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Since 2015, the United Nations Sustainable Development Goals 
(SDGs) have been key policy drivers for supporting sustainable 
seafood systems1. In the same year, Yan and Chen highlighted 

the untapped benefits of crustacean waste as a reserve of chitin 
(15–40%), protein and minerals, calling for a multi-million-dollar 
investment to establish the first shell refinery processing pipeline2.

With a 2–3% annual growth rate, the yearly global level of crusta-
cean production reached 13.7 million metric tonnes (mmt) in 2015 
(Fig. 1), resulting in 6–8 mmt of lobster, crab and shrimp wastes1. 
Five years later, crustacean production had increased to an annual 
rate of 16.6 mmt, with most growth seen in Asian countries (espe-
cially China, Indonesia and India, with over a 2 mmt increase) (Fig. 
1). Crustaceans contain approximately 40% meat, with the remain-
ing 60% being inedible, raising questions within the industry about 
the scale of crustacean waste accumulation. However, crustacean 
waste contains chitin, a biocompatible and biodegradable polymer 
covered by protein and minerals that is invaluable for producing 
high-tech products such as nerve conduits (for example, Reaxon, 
manufactured by Medovent).

Reproducible chemical conversion processes for obtaining well- 
defined chitosan with specific functionalities (second-generation 
chitosan) have been developed since the 1970s3. Between 2000 and 
2015, European grants of nearly €15 million went towards projects 
exploring chitin- and chitosan-related topics4,5, with grant values 
increasing after 2015, eventually reaching €55 million (Fig. 2). 
Topics included chitin extraction within the efficiency borders for 
high-value production, environmental impacts, economic feasibil-
ity and developing a microbial-enzymatic process for converting 

chitin into glucosamine and N-acetylglucosamine. The ChiBio con-
sortium (with a grant of nearly €4 million), comprising academic 
and industrial experts, developed a microbial-enzymatic process 
starting from a two-stage fermentation by Serratia marcescens and 
Lactobacillus plantarum for demineralization and deproteination 
followed by enzymatic depolymerization of chitin into basic build-
ing blocks—that is, glucosamine and N-acetylglucosamine6. In more 
recent years, protein engineering based on bioinformatics, genome 
mining, rational design and molecular evaluation has become more 
prominent in chitosan research, with a move towards a multilevel 
circular value chain for the eco-efficient valorization of aquaculture 
and fishery wastes (the Nano3Bio project, with a grant of nearly €12 
million)7. In 2021, a €19 million project was launched by Italian 
academics and industrialists to develop a multilevel circular value 
chain for the eco-efficient valorization of aquaculture wastes within 
the subsequent five years8.

Here, we examine why this amount of grant funding should be 
invested in a waste stream, exploring the most recent developments 
in eco-friendly and circular utilization of crustacean waste. We also 
look to the future of chitin within and beyond food systems.

Emerging technologies for crustacean waste valorization
Natural materials are reliable and suitable for use both in the environ-
ment and inside the human body, with some exceptions due to their 
allergenic effects for some individuals9. Chitin, a water-insoluble 
polymer with a higher number of d-glucosamine monomers than 
N-acetyl-d-glucosamine monomers, and chitosan, a water-soluble 
polymer with a higher number of N-acetyl-d-glucosamine monomers,  
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are two important polymers derived from crustacean waste. The 
combination of chitin, proteins and calcite crystals can give tissues 
superior rigidity, flexibility and transparency10. Chitin’s acetyla-
tion pattern can be adjusted at the molecular level to optimize its 
properties for various applications11. However, without appropriate 
extraction technologies, the accumulated crustacean wastes derived 
from different species may not reflect the intrinsic value that can 
be derived from their composition12. Additionally, crustacean waste 
may be received from different stages of seafood processing in the 
form of either raw or cooked waste material, where cooking exerts 
positive effects on the extraction of chitin and its quality13. During 
the past few decades, the chemical processes commercialized 
(including deproteinization, demineralization, discoloration and 
even deacetylation) have provided chemically derived chitosan with 
known and reproducible properties (second-generation chitosan). 
Besides the unacceptable environmental footprint of the processes 
involved14, the resulting chitosan fails to meet the requirements of 
high-tech applications with chitin-based products, as its molecular 
structure and its properties are not tuned to the needs of high-tech 
applications15.

Alternative technologies include the catalytic conversion of chi-
tin by breaking the chitin polymeric structure during an efficient 
solid-state reaction into mechanochemical chitosan with a low but 
narrow-range molecular weight, which could tune its properties16. 
A similar solvent-less process has been developed on the basis of 
a reactive ageing method consisting of repeating cycles of milling 
and ageing with chitinase and a small amount of water, leading to 
mechanoenzymatic chitosan17. However, the inherent heterogene-
ity of waste-derived chitosans in terms of the degree of acetylation 
and the acetylation pattern still considerably limits its use in highly 
sophisticated applications, which might instead be addressed by 
using a recombinant fungal chitin decarboxylase18.

To address these challenges, a biotechnological solution is pre-
sented in the Nano3Bio project, granted by the European Union7. 

The natural chitin was enzymatically degraded into its building 
blocks (N-acetylglucosamine and glucosamine), which were used 
to reconstruct a customized biotechnology-derived chitosan struc-
ture with an engineered microbial cell. The cell was developed 
using either Escherichia coli or Corynebacterium glutamicum as the 
host7. Nanotechnology-based bottom-up approaches can turn the 
chitin–chitosan structure into chitosan nanocomposites, where the 
properties of the heterogenic chitosan can then be tuned. Chitosan 
nanocomposites engineered by adding starch and lignin to chitosan 
and adjusting their concentrations were successfully utilized as tri-
boelectric nanogenerators for self-powered nanosystems in biomedi-
cal and environmental applications19. A hydrophobization-induced 
interfacial-assembly approach has been developed for converting 
marine chitin into two-dimensional soft nanomaterials for their appli-
cation as fully biobased electric devices20. The ethoxylation of chitin 
followed by deacetylation produced glycol chitosan with improved 
water solubility at a wide pH range while maintaining chitosan’s 
amine groups. These amine groups facilitated the introduction of 
various hydrophobic moieties, including positively charged nanopar-
ticles (through self-assembly) or targeting moieties with high affin-
ity for cancer-specific receptors, offering promising applications for 
drug delivery and as nanomedicine for tumour cells, respectively21.

The potential of crustacean waste
Economic potentials. In early research, crustacean shells were uti-
lized whole and without fractionating their ingredients, primarily 
for environmental remediation purposes. Between 2003 and 2008, 
JRW Bioremediation LLC was assigned a patent family to utilize the 
crustacean shell as an electron donor to eliminate contaminants in 
groundwater22,23 and mine-influenced water23.

The shift from first-generation chitosan (that is, a poorly 
defined blend of chitosans with large batch-to-batch variations) to 
second-generation chitosan provided important opportunities for 
crustacean wastes in commodity markets such as agrochemicals  
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(>US$60 billion market value24) and water treatment agents 
(>US$30 billion market value25). Chitosan is a natural antimi-
crobial polycation used in pesticide formulations (for example, 
as an encapsulating agent26), ending up as soil-enriching deriva-
tives through natural biodegradation. In August 2019, the US 
Environmental Protection Agency published a scientific analysis 
supporting the addition of chitosan to the list of minimum-risk 
ingredients of pesticides27, promoting chitosan-based pesticides 
and broadening their opportunities in the agricultural market. As a 

polycation, chitosan can be utilized to formulate chitosan–lignosul-
fonates as a biocide enhancer28. Moreover, the chelating properties 
of chitosan make it a potential biodegradable coagulant/flocculant 
to be used in wastewater treatment processes instead of metallic 
salts and synthetic polyelectrolytes29, with environmental benefits 
such as non-toxicity, biodegradability and ecological acceptability29. 
Agratech International Inc. also utilized/valorized and patented the 
hydrophobic potential of chitosan in developing chitosan-coated 
hydrophobic glass30,31.
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Originating from the food processing chain, crustacean wastes 
have high potential to be utilized as food packaging films or fruit 
preservatives, as well as food additives and dietary supplements. 
Owing to its film-forming properties, chitosan was first suggested 
as a biocompatible, biodegradable and non-toxic raw material for 
food packaging. However, due to the poor mechanical and UV 
protection properties of chitosan, chitin in the form of nanocrys-
tals or nanofibres has taken center stage as a biocompatible food 
packaging raw material4. Supplementing chitin nanostructures with 
sensitive additives such as konjac glucomannan32 or curcuma oil33 
could play an important role in the future of “smart food packaging 
films”34. Chitosan is a potential edible preservative coating for fruit 
and vegetables owing to its antimicrobial properties. However, its 
application should be limited because of the health side effects when 
included in daily diets35,36.

The use of chitosan as a dietary supplement for bodyweight 
reduction is the most important human exposure to chitosan. In 
2005, the US Food and Drug Administration (GRN 170) noted 
that “chitosan was non-toxic to humans and other test animals”, but 
using chitosan as a regular diet ingredient is questionable due to the 
doubt on “whether or not chitosan would interfere with fat-soluble 
vitamin and mineral status in humans, when the substance was 
consumed on a chronic basis as part of a general diet”35. In 2017, a 
six-month feeding study conducted by the US National Toxicology 
Program revealed that the lowest observed effect level for chito-
san exposure is 1% (approximately equivalent to 450 mg kg−1 or 
31.5 g d−1 for a 70 kg individual) in males and 9% (approximately 
equivalent to 6,000 mg kg−1) in females36. With the Food and Drug 
Administration’s approval and the relatively high lowest observed 
effect level, chitosan has great potential to be used in dietary supple-
ments (with a market value of >US$220 billion37).

The biotechnologically derived chitosan termed as ‘third- 
generation’ may pave the way for high-tech applications of chito-
san, mostly in biomedical engineering (with an approximate mar-
ket value of US$250 billion38) and tissue engineering. For example, 
bridging peripheral nerve defects (an issue for around 300,000 
people per year in Europe) could be achieved with engineered chi-
tosan with a degree of acetylation of 5%39. Nanotechnology-derived 
chitosan and derivatives also promise highly sophisticated biomedi-
cal and environmental applications such as self-powered nano-
systems19, fully biobased electric devices20 and tumour-targeting 
nanoparticles21 (Fig. 3).

SDG realization. Farmed crustaceans account for nearly 10% of 
aquaculture production by volume and over 24% by value globally40, 
generating 8 mmt of waste annually. Emerging technologies for the 
valorization of crustacean wastes could therefore align well with the 
ambitions of SDG-12 (responsible consumption and production) and 
several targets categorized within different goals, including SDG-2 
(food security, improved nutrition and promotion of sustainable agri-
culture), targets 2.2, 2.3 and 2.4; SDG-3 (good health and well-being), 
targets 3.1, 3.2, 3.3 and 3.9 (crustacean-waste-based medical and 
pharmaceutical products); SDG-6 (crustacean-waste-based floc-
culating agents for clean water and wastewater treatment); SDG-7 
(sustainable energy), targets 7.2 and 7.b (crustacean waste as energy 
resources for small island developing states); SDG-11 (sustain-
able cities and communities), target 11.6 (crustacean-waste-based 
preservatives, coagulation agents and dietary supplements); SDG-
13 (climate action—crustacean-waste-based agrochemicals and 
fertilizers), target 13.1; SDG-14 (life below water), target 14.3 
(crustacean-waste-based marine oil spill treatment agents); and 
SDG-15, target 15.3 (life on earth—crustacean-waste-based bios-
timulants, biofungicides and biopesticides).

Although several chitosan-based medical products are commer-
cially available (such as hydrogels and wound-healing bandages), 
more products are expected soon, contributing to the development 

of safer technologies to achieve good health and well-being (SDG-
3). Chitosan-covered gauze can be used as an inexpensive uterine 
packing material for more effective control of postpartum haemor-
rhage through reducing the risk of infection41, directly contributing 
to the realization of target 3.1 (“reduce the global maternal mortal-
ity ratio”). Chitosan oligosaccharides have been investigated in tri-
als using rats for their neuroprotective effects on hypoxic–ischemic 
brain damage, a major cause of newborn morbidity and mortality 
in recent years42. Extending these findings to develop new products 
is expected to contribute to the realization of target 3.2 (“end pre-
ventable deaths of newborns”). Furthermore, the immunostimula-
tory properties of chitosan reported since the 1980s43, along with its 
ability to efficiently penetrate through mucosal surfaces, have been 
applied in vaccine delivery nanoparticles against infection with 
hepatitis B44 and SARS-CoV-245. Developing chitosan-based vac-
cines with improved immunization against communicable diseases 
directly contributes to the realization of target 3.3 (“end the epidem-
ics of AIDS, tuberculosis, malaria and neglected tropical diseases 
and combat hepatitis, water-borne diseases and other communi-
cable diseases”)46. Iron-loaded chitosan pectin microparticles have 
recently been suggested as an iron delivery system, where chitosan 
as a cationic structure in conjunction with pectin as an anionic 
counterpart forms a unique polyelectrolyte complex for efficient 
iron delivery47. Such evidence marks the high potential of chitosan 
to play key roles in the future of iron delivery and food supplemen-
tation systems, addressing the ambition of target 2.2 (addressing 
global nutrition gaps).

As a nitrogen-containing renewable organic resource with over 
105 mmt of annual production in the aquatic biosphere, chitin 
has great potential to be used as eco-friendly fertilizer to partially 
replace ammonia produced by the Haber–Bosch process (150 mmt 
per year)48. Chitin-derived nitrogen-containing platform chemi-
cals, especially 3-acetamido-5-acetylfuran, have great potential for 
addressing SDG-13. Besides nitrogen fixation, the catalytic conver-
sion of crustacean shells into some platform chemicals such as levu-
linic acid49, acetic acid and pyrrole50 could be a sustainable route for 
reducing the carbon footprints of commodity products. Chitosan 
is also an advantageous biopolymer for controlled-release formula-
tions for agricultural purposes, especially in the case of pest control. 
The electrostatic interaction of the amine groups of chitosan with 
other polymers provides the possibility of obtaining stable hydro-
gel beads for controlled-release formulations of pesticides, such as 
pH-responsive chitosan-modified cenosphere/alginate composite 
hydrogel encapsulating Imidacloprid51, an important role played by 
chitosan in realizing SDG-2 (zero hunger) environmental target 2.4.

About one third of the current global chitosan market is devoted 
to its application in water and wastewater treatment. Chitosan-based 
flocculants are commercially available, but chitosan-based adsor-
bents for water treatment (especially for removing micropollutants) 
are still under development. Owing to their hydroxyl, amine and 
amide functional groups, chitin and chitosan are efficient adsorbents 
for heavy metals and organic micropollutants52. In this context, chi-
tosan has been evaluated in the forms of wet chitosan microspheres 
with immobilized laccase53, cross-linked chitosan/zeolite54, tri-
functional chitosan-EDTA-β-cyclodextrin polymer55 and ethylene 
diamine tetra acetic acid-functionalized β-cyclodextrin-chitosan56. 
The challenge of cost-effective removal of a wide range of micropol-
lutants may therefore be addressed by developing specific chitin- or 
chitosan-based adsorbents, which would be in line with the ambi-
tions of SDG-6.

Chitin’s potential. Future research is required to expand the role 
of chitin in achieving the SDGs. The environmental impacts of the 
large-scale utilization of crustacean waste for bulk products, espe-
cially packaging and agrochemical materials, can be quantified on 
the basis of its effects on carbon and nitrogen cycles. Chemically 
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derived chitin or chitosan (second-generation) is still the only com-
mercially available source used in bulk products57. The industrial 
bottlenecks of using waste-derived chitin nanocrystals, known as 
chitin-nanofibrils, for producing food packaging have been assessed 
in a European Union project (the n-CHITOPACK project was 
funded for approximately €1 million), which reported that replacing 
non-renewable materials used in food packaging with chitin-based 
films could lead to a 12 mmt CO2 emission reduction per year4. 

Such a reduction can satisfy nearly 2% of the decarbonization rate 
(0.6 Gt CO2 yr−1) required to achieve the ambitious mitigation sce-
nario that would limit 2100 warming to 1.5 °C (RCP 2.6—2017 sce-
nario)58. Chitin has the potential to provide a nitrogen-containing 
agrochemical that can be used instead of petrochemically derived 
ammonia to address concerns about the effects of fossil-fuel-derived 
ammonia on global nitrogen cycles. Crustacean waste with an 
annual production rate of 8 mmt could provide about 0.7 mmt of 
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nitrogen that could replace 0.85 mmt of ammonia, nearly 0.5% of 
the global ammonia demand. Nevertheless, its role in reducing car-
bon and nitrogen footprints does not represent the totality of chi-
tin’s beneficial sustainable value or its sustainable impact, especially 
when economic, environmental and social (health) issues are con-
sidered together.

While allergenicity concerns would need to be addressed, the 
shift from polypropylene- to chitin-based films in the food packag-
ing industry would exert a positive effect on the ‘carcinogens’ impact 
category, even with the current ‘non-environmentally-optimized’ 
extraction methods59. The carcinogenic impacts of chitin-based films 
(defined as the annual number of deaths caused by the substance) 
are stated as being 72% lower than those of polypropylene films59. 
Moreover, a considerable amount of toxic pesticides, 1,000 times the 
amount reaching target pests, are currently released into the ecosys-
tem, threatening human health on a global scale60, which could be 
largely prevented through commercializing chitosan-based formu-
lations to enhance the targeted and controlled release of pesticides.

Conclusions and future directions
It has been predicted that global seafood consumption will increase 
during the next 30 years by 36–74%61. Despite there being eight years 
remaining to address the SDGs, only 15% of the intended progress has 
been made on target 12.3 regarding food loss and waste62. Given the 
levels of research funding highlighted in this paper, crustacean waste 
valorization should see accelerated progression in the near future.

Current technologies for chitosan production suffer from deliv-
ering a lack of quality in terms of achievable purity and reproduc-
ibility, sustainability issues through emitting heavy pollution during 
the production process, or high production and storage costs. The 
biological properties of extracted chitin and its derivatives already 
form important components of advanced biomaterials. This area 
merits further investments in developing technologies based on 
protein engineering and cell factories to harness the full potential 
of this waste stream. The production of third-generation chitin or 
chitosan polymers may address these challenges in the future. The 
ambition of producing a homogeneous and application-specific chi-
tosan structure with a predetermined acetylation pattern could pave 
the way for the highly sophisticated use of chitosan, particularly as 
a biodegradable cationic polyelectrolyte in advanced biomaterials. 
Knowledge creation on the relationships between the acetylation 
pattern and different properties of chitosan at the molecular level is 
thus an important aspect for future studies in the field.

If industry and public awareness were increased, the demand 
for chitin-derived products such as smart food packaging materi-
als would expand, acting as a driver for technological developments 
in crustacean waste valorization. However, life sciences researchers 
need to explore mitigation options for products of animal origin 
and address challenges such as allergenic or viral contaminations of 
waste-derived chitosan. Without these advances, the ability to fabri-
cate highly sophisticated biomaterials for special applications in the 
pharmaceutical and medical industries will be limited.

It is time to reimagine the value of crustacean-waste-based prod-
ucts to support future food systems through shell biorefineries, 
not only from an economic resilience perspective but also to miti-
gate sustainability and human health concerns. Such attention will 
ensure that this important food system waste product can become 
a resource that is utilized in line with the ambitions of the United 
Nations SDGs.
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