Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Air pollutant emissions from global food systems are responsible for environmental impacts, crop losses and mortality


Food systems are important contributors to global emissions of air pollutants. Here, building on the EDGAR-FOOD database of greenhouse gas emissions, we estimate major air pollutant compounds emitted by different stages of the food system, at country level, during the past 50 years, resulting from food production, processing, packaging, transport, retail, consumption and disposal. Air pollutant estimates from food systems include total nitrogen and its components (N2O, NH3 and NOx), SO2, CO, non-methane volatile organic compounds (NMVOC) and particulate matter (PM10, PM2.5, black carbon and organic carbon). We show that 10% to 90% of air pollutant emissions come from food systems, resulting from steady increases over the past five decades. In 2018, more than half of total N (and 87% of ammonia) emissions come from food systems and up to 35% of particulate matter. Food system emissions are responsible for about 22.4% of global mortality due to poor air quality and 1.4% of global crop production losses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global air pollutant emissions from food.
Fig. 2: Food system emission shares.
Fig. 3: Historic emissions and shares.
Fig. 4: Sankey diagrams.
Fig. 5: Sectoral contribution.
Fig. 6: Impact on crops.

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available as Excel spreadsheets alongside the paper. Moreover, they are available on the EDGAR website and can be accessed at the following link: When citing the EDGAR-FOOD dataset, please specify the following link: All figures present in the manuscript are also available in figshare under the same doi as the EDGAR- FOOD air pollutant dataset. Source data are provided with this paper.

Code availability

The code used to produce the figures is available upon request.


  1. Murray, C. J. L. et al. Global burden of 87 risk factors in 204 countries and territories, 1990- 2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 396, 1223–1249 (2020).

    Article  Google Scholar 

  2. Health Effects Institute: State of Global Air 2020. Special Report (Health Effects Institute, 2020).

  3. Erisman, J. W. & Schaap, M. The need for ammonia abatement with respect to secondary PM reductions in Europe. Environ. Pollut. 129, 159–163 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Henze, D. K., Seinfeld, J. H. & Shindell, D. T. Inverse modeling and mapping US air quality influences of inorganic PM2.5 precursor emissions using the adjoint of GEOS-Chem. Atmos. Chem. Phys. 9, 5877–5903 (2009).

    Article  ADS  CAS  Google Scholar 

  5. Pope, C. A. III et al. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 287, 1132–1141 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Global Burden of Disease Study 2019 (GBD 2019) Socio-Demographic Index (SDI) 1950–2019 (Institute for Health Metrics and Evaluation, 2020);

  7. Romanello, M. et al. The 2021 report of the Lancet Countdown on health and climate change: code red for a healthy future. Lancet 398, 1619–1662 (2021).

    Article  PubMed  Google Scholar 

  8. UN Department of Economic and Social Affairs Population Dynamics. World population prospect 2019 (2019).

  9. Aneja, V. P., Schlesinger, W. H. & Erisman, J. W. Effects of agriculture upon the air quality and climate: research, policy, and regulations. Environ. Sci. Technol. 43, 4234–4240 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. FAO. Emissions due to agriculture. Global, regional and country trends 2000–2018. (2021).

  11. Crippa, M. et al. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2, 198–209 (2021).

    Article  CAS  Google Scholar 

  12. Tubiello, F. N. et al. Pre- and post-production processes along supply chains increasingly dominate GHG emissions from agri-food systems globally and in most countries. Earth Syst. Sci. Data Discuss. 2021, 1–24 (2021).

    Google Scholar 

  13. Tubiello, F. N. et al. Greenhouse gas emissions from food systems: building the evidence base. Environ. Res. Lett. 16, 065007 (2021).

    Article  ADS  CAS  Google Scholar 

  14. Landrigan, P. J. Air pollution and health. Lancet Public Health 2, e4–e5 (2017).

    Article  PubMed  Google Scholar 

  15. WHO in WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide 290 (WHO, 2021).

  16. WHO. Compendium of WHO and Other UN Guidance on Health and Environment (WHO, 2021).

  17. McDuffie, E. E. et al. Source sector and fuel contributions to ambient PM2.5 and attributable mortality across multiple spatial scales. Nat. Commun. 12, 3594 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fowler, D., Pyle, J. A., Sutton, M. A. & Williams, M. L. Global air quality, past present and future: an introduction. Philos. Trans. A Math. Phys. 378, 20190323 (2020).

    ADS  CAS  Google Scholar 

  19. EEA. Ammonia emissions from agriculture continue to pose problems for Europe. (2019).

  20. UNECE. Air pollution and food production. (2021).

  21. Domingo, N. G. G. et al. Air quality–related health damages of food. Proc. Natl Acad. Sci. USA (2021).

  22. Balasubramanian, S. et al. The food we eat, the air we breathe: a review of the fine particulate matter-induced air quality health impacts of the global food system. Environ. Res. Lett. 16, 103004 (2021).

    Article  ADS  CAS  Google Scholar 

  23. Fenger, J. Air pollution in the last 50 years—from local to global. Atmos. Environ. 43, 13–22 (2009).

    Article  ADS  CAS  Google Scholar 

  24. Güsten H. Formation, Transport and Control of Photochemical Smog. Air Pollution, vol 4 / 4A. Springer, Berlin, Heidelberg. (1986).

  25. UNECE. 1979 Convention On Long-Range Transboundary Air Pollution (1979).

  26. United Nations. Protocol to the 1979 convention on long range transboundary air pollution to abate acidification, eutrophication and ground level ozone (2000).

  27. Crippa, M. et al. Forty years of improvements in European air quality: regional policy- industry interactions with global impacts. Atmos. Chem. Phys. 16, 3825–3841 (2016).

    Article  ADS  CAS  Google Scholar 

  28. United Nations Environment Programme. Emissions Gap Report 2021: The Heat Is OnA World of Climate Promises (2021).

  29. Crippa, M. et al. Gridded emissions of air pollutants for the period 1970–2012 within EDGAR v4.3.2. Earth Syst. Sci. Data 10, 1987–2013 (2018).

    Article  ADS  Google Scholar 

  30. Lamarque, J. F. et al. Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmos. Chem. Phys. 10, 7017–7039 (2010).

    Article  ADS  CAS  Google Scholar 

  31. Beusen, A. H. W., Bouwman, A. F., Heuberger, P. S. C., Van Drecht, G. & Van Der Hoek, K. W. Bottom-up uncertainty estimates of global ammonia emissions from global agricultural production systems. Atmos. Environ. 42, 6067–6077 (2008).

    Article  ADS  CAS  Google Scholar 

  32. Janssens-Maenhout, G. et al. HTAP_v2.2: a mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution. Atmos. Chem. Phys. 15, 11411–11432 (2015).

    Article  ADS  CAS  Google Scholar 

  33. Turnock, S. T. et al. The impact of European legislative and technology measures to reduce air pollutants on air quality, human health and climate. Environ. Res. Lett. 11, 024010 (2016).

    Article  ADS  Google Scholar 

  34. Van Dingenen, R. et al. TM5-FASST: a global atmospheric source–receptor model for rapid impact analysis of emission changes on air quality and short-lived climate pollutants. Atmos. Chem. Phys. 18, 16173–16211 (2018).

    Article  ADS  Google Scholar 

  35. Emberson, L. D. et al. A comparison of North American and Asian exposure–response data for ozone effects on crop yields. Atmos. Environ. 43, 1945–1953 (2009).

    Article  ADS  CAS  Google Scholar 

  36. Malley, C. S. et al. Integrated assessment of global climate, air pollution, and dietary, malnutrition and obesity health impacts of food production and consumption between 2014 and 2018. Environ. Res. Commun. 3, 075001 (2021).

    Article  Google Scholar 

  37. Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D. & Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525, 367–371 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Pozzer, A., Tsimpidi, A. P., Karydis, V. A., de Meij, A. & Lelieveld, J. Impact of agricultural emission reductions on fine-particulate matter and public health. Atmos. Chem. Phys. 17, 12813–12826 (2017).

    Article  ADS  CAS  Google Scholar 

  39. Giannadaki, D., Giannakis, E., Pozzer, A. & Lelieveld, J. Estimating health and economic benefits of reductions in air pollution from agriculture. Sci. Total Environ. 622623, 1304–1316 (2018).

    Article  ADS  PubMed  Google Scholar 

  40. Economic Cost of the Health Impact of Air Pollution in Europe: Clean Air, Health and Wealth (WHO Regional Office for Europe, 2015).

  41. Markandya, A. The Indirect Costs and Benefits of Greenhouse Gas Limitations (UNEP Collaborating Centre on Energy and Environment, 1998). (last access 14 October 2022).


  43. EU Regulation No. 2018/841.

  44. Oreggioni, G. D. et al. The impacts of technological changes and regulatory frameworks on global air pollutant emissions from the energy industry and road transport. Energy Pol. 168, 113021 (2022).

    Article  CAS  Google Scholar 

  45. EMEP/EEA. EMEP/EEA Air Pollutant Emission Inventory Guidebook 2016 (European Environment Agency, 2016).

  46. EMEP/EEA. EMEP/EEA Air Pollutant Emission Inventory Guidebook 2013 (European Environment Agency, 2013).

  47. EMEP/EEA. EMEP/EEA Air Pollutant Emission Inventory Guidebook 2019 (European Environment Agency, 2019).

  48. EPA. AP-42: compilation of air emissions factors. (2009).

  49. Crippa, M., et al. EDGAR-FOOD data. Figshare (2021).

  50. IEA. Energy balance statistics for 1970–2015. (2017).

  51. FAOSTAT. FAO (2022).

  52. GFED. (2017).

  53. Schultz, M. G. et al. Global wildland fire emissions from 1960 to 2000. Glob. Biogeochem. Cycles (2008).

  54. Janssens-Maenhout, G. et al. EDGAR v4.3.2 Global Atlas of the three major greenhouse gas emissions for the period 1970–2012. Earth Syst. Sci. Data 11, 959–1002 (2019).

    Article  ADS  Google Scholar 

  55. IRRI: world rice statistics. Distribution of rice crop area by environment. International Rice Research Institute (2007).

  56. UNFCCC. CRF tables reported by Annex I countries (2020).

  57. Zhou, J. B., Jiang, M. M. & Chen, G. Q. Estimation of methane and nitrous oxide emission from livestock and poultry in China during 1949–2003. Energy Pol. 35, 3759–3767 (2007).

    Article  Google Scholar 

  58. FAO. Fertilizer Use by Crop. Fertiliser and Plant Nutrition Bulletin (FAO, 2006).

  59. Lassaletta, L. et al. Nitrogen use in the global food system: past trends and future trajectories of agronomic performance, pollution, trade, and dietary demand. Environ. Res. Lett. 11, 095007 (2016).

    Article  ADS  Google Scholar 

  60. Leip, A. et al. Impacts of European livestock production: nitrogen, sulphur, phosphorus and greenhouse gas emissions, land-use, water eutrophication and biodiversity. Environ. Res. Lett. 10, 115004 (2015).

    Article  ADS  Google Scholar 

  61. The Promotion of Non-Food Crops IP/B/AGRI/ST/2005-02 (European Parliament, 2005);

  62. Glibert, P. M., Harrison, J., Heil, C. & Seitzinger, S. Escalating worldwide use of urea—a global change contributing to coastal eutrophication. Biogeochemistry 77, 441–463 (2006).

    Article  CAS  Google Scholar 

  63. Production of ammonia, nitric acid, urea and N-fertilizer. Environment Agency Austria (2017).

  64. SensoTech. Fertilizer production. (2016).

  65. World Steel Association. Steel statistical yearbooks. (2019, 2009 and 1999).

  66. EU-MERCI. Analysis of the industrial sectors in the European Union (2018).

  67. Nangini, C. et al. A global dataset of CO2 emissions and ancillary data related to emissions for 343 cities. Sci. Data 6, 180280 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. USGS. Soda ash statistics and information. (2019).

  69. Ryberg, M. W., Laurent, A., Hauschild, M. Mapping of global plastics value chain and plastics losses to the environment. UNEP (2018).

  70. British Plastics Federation. The world of plastics, in numbers. (2018).

  71. EY. Unwrapping the packaging industry, Seven factors for success. (2013).

  72. World Aluminum. Global material flow model. (2018).

  73. Andersen, O. et al. CO2 emissions from the transport of China’s exported goods. Energy Pol. 38, 5790–5798 (2010).

    Article  CAS  Google Scholar 

  74. FAO. Energy-smart food for people and climate. (2011).

  75. Eurostat. Focus on ComExt. (2015).

  76. FAO. Food wastage footprint & climate change. (2015).

  77. Thomas, S. Drivers of recent energy consumption trends across sectors in EU28. (2018).

  78. US Energy Information Administration. Commercial buildings energy consumption survey (CBECS). (2018).

  79. IEA: Africa energy outlook. OECD/IEA (2014).

  80. ERG. Comparative analysis of fuels for cooking: life cycle environmental impacts and economic and social considerations. Global Alliance for Clean Cookstoves (2017).

  81. Eurostat. Energy products used in the residential sector. (2017).

  82. US Energy Information Administration. Residential energy consumption survey (RECS). (2015).

  83. Kaza, S., Yao, L. C., Bhada-Tata, P., Van Woerden, F. What a waste 2.0: a global snapshot of solid waste management to 2050. Urban development. World Bank. Data available at: (2018).

  84. Solazzo, E. et al. Uncertainties in the Emissions Database for Global Atmospheric Research (EDGAR) emission inventory of greenhouse gases. Atmos. Chem. Phys. 21, 5655–5683 (2021).

    Article  ADS  CAS  Google Scholar 

  85. Solazzo, E., Riccio, A., Van Dingenen, R., Valentini, L. & Galmarini, S. Evaluation and uncertainty estimation of the impact of air quality modelling on crop yields and premature deaths using a multi-model ensemble. Sci. Total Environ. 633, 1437–1452 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  86. Vandyck, T., Keramidas, K., Tchung-Ming, S., Weitzel, M. & Van Dingenen, R. Quantifying air quality co-benefits of climate policy across sectors and regions. Clim. Change 163, 1501–1517 (2020).

    Article  ADS  CAS  Google Scholar 

  87. Markandya, A. et al. Health co-benefits from air pollution and mitigation costs of the Paris Agreement: a modelling study. Lancet Planet. Health 2, e126–e133 (2018).

    Article  PubMed  Google Scholar 

  88. Rao, S. et al. Future air pollution in the Shared Socio-economic Pathways. Global Environ. Change 42, 346–358 (2017).

    Article  Google Scholar 

  89. Cohen, A. J. et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet 389, 1907–1918 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Gu, B. et al. Abating ammonia is more cost-effective than nitrogen oxides for mitigating PM2.5 air pollution. Science (2021).

  91. Dentener, F. et al. Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom. Atmos. Chem. Phys. 6, 4321–4344 (2006).

  92. Silva, R. A. et al. Global premature mortality due to anthropogenic outdoor air pollution and the contribution of past climate change. Environ. Res. Lett. 8, 034005 (2013).

    Article  ADS  CAS  Google Scholar 

  93. Apte, J. S., Marshall, J. D., Cohen, A. J. & Brauer, M. Addressing global mortality from ambient PM2.5. Environ. Sci. Technol. 49, 8057–8066 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  94. Krewski, D. et al. Extended Follow-Up and Spatial Analysis of the American Cancer Society Study Linking Particulate Air Pollution and Mortality (Health Effects Institute Boston, MA, 2009).

  95. Jerrett, M. et al. Long-term ozone exposure and mortality. New Engl. J. Med. 360, 1085–1095 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Turner, M. C. et al. Long-term ozone exposure and mortality in a large prospective study. Science (2016).

  97. Malley, C. S. et al. Updated global estimates of respiratory mortality in adults ≥ 30 years of age attributable to long-term ozone exposure. Environ. Health Perspect. (2017).

  98. Lim, S. S. et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2224–2260 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Stanaway, J. D. et al. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392, 1923–1994 (2018).

    Article  Google Scholar 

  100. Burnett Richard, T. et al. An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure. Environ. Health Perspect. 122, 397–403 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Burnett, R. et al. Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. Proc. Natl Acad. Sci. USA (2018).

  102. Institute for Health Metrics and Evaluation. Global Burden of Disease Collaborative Network. Global Burden of Disease Study 2019 (GBD 2019) Results (2020);

  103. Van Dingenen, R. et al. The global impact of ozone on agricultural crop yields under current and future air quality legislation. Atmos. Environ. 43, 604–618 (2009).

    Article  ADS  Google Scholar 

  104. Mills, G. et al. A synthesis of AOT40-based response functions and critical levels of ozone for agricultural and horticultural crops. Atmos. Environ. 41, 2630–2643 (2007).

    Article  ADS  CAS  Google Scholar 

  105. IIASA and FAO. Global agro-ecological zones V3.0. (2012).

  106. Institute for Health Metrics and Evaluation. Global Burden of Disease Study 2019 (GBD 2019) air pollution exposure estimates 1990–2019. (2021).

  107. Global Burden of Disease Collaborative Network. Global Burden of Disease Study 2019 (GBD 2019) Results. Seattle, United States: Institute for Health Metrics and Evaluation (IHME). Available from (last accessed 23 January 2022) (2020).

Download references


We are grateful to the EDGAR team (M. Crippa, D. Guizzardi, G. Oreggioni, E. Schaaf, M. Muntean, E. Solazzo, F. Pagani and M. Banja) for the work needed to publish the EDGARv6.0 air pollutant dataset ( Special thanks are devoted to F. Monforti-Ferrario, who contributed to the development of the first edition of the EDGAR-FOOD food system shares for the GHGs. The views expressed in this publication are those of the author(s) and do not necessarily reflect the views or policies of the European Commission.

Author information

Authors and Affiliations



M.C., E.S. and D.G. designed and developed the EDGAR-FOOD air pollutant database; A.L. revised the paper and helped in the identification of the key messages of the manuscript; R.V.D. supported the analysis of impacts using TM5-FASST; all authors helped in drafting the manuscript.

Corresponding authors

Correspondence to M. Crippa or A. Leip.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Food thanks Srinidhi Balasubramanian and Nina Domingo for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–5 and Figs. 1 and 2.

Reporting Summary

Source data

Source Data Fig. 1

Global air pollutant emissions from food.

Source Data Fig. 2

Food system emission shares.

Source Data Fig. 3

Historic emissions and shares.

Source Data Fig. 4

Sankey diagrams.

Source Data Fig. 5

Sectoral contribution.

Source Data Fig. 6

Impact on crops.

Source Data Table 1

Food system shares.

Source Data Table 2


Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crippa, M., Solazzo, E., Guizzardi, D. et al. Air pollutant emissions from global food systems are responsible for environmental impacts, crop losses and mortality. Nat Food 3, 942–956 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene