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A systematic scoping review of the 
sustainability of vertical farming, 
plant-based alternatives, food delivery 
services and blockchain in food systems

A. Charlotte Bunge    1 , Amanda Wood    1, Afton Halloran2,3,4 and 
Line J. Gordon    1

Food system technologies (FSTs) are being developed to accelerate the 
transformation towards sustainable food systems. Here we conducted 
a systematic scoping review that accounts for multiple dimensions of 
sustainability to describe the extent, range and nature of peer-reviewed 
literature that assesses the sustainability performance of four FSTs: 
plant-based alternatives, vertical farming, food deliveries and blockchain 
technology. Included literature had a dominant focus on environmental 
sustainability and less on public health and socio-economic sustainability. 
Gaps in the literature include empirical assessments on the sustainability 
of blockchain technology, plant-based seafood alternatives, public health 
consequences of food deliveries and socio-economic consequences of 
vertical farming. The development of a holistic sustainability assessment 
framework that demonstrates the impact of deploying FSTs is needed to 
guide investments in and the development of sustainable food innovation.

Technologies in the food sector, such as cellular agriculture, are being 
developed at a considerable pace to facilitate the transformation 
towards achieving food system sustainability1. We here define them 
as food system technologies (FSTs) that have been recently introduced 
at various parts of the food supply chains to address current systemic 
challenges that prevent sustainable food systems. Data on investment 
trends show that their development has been accelerated by the COVID-
19 pandemic and has generated strong interest from venture capital 
firms2. These FSTs are often surrounded by a sustainability halo, a 
socio-psychological phenomenon of perceiving a product as sustain-
able based on positive attributes, leading to a higher willingness to pay 
(WTP). This has created an innovation space that often strives to reduce 
climate impact from the food sector but disregards other dimensions 

of sustainability. As outlined in the Sustainable Development Goals 
(SDGs), the comprehensive concept of sustainability addresses mul-
tiple environmental, economic and social impact factors3, with syner-
gies and trade-offs within and across them4. Innovations in the food 
industry can impact all these sustainability pillars, potentially leading 
to unintended consequences5. Yet, while many well-defined tools exist 
to study the food system as a whole6–8, there is no such defined toolset 
and inventory of sustainability indicators to empirically assess the 
sustainability performance of FSTs.

Considering the three pillars of sustainability, this multidisci-
plinary scoping review examines the extent, range and nature of the 
peer-reviewed literature that assessed the sustainability performance of 
FSTs and summarizes the research findings. To accomplish this, we first 
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(n = 7). We captured systematic and non-systematic reviews (n = 13), 
mostly focusing on BT (n = 8). Other methods that have been applied 
to case studies (n = 12) are detailed in the Supplementary Data.

identify sustainability indicators that have been used in the literature to 
assess FSTs and then synthesize empirical evidence indicating FSTs sus-
tainability performance compared with the technologies they intend to 
replace. Finally, we identify implications for research and practice in rela-
tion to the development of comprehensive sustainability assessments.

We focus on four divergent but representative FSTs that aim to 
address sustainability-related issues at different parts of the food sup-
ply chain: plant-based alternatives (PBAs), vertical farming (VF), food 
deliveries (FD) and blockchain technology (BT) (Fig. 1). We selected 
these FSTs by mapping investment flows into food start-ups in the 
Nordic region and selected the four FSTs that received the most invest-
ments in the first half of 2021 (Supplementary Material Section 2).

Results
We retrieved 1,493 studies from the initial search, of which 79 articles 
met our inclusion criteria and have been included in the analysis (Fig. 2).

Extent and range of evidence
The majority of the included papers assessed PBAs (n = 37), dominated 
by meat alternatives (PBMA) and dairy alternatives, while only two stud-
ies assessed seafood or egg alternatives. This was followed by literature 
that assessed VF (n = 16), BT (n = 14) and FD (n = 11).

The retrieved literature represents a wide geographical scope, 
with case studies spanning 40 countries across six continents. Regional 
representation varied across the different FSTs, visualized in Sup-
plementary Material Section 5. Case studies on VF had a dominant 
focus on Europe (63%), FD on Asia (60%) and PBAs on Europe (55%) and 
northern America (19%). Literature on BT mainly elaborated a global 
perspective, with some case studies focusing on different countries, 
primarily from Asia (56%).

Nature of evidence
The sustainability of these FSTs has been addressed using a range of 
study designs assessing different indicators. The majority of the litera-
ture employed life cycle assessment (LCA) to study the environmental 
impact (n = 26), cross-sectional and intervention studies for consumer 
behaviour (n = 11), nutritional analysis to determine the nutritional 
content of foods (n = 10) and modelling studies for economic indicators 

Plant-based alternatives: Vegan substitutes of meat,
dairy, seafood and eggs that mimic the structure,
taste and sensory profile of conventional animal-based
products.

Vertical farming: Multi-layer vertical indoor crop
production systems with controlled growth conditions and
without solar light.  

Blockchain technology: A decentralized distributed ledger
technology that traces the supply chain to create
transparency.

Food deliveries: The delivery of meals and groceries that
have been purchased online by various means of
transport. Part of the wider digital food environment.

Driving food processing
and safety

Novel food
system

technologies

Plant-based alternatives

Vertical farm
ingFo

od
 d

el
iv

er
ie

s
Driving alternative

protein shift

Dr
iv

in
g 

su
pp

ly
 c

ha
in

re
fo

rm
at

io
n

Driving regenerative
food production

Blockchain technology

Fig. 1 | Conceptual framework of included FSTs. Overview of the FSTs included in this review that are driving food system transformation at different entry points of 
the food supply chain. Credit: This figure has been designed using icons provided by Flaticon.com.
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Fig. 2 | PRISMA flow chart (Preferred reporting items for systemic reviews 
and meta-analyses). Indicating the selection process of eligible studies.

http://www.nature.com/natfood


Nature Food | Volume 3 | November 2022 | 933–941 935

Article https://doi.org/10.1038/s43016-022-00622-8

Indicators to assess the sustainability of FSTs
For PBAs, VF and FD we observed a wide range of indicators empirically 
assessing all three dimensions of sustainability, with clear differences 
across FSTs (Fig. 3). The results for BT are presented separately (Fig. 4) 
and are not analysed further as the contribution of BT to sustainabil-
ity was described using different indicators and was not empirically 
investigated.

Studies investigating PBAs comprehensively assessed a wide 
range of environmental impact factors, dominated by greenhouse 
gas emissions (GHGe) (n = 16), land use (LU) (n = 11) and water use (WU) 
(n = 12). Evidence on the release of excess nutrients were also frequently 
provided, assessing the eutrophication (n = 12), acidification (n = 8) 
and ecotoxicity potential (n = 10). Three studies assessed the carbon 
opportunity cost of agricultural land, taking into account the amount 
of CO2 that could be sequestered by replacing conventional meat with 
PBMA9–11. As metrics for social sustainability, studies assessed primarily 
nutritional adequacy (n = 14). Consumer acceptance (n = 11), willing-
ness to buy and pay (n = 8), energy use (n = 7) and product price (n = 2) 
were assessed as economic indicators.

Studies that focused on the environmental impact of VF most 
frequently assessed GHGe (n = 9) and WU (n = 6). To indicate their 
economic sustainability energy use (n = 7), yield production efficiency 
(n = 4), financial profit (n = 3) and consumer acceptance have been 
assessed (n = 2).

The literature on FD focused primarily on assessing GHGe (n = 10) 
and plastic waste (n = 7) as environmental impact factors and energy use 
as an economic indicator (n = 3). As social indicators, human health con-
sequences have been assessed. These encompass non-communicable 
diseases deriving from food plastic packaging12 and increasing con-
sumption of unhealthy products13.

Applying BT to the food sector was described, but not analyti-
cal assessed, as enabling primarily social but also environmental and 
economic sustainability. As indicators and methods to describe the 
sustainability of BT deviated from the other FSTs, they are presented 
in a separate format (Fig. 4). Through its main function, food trace-
ability, it can contribute to food safety by reducing the consumption 
of contaminated food worldwide, thereby reducing food waste and 

improving economic efficiency14–20. The potential of BT to decrease food 
waste has been emphasized in case studies from the dairy industry16 
and the supply chains of pork products and mangoes19. Findings from 
case studies on the halal food industry15 and the tilapia fish industry in 
Ghana21 indicate that BT can increase food quality, safety and integrity. 
It can further foster collaboration among food supply chain actors, 
thereby increasing process and cost efficiencies, trust and profitability17. 
Regarding environmental sustainability, BT can be applied to monitor 
environmental impacts and support farmers to reduce the use of chemi-
cal inputs, water and soil. Traceability-enabled food labelling can then 
indirectly improve environmental sustainability through consumers 
demanding veracity of sustainable food production and processing17. 
Three studies emphasized the potential of BT to reduce overfishing18,22,23 
in line with SDG 14.6 to combat illegal, unreported and unregulated fish-
ing17. In general, applying BT to the fish industry has been described as 
beneficial to a range of SDGs22. Included literature also elaborated on 
limitations that deploying blockchain could entail (Fig. 4).

Sustainability performance
Below we outline how the various FSTs performed in relation to the 
three sustainability pillars and indicators compared with the baseline 
technology they are intended to replace, focusing exclusively on the 
studies that conducted this comparison (PBA = 27, VF = 10, FD = 3). BT 
is not included in this section as its sustainability performance was not 
empirically investigated (detailed in Methods).

PBA. We observed high-level agreement across the literature that 
PBAs tend to have a lower environmental impact than conventional 
animal-based products (Fig. 5). In general, they are associated with less 
CO2 equivalent, less WU9,24–26 and less LU9,24–27 and have a lower ecotoxic-
ity9,10,25,28–30, acidification9,10,25,28,30,31 and eutrophication potential10,25–31, 
with some exceptions. For instance, one LCA study found that almond 
milk is more water-intense than dairy milk and has a higher environ-
mental footprint in general when assessed on a cradle to consumer 
system boundary assumption28. Two studies found that the production 
of plant-based dairy alternatives has a higher energy demand than 
conventional dairy28,31.
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Fig. 3 | Sustainability indicators assessed in the included literature. The 
heat map cross-references all the included studies on PBAs, VF and FD to show 
the frequency of studies that investigated sustainability indicators. Impact 

domains are split by social, environmental and economic sustainability, from the 
left. Source data are provided in the Supplementary Data. HTP, human toxicity 
potential; WTB, willingness to buy; WTP, willingness to pay.
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In contrast, no such clear agreement was observable for nutri-
tional performance. We found PBAs generally contained lower levels 
of proteins, with discernible differences depending on the commodity 
they are based on. For instance, one study30 found that burger patties 
made out of mycoprotein contained higher protein, those made from 
peas similar and those on a soy basis lower levels of protein content 
than beef patties30. Sodium content was found higher in cheese alter-
natives based on coconut oil than on cashew nuts or soy32. PBAs had 
generally lower contents of saturated fat, except coconut-oil-based 
cheese products32 and two legume-based burger patties26. The total 
nutritional performance of PBAs, assessed with nutrient profiling 
models, was mostly higher10,30,33, or no difference was discernible30,34. 
PBAs received lower consumer acceptance30,35,36 and were higher in 
cost than conventional animal-based products37,38.

VF. We found consensus that growing vegetables by VF outper-
forms cultivation on-field and in greenhouses in terms of LU39–42 and 
WU40,41,43,44. One study modelled that lettuce production in VF in the 
Netherlands could require 95% less water compared with current 
production in greenhouses due to its water-recycling potential44. 
We identified agreement that VF is responsible for higher GHGe than 
open-field cultivation39,40 but lower than greenhouses39,40,44,45. By con-
trast, VF has been assessed less efficient in terms of energy inputs 
than on-field cultivation40 and greenhouses40,43,44. The degree of envi-
ronmental impact has been found to depend to a large extent on the 
growing substrate, packaging material and the source of energy46. 
Regarding economic indicators, we found agreement that VF has a 
higher yield production than greenhouses43, leading to slightly higher 
economic revenues43,47.

FD. Grocery delivery performed better in terms of GHGe and energy 
use compared with individual retail trips when assuming they are made 
by car but not on foot, by bike or public transport48. Meal delivery had 
a lower performance than preparing the meal at home or consuming it 
at the restaurant49,50, mainly attributed to plastic food packaging waste 
generated by delivered meals51. Research demonstrates that walking 
to the restaurant and consuming the meal there instead of having it 
delivered could reduce the total amount of GHGe by 68% per meal50.

Discussion
Summary of evidence
We synthesized empirical evidence indicating the sustainability per-
formance of four FSTs. We did not identify empirical evidence for BT 
and revealed considerably more evidence on the sustainability per-
formance of PBAs than for VF and FD. Environmental indicators were 
assessed more frequently than social and economic indicators, adding 
on the concern to ensure that socio-economic sustainability receives 
more attention5,52,53.

Our analysis on the sustainability performance of PBAs revealed 
that their environmental impacts are generally lower than those of their 
animal-based counterparts, while no such clear trend was observable 
for social and economic consequences. Public health consequences of 
PBAs have been exclusively addressed by comparing their nutritional 
profiles against conventional products, with no focus on other indica-
tors such as food safety or epidemiological implications. Included stud-
ies found that PBAs are often higher in sodium than their animal-based 
counterparts, one of the leading dietary risk factors for global mortality 
and morbidity54. There is a distinct lack of studies assessing the social 
and economic implications of shifting towards PBAs. Included studies 
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Fig. 4 | Benefits and limitations of deploying BT to the food sector. Extracted from retrieved literature and positioned in relation to the biosphere-based foundation 
of sustainability science adapted from ref. 69.

http://www.nature.com/natfood


Nature Food | Volume 3 | November 2022 | 933–941 937

Article https://doi.org/10.1038/s43016-022-00622-8

revealed that PBAs are currently higher in costs than conventional ani-
mal products, which could generate the impression that a plant-based 
diet is more expensive and seen as a luxury, leading to social inequali-
ties. We synthesized research showing that consumer acceptance 
and WTP for PBAs is currently lower than for conventional meat but 
could increase to the same level after information concerning health 
or environmental consequences is provided55.

The vast majority of included PBA studies assessed meat and dairy 
analogues. Despite the fact that the market of seafood analogues is 
predicted to grow rapidly56, only two studies investigated the sustain-
ability of seafood analogues27,33. This is most likely because seafood 
analogues have only recently been introduced, especially outside 
Asia. We can assume that LCA studies on seafood analogues would 
present similar results to PBMA, as both are derived mainly from ter-
restrial plant sources such as soy and sunflower oil. However, blue foods 
have been associated with lower GHGe than terrestrial meat57. Future 

studies should therefore compare seafood analogues with conven-
tional fish, including impact factors specific to aquatic systems such as 
wild stock depletion. Further, while the consumption of conventional 
meat products is linked to human health hazards, consuming seafood 
is associated with nutritional benefits58. While seafood analogues could 
help to meet the growing seafood demand and reduce overfishing, 
it is necessary to investigate the socio-economic and public health 
implications of these products.

VF has been described as a resource-saving production system, 
improving food safety and quality while providing economic ben-
efits59. However, we found a distinct lack of evidence modelling the 
socio-economic implications of scaling it which have been largely 
theoretically outlined in a recent review60. Further, the local food 
production enabled by VF is often considered as environmentally sus-
tainable, partly due to the general assumption of high CO2 equivalent 
emissions resulting from transport. Conversely, we gathered evidence 
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across the literature. The performance of PBAs is split by different pillars 
of sustainability due to the range and extent on identified literature. The 
performance of VF is presented as a whole. Stratified results according to 

different system boundary and functional unit settings are presented in 
Supplementary Material Section 6. This assessment could not be carried out 
for BT and FD as we identified insufficient literature comparing them with the 
baseline scenario they intend to replace.
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that VF is responsible for higher GHGe and are more energy-intense 
than open-field cultivation. However, a widespread transition to renew-
able energy and resource-saving materials, such as paper pots and 
coir as growing substrate, could lead to large environmental impact 
reductions46. Further, the sustainability performance and benefit of 
VF depends to a large extent on the regional context, being primarily 
recommendable for climate-extreme areas44,61.

FD services, especially on-time groceries, are growing rapidly and 
are backed by billion-dollar investments. The retrieved literature focused 
primarily on assessing GHGe and energy use. Beyond that, we found that 
their implications on environmental and social sustainability have not yet 
been empirically assessed. The World Health Organization also expressed 
concern about the still insufficiently studied public health consequences 
of the growing delivery sector and has called for more evidence62.

Systematic reviews and descriptive case studies revealed the 
potential of BT to enable a sustainable food supply chain, but there is 
a distinct lack of empirical case studies validating these assumptions. 
Further studies that estimate correlation or causal inferences between 
applying BT and sustainability benefits are needed. Aside from the 
opportunity to strengthen the ecological dimension of sustainability 
through blockchain adoption, the majority of the literature addressed 
the potential of BT to improve social and economic rather than envi-
ronmental sustainability.

Our review demonstrates that the sustainability performance of 
FSTs is influenced by methodological specifications, such as defining 
the functional unit and system boundary in LCA studies. For instance, 
Grant et al. calculated that almond and soy milk have a lower environ-
mental footprint than dairy milk when assessed from cradle to gate but 
a higher footprint when assessed from cradle to consumer as it also 
factors in transport emissions28. We conducted a cross-spatial analysis 
of the study results, which necessitates cautious generalizations. Each 
study is unique from a geographical, temporal and methodological 
perspective. For example, results revealed that VF generally requires 
more electricity than their baseline scenario63, but the extent strongly 
depends on the region and type of purchased energy. A comparative 
analysis found that the relative efficiency of VF compared with green-
houses in mainland Europe is low, while it is much higher in low-light 
spatial conditions such as northern Sweden or water-scarce regions 
such as Abu Dhabi44. Similarly, cultural differences can lead to geo-
graphically different social sustainability performances of innovations. 
For instance, consumer acceptance of PBMA and cellular meat was 
assessed higher in China than in the United States64.

We therefore echo the concern expressed in previous studies that 
methodological inconsistencies among environmental assessment 
studies complicate generalizing results65. To investigate how the meth-
odological assumptions in the included studies affect the sustainability 
performance of FSTs, we conducted the analysis separately for differ-
ent functional unit and system boundary settings (Supplementary 
Material Section 6).

Strengths and limitations
The breadth and interdisciplinarity of this review posed challenges 
on the inclusion and analysis of heterogenetic data. We focused on 
synthesizing peer-reviewed articles, which excluded conference pro-
ceedings, reports and book chapters. Given the growing interest in FSTs, 
we assume that a range of grey literature exists that future systematic 
reviews should include. We yielded a wide geographic scope of publi-
cations, but our searches were limited to English-language literature.

We compared the sustainability performance of FSTs against the 
baseline scenario they intend to replace but not among and in between 
them. This generalizing approach does not necessarily allow conclu-
sions to be drawn on individual products as the performance depends 
on a range of factors, such as the raw material they are based on. For 
example, cheese analogues based on soy were found to have a better 
nutritional performance than those based on coconut oil32.

The chosen traffic light classification to indicate the sustainability 
performance is a conceptual and subjective approach to harmonize 
and standardize heterogenetic data. However, it does not allow to 
draw conclusion on the scientific strength of evidence and should 
therefore be interpreted with caution. We further did not conduct a 
risk of bias assessment of the included studies. This is in line with the 
Preferred Reporting Items for Systematic Reviews and Meta-analyses 
(PRISMA) guidelines, which state that scoping reviews are not intended 
to critically appraise the risk of bias of a cumulative body of evidence 
but to present results and guide future systematic reviews and 
meta-analyses66.

Implications for research and practice
As previously outlined by Herrero et al. 5, the rapid development of 
FSTs and their expected impact on different pillars of sustainability 
requires improved multi-indicator sustainability assessment to reduce 
the risks of unintended trade-offs5. It would be useful to develop a com-
prehensive inventory of sustainability indicators that can be selected 
from for the assessment of respective FSTs to determine the most sus-
tainable alternative option in a given context. For this purpose, the 
results of this review and other studies that provide an overview of 
metrics to assess sustainability in the food sector can be used8,53. This 
scoping review reveals important evidence gaps on the four included 
FSTs that targeted empirical assessments should aim to fill. The litera-
ture on PBAs sustainability is widespread, but there is a need to study 
the performance and implications of the growing market of seafood 
analogues. More analyses should also be conducted comparing PBAs 
against other alternatives such as tofu or insects to determine the most 
sustainable protein and fat alternatives. Studies comparing existing 
PBAs are also of relevance to determine the most sustainable com-
modity and production processes. Finally, longitudinal and controlled 
dietary studies comparing the nutritional and epidemiological effects 
of substituting animal products with alternative protein sources over 
the long term are needed.

Given the often-emphasized potential of vertical farms to contrib-
ute to more resilient food supply chains, it is necessary to assess their 
socio-economic implications and evaluate the efficiency and benefit 
for different geospatial and cultural contexts.

For FD, their scaling and rapid development needs to be assessed 
from public health, socio-economic and environmental perspectives 
beyond GHGe (for example, air pollution from transportation) to 
inform governmental policies and urban planning processes and guide 
more sustainable practices.

To validate the promise of BT for a sustainable, effective and effi-
cient food supply chain, it would be important to empirically assess 
whether food traceability actually improves agricultural sustainability 
and to what extent.

Conclusion
We synthesized empirical evidence indicating the sustainability of four 
representative FSTs and found varying levels of performances across 
different indicators and pillars. We identified considerably more evi-
dence on the sustainability performance of PBAs than for VF and FD, 
with no empirical evidence found for BT. In general, these FSTs have the 
potential to support parts of the transformation towards a sustainable 
food system and enhance human health. However, unintended side 
effects are often inherent to deploying innovations. Guiding transform-
ative investments necessitates a more rigorous, quantitative assess-
ment of the sustainability implications of FSTs, encompassing broad 
environmental, economic and social indicators, to safeguard against 
undesirable effects. We hope that the findings of this review provide 
a starting point to build such a sustainability assessment framework 
to assess recently introduced FSTs, to inform political guidelines and 
to guide the development of and investments into long-term sustain-
able solutions. The inventory of FSTs is long, and future research is 
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required to provide regional context specific recommendations and 
inform policy guidelines. This will have to include socio-economic 
sustainability impact factors to ensure that they contribute to a just 
transformation of the food system.

Methods
Scoping reviews are well suited to study the breadth of an area that 
has not been reviewed comprehensively before to provide a detailed 
and structured overview of the reviewed literature and to identify 
research gaps in the existing literature67. We followed the PRISMA 
guidelines extension for scoping reviews and provide the detailed 
checklist in the Supplementary Material Section 166. Searches in the 
databases Web of Science Core Collection and Scopus were carried out 
in September 2021 to identify peer-reviewed literature. We included 
literature published from 2016 as there was an exponential rise in 
scientific literature focusing on these four FSTs since then (Extended 
data Fig. 1). Further details on the literature review are given in Sup-
plementary Material Section 3.

We used CADIMA68 for study screening and duplicate removal. 
To check for selection consistency among all researchers, an initial 
consistency check was conducted by independently screening a certain 
number of articles (5% = 57) and discussing potential divergencies. 
Once consistency was achieved, one reviewer (A.C.B.) screened the 
remaining articles at the title and abstract stage against the eligibility 
criteria. Full-text screening was performed by three reviewers indepen-
dently: A.C.B. (80%), A.W. (10%) and L.J.G. (10%). Where inconclusive or 
contradictory assessments emerged, they were discussed and resolved 
with all authors at both abstract and full-text screening stage.

Eligibility criteria
As a primary inclusion criterion for this review, the studies had to 
assess the sustainability of one of the four selected FSTs as defined in 
the conceptual framework (Fig. 1). We exclusively searched for PBAs 
that are designed to mimic conventional animal-based products and 
hence excluded cellular meat, insect-based food products and tradi-
tional fermented legumes. We also excluded literature focusing on 
non-vertical aqua or hydroponical systems and the application of BT 
to non-food sectors. Included studies had to provide quantification 
for at least one indicator of sustainability. An exception was made 
for blockchain literature, as we found there is yet limited empirical 
evidence available. Hence, the blockchain literature only had to pro-
vide a narrative description on at least one indicator of sustainability. 
We included peer-reviewed case studies and reviews that provide a 
quantification; subjective studies that do not use data to back up the 
assessment of indicators or conference proceedings were excluded. 
No geographical limits were imposed, but only English literature 
was included. Eligibility criteria are detailed in the Supplementary 
Material Section 3.

Search strategy and data charting
We devised the search strategy to reflect concepts of sustainability 
assessment and the four selected FSTs. Search strings were tested 
several times against a set of predefined benchmark articles.

Data charting was done for all included articles between October 
and December 2021 by one author with feedback on the process by 
all authors. We charted data on study design, study location, sustain-
ability indicators assessed, methods, LCA assumptions and results 
indicating the sustainability performance (Supplementary Data). The 
fact that no defined inventory of indicators spanning all dimensions 
of sustainability exists posed an inherent challenge to the search for 
and selection of them. We therefore used a combined deductive and 
inductive approach to extract all sustainability indicators encountered 
in the literature and discussed inclusion among all study authors. 
Detailed outline on the search strategy and the data-charting process 
is provided in Supplementary Material Sections 3 and 4.

Assessing the sustainability performance of FSTs
Performing a meta-analysis on the results of included studies was not 
applicable due to cross-study, cross-FST and methodological inconsist-
encies across sustainability indicators. However, to translate the results 
of the included studies into comparable quantitative representation, 
we developed a coding scheme, classifying the level of agreement on 
the sustainability performance per study, FST and sustainability indica-
tor. For that step, only studies that performed a comparison against the 
baseline scenario they intend to replace have been included (PBA = 27, 
VF = 10, FD = 3). Blockchain literature was not applicable for that assess-
ment. We defined baseline scenarios in this context as animal-based 
products for PBA, on-field and in-greenhouse cultivation for VF, and 
individual grocery retail or restaurant dining for FD.

To assess the sustainability performance of FSTs compared with 
the baseline scenarios, we extracted study results and coded the 
level of performance using the traffic light approach. A higher level 
of performance was assigned if they scored better (green), a simi-
lar performance (yellow) if there was no difference assessed by the 
respective study, or a lower performance (red) if they scored worse 
compared with the baseline scenario. We coded every FST that has 
been assessed in the included literature and compared against a base-
line scenario. When different functional unit and system boundary 
assumptions were applied in one study, we extracted results for each 
assumption to reduce bias due to modelling choices. Results of the 
performance analysis stratified by system boundaries and functional 
units are presented in Supplementary Material Section 6. Duplicates 
have been removed.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.

Data availability
All data generated or analysed during this study is available in the 
Supplementary Data of this article or publicly available at https://doi.
org/10.5281/zenodo.6550444 under a CC-BY-4.0 licence. The search 
strategy and extracted data on included studies is available in the 
Supplementary Data.

Code availability
The code generated to visualize the results of this study is publicly 
available at https://doi.org/10.5281/zenodo.6550444 under a CC-BY-
4.0 licence.
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