
in relation to N and P losses, and within an area where they are realisti-
cally possible, we chose to model examples of current systems within 
one terrestrial biome. The terrestrial biome chosen was ‘temperate 
broadleaf forest’, which represents climate and soil characteristics 
of dairy-intensive regions of New Zealand, the Netherlands and the 
north-eastern United States.

ISFM
Dairy production systems were simulated in each region using the 
IFSM software tool37 (additional details about the model are given 
in Supplementary Information). Of the modelling candidates listed 
above, IFSM has been well used in modelling nutrient transformation 
and loss across all our systems73–75. This whole-farm model simulates 
crop production, feed use and the return of manure nutrients back to 
the land for up to 25 years of daily weather. Daily growth and develop-
ment of crops are predicted on the basis of soil water and N availability, 
ambient temperature and solar radiation. Simulated tillage, planting, 
harvest, storage and feeding operations predict resource use, timeli-
ness of operations, crop losses and nutritive quality of feeds produced.

Nutrient flows are tracked to predict losses to the environment and 
potential accumulation in the soil. Losses include ammonia volatiliza-
tion, nitrification, denitrification and leaching losses of N, erosion of 
sediment, and runoff of sediment-bound and dissolved N and P across 
the farm boundaries. Carbon dioxide (CO2), methane (CH4) and nitrous 
oxide (N2O) emissions are tracked from soil, manure and machinery 
sources and sinks to predict cradle to farm-gate GHG emission in CO2-eq 
units. Whole-system balances of N, P and carbon (C) are determined 
as the sum of nutrient imports in purchased feed, manure, fertilizer, 
deposition and fixation, minus the nutrient exports in milk, animals 
and feeds sold or lost.

Dairy production systems
Representative dairy production systems were simulated at two 
locations in New Zealand (Canterbury and Manawatu), two in the 
north-eastern United States. (Pennsylvania and New York) and one 
in the Netherlands (Table 3). At each location, the three production 
systems were modelled and evaluated: grazing, full confinement and 
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hybrid (semi-confinement). With grazing systems, cattle had access to 
pastureland for at least 9 months of the year with low use of housing 
facilities and associated manure handling. Minimal feed supplemen-
tation was used to maintain a relatively low milk production (Table 3).  
Housing facilities normally consisted of an open lot or bedded 
pack barn, but in the Netherlands, a slatted floor barn was used. For 
full-confinement systems, cows were maintained all year in free-stall 
barns and fed total mixed rations to meet their nutrient needs for a 
relatively high milk production. For the hybrid systems, animals were 
housed in barns for about half of the year with use of grazing during the 
warmer portion of the year. Feed supplementation and milk production 
fell between that of the grazing and full-confinement systems.

Model parameters for the various production systems were set 
on the basis of the published studies in each region8,27,28,76. Data used 
from these studies included animal production (for example, stock 
numbers, cow body weight, milk production, feeding method, dietary 
protein and P), soil conditions (for example, soil type, soil P fertility, 
texture and pH), crop and pastureland (area, species mix, fertilizer 
and manure application rates, months grazed and yield), levels of sup-
plementary feed and manure handling systems. Phosphorus fertilizer 
use in the hybrid and confined systems were often set to zero in the 
United States and the Netherlands examples (Table 3). This fertilizer 
strategy was afforded by high imported P in feed and adequate to high 
soil P concentrations where local regulations and guidelines may limit 
P application44,45. We did not set P fertilizer use to zero in the grazed or 
hybrid systems in New Zealand owing to evidence that at modest soil P 
concentrations stopping P fertilizer applications can decrease pasture 
production by 10–20% in 4–5 years (refs. 77,78).

Each production system was simulated over 25 years of historical 
weather for the location. The same soil characteristics were used for 
each production system at a location where the soil texture, bulk density 
and available water holding capacity were set to represent the soil at the 
location. Feed crops produced were selected from those produced in the 
region that best met the nutrient needs of the animals. Crops varied from 
all grass (plus clover) for grazing systems to a mixture of grass, legume, 
grain-crop silage and grain crops with confinement systems (Table 3). 
Farm management parameters such as crop and pasture yields, planting 
and harvest dates, equipment used, tillage practices, feed storage and 
manure handling methods were representative of those in each region.

Herd size and land area were held the same across the three pro-
duction strategies at each region. Herd size was set representative of 
that found in the region (Table 3). Herds in New Zealand were only cows, 
while those in the United States and the Netherlands included replace-
ment heifers. Crops and land area used for each crop varied to best meet 
the feed needs of the herd (Table 3). Feeds were purchased as needed to 
supplement that produced on the farm to meet the nutrient needs of all 
animal groups making up the herd, which brought additional nutrients 
onto the farm. When more feed was produced than needed by the herd, 
that feed was sold and the nutrients contained were exported from the 
farm. The authenticity of these representative farms was checked with 
local dairy farm consultants and colleagues.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
We used the SCOPUS database to source data for our observations. The 
observational and modelled data used or generated in this study are 
available at figshare (https://doi.org/10.6084/m9.figshare.20486373). 
Source data are provided with this paper.

Code availability
The statistical coding is available from the corresponding author on 
reasonable request.
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