Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A precision compost strategy aligning composts and application methods with target crops and growth environments can increase global food production

Abstract

Compost represents an important input for sustainable agriculture, but the use of diverse compost types causes uncertain outcomes. Here we performed a global meta-analysis with over 2,000 observations to determine whether a precision compost strategy (PCS) that aligns suitable composts and application methods with target crops and growth environments can advance sustainable food production. Eleven key predictors of compost (carbon-to-nutrient ratios, pH and salt content electric conductivity), management (nitrogen N supply) and biophysical settings (crop type, soil texture, soil organic carbon, pH, temperature and rainfall) determined 80% of the effect on crop yield, soil organic carbon and nitrous oxide emissions. The benefits of a PCS are more pronounced in drier and warmer climates and soils with acidic pH and sandy or clay texture, achieving up to 40% higher crop yield than conventional practices. Using a data-driven approach, we estimate that a global PCS can increase the production of major cereal crops by 96.3 Tg annually, which is 4% of current production. A global PCS has the technological potential to restore 19.5 Pg carbon in cropland topsoil (0–20 cm), equivalent to 26.5% of current topsoil soil organic carbon stocks. Together, this points to a central role of PCS in current and emerging agriculture.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effect of compost use in global and regional contexts and temporal effects.
Fig. 2: BRT analysis identifying the relative importance of contributing factors that drive the effects of compost on yield and SOC.
Fig. 3: Influence of site biophysical conditions on yield and SOC with CO or CM.
Fig. 4: Influence of compost characteristics and their interactions with soil factors on compost effects on yield and SOC.
Fig. 5: Conceptual framework for a PCS.
Fig. 6: Predicted changes for yield and SOC, and total benefits for global cereal production and SOC stocks with different compost use scenarios.

Similar content being viewed by others

Data availability

The global compost effects observation dataset compiled for this study is available in Supplementary Data 1. The global input gridded datasets of climate, soils and fertilization are publicly available and presented in Supplementary Table 11. Source data are provided with this paper. All other data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

All codes developed for the BRT and RF analyses and to generate results are available from the corresponding author upon request.

References

  1. Zhang, X. et al. Quantification of global and national nitrogen budgets for crop production. Nat. Food 2, 529–540 (2021).

    Article  Google Scholar 

  2. Oldfield, E. E., Bradford, M. A. & Wood, S. A. Global meta-analysis of the relationship between soil organic matter and crop yields. Soil 5, 15–32 (2019).

    Article  CAS  ADS  Google Scholar 

  3. Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).

    Article  PubMed  ADS  CAS  Google Scholar 

  4. Crippa, M. et al. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2, 1–12 (2021).

    Article  CAS  Google Scholar 

  5. Sanderman, J., Hengl, T. & Fiske, G. J. Soil carbon debt of 12000 years of human land use. Proc. Natl Acad. Sci. USA 114, 9575–9580 (2017).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  6. FAO & ITPS. The Status of the World’s Soil Resources (SWSR)—Main Report http://www.fao.org/3/i5199e/i5199e.pdf (FAO, 2015).

  7. Pergola, M. et al. Composting: the way for a sustainable agriculture. Appl. Soil Ecol. 123, 744–750 (2018).

    Article  Google Scholar 

  8. Bernal, M. P. et al. Current approaches and future trends in compost quality criteria for agronomic, environmental, and human health benefits. Adv. Agron. 144, 143–233 (2017).

    Article  Google Scholar 

  9. Griggs, D., Stafford-Smith, M., Gaffney, O. & Noble, I. Sustainable development goals for people and planet. Nature 495, 305–307 (2013).

    Article  CAS  PubMed  ADS  Google Scholar 

  10. Muir, J. P., Butler, T., Helton, T. J. & McFarland, M. L. Dairy manure compost application rate and timing influence bermudagrass yield and nutrient concentration. Crop Sci. 50, 2133–2139 (2010).

    Article  Google Scholar 

  11. Butler, T. J., Weindorf, D. C., Han, K. J. & Muir, J. P. Dairy manure compost quality effects on corn silage and soil properties. Compost Sci. Util. 17, 18–24 (2009).

    Article  Google Scholar 

  12. Cooperband, L., Bollero, G. & Coale, F. Effect of poultry litter and composts on soil nitrogen and phosphorus availability and corn production. Nutr. Cycl. Agroecosyst. 62, 185–194 (2002).

    Article  CAS  Google Scholar 

  13. Ribas-Agustí, A. et al. Municipal solid waste composting: application as a tomato fertilizer and its effect on crop yield, fruit quality and phenolic content. Renew. Agr. Food Syst. 32, 358–365 (2016).

    Article  Google Scholar 

  14. Rosa, D. D. et al. Effect of organic and mineral N fertilizers on N2O emissions from an intensive vegetable rotation. Biol. Fertil. Soils 52, 895–908 (2015).

    Article  CAS  Google Scholar 

  15. Mapanda, F., Wuta, M., Nyamangara, J. & Rees, R. M. Effects of organic and mineral fertilizer nitrogen on greenhouse gas emissions and plant-captured carbon under maize cropping in Zimbabwe. Plant Soil 343, 67–81 (2011).

    Article  CAS  Google Scholar 

  16. Rosa, D. D. et al. N2O and CO2 emissions following repeated application of organic and mineral N fertiliser from a vegetable crop rotation. Sci. Total Environ. 637638, 813–824 (2018).

    Article  PubMed  ADS  CAS  Google Scholar 

  17. Wong, J. W. C., Wang, X. & Selvam, A. Improving compost quality by controlling nitrogen loss during composting. Curr. Dev. Biotechnol. Bioeng. 4, 59–82 (2017).

    Google Scholar 

  18. Xia, L. L., Lam, S. K., Yan, X. Y. & Chen, D. L. How does recycling of livestock manure in agroecosystems affect crop productivity, reactive nitrogen losses, and soil carbon balance? Environ. Sci. Technol. 51, 7450–7457 (2017).

    Article  CAS  PubMed  ADS  Google Scholar 

  19. Luo, G. W. et al. Organic amendments increase crop yields by improving microbe-mediated soil functioning of agroecosystems: a meta-analysis. Soil Biol. Biochem. 124, 105–115 (2018).

    Article  CAS  Google Scholar 

  20. Geisseler, D., Smith, R., Cahn, M. & Muramoto, J. Nitrogen mineralization from organic fertilizers and composts: literature survey and model fitting. J. Environ. Qual. 50, 1325–1338 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Wang, F., Wang, Z. H., Kou, C. L., Ma, Z. H. & Zhao, D. Responses of wheat yield, macro- and micro-nutrients, and heavy metals in soil and wheat following the application of manure compost on the North China Plain. PLoS ONE 1, e0146453 (2016).

    Article  CAS  Google Scholar 

  22. Agegnehu, G., Bass, A. M., Nelson, P. N. & Bird, M. I. Benefits of biochar, compost and biochar-compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. Sci. Total Environ. 543, 295–306 (2016).

    Article  CAS  PubMed  ADS  Google Scholar 

  23. Abdou, G. et al. Nutrient release patterns of compost and its implication on crop yield under Sahelian conditions of Niger. Nutr. Cycl. Agroecosyst. 105, 117–128 (2016).

    Article  Google Scholar 

  24. Lugato, E., Leip, A. & Jones, A. Mitigation potential of soil carbon management overestimated by neglecting N2O emissions. Nat. Clim. Change 8, 219–223 (2018).

    Article  CAS  ADS  Google Scholar 

  25. Zhou, M. et al. Stimulation of N2O emission by manure application to agricultural soils may largely offset carbon benefits: a global meta-analysis. Glob. Chang. Biol. 23, 4068–4083 (2017).

    Article  PubMed  ADS  Google Scholar 

  26. Edmeades, D. C. The long-term effects of manures and fertilisers on soil productivity and quality: a review. Nutr. Cycl. Agroecosys. 66, 165–180 (2003).

    Article  CAS  Google Scholar 

  27. Zhang, X. et al. Managing nitrogen for sustainable development. Nature 528, 51–59 (2015).

    Article  CAS  PubMed  ADS  Google Scholar 

  28. Dignac, M. F. et al. Increasing soil carbon storage: mechanisms, effects of agricultural practices and proxies. A review. Agron. Sustain. Dev. 37, 1–27 (2017).

    Article  CAS  Google Scholar 

  29. Yue, K. et al. Stimulation of terrestrial ecosystem carbon storage by nitrogen addition: a meta-analysis. Sci. Rep. 6, 19895 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  30. Khan, S. A., Mulvaney, R. L., Ellsworth, T. R. & Boast, C. W. The myth of nitrogen fertilization for soil carbon sequestration. J. Environ. Qual. 36, 1821–1832 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Chen, R. R. et al. Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories. Glob. Chang. Biol. 20, 2356–2367 (2014).

    Article  PubMed  ADS  Google Scholar 

  32. Chen, X. P. et al. Producing more grain with lower environmental costs. Nature 514, 486–489 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  33. De Klein, C. et al. in IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme 4 (eds Eggleston, H. S. et al.) 1–54 (IPCC & IGES, 2006).

  34. Yun, Y. et al. Soil organic carbon and total nitrogen in intensively managed arable soils. Agric. Ecosyst. Environ. 150, 102–110 (2012).

    Article  CAS  Google Scholar 

  35. Wang, X. Z. et al. Innovative management programme reduces environmental impacts in Chinese vegetable production. Nature Food 2, 1–7 (2021).

    Article  CAS  Google Scholar 

  36. Six, J., Conant, R. T., Paul, E. A. & Paustian, K. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant Soil 241, 155–176 (2002).

    Article  CAS  Google Scholar 

  37. Agehara, S. & Warncke, D. D. Soil moisture and temperature effects on nitrogen release from organic nitrogen sources. Soil Sci. Soc. Am. J. 69, 1844–1855 (2005).

    Article  CAS  ADS  Google Scholar 

  38. Jiang, G. Y. et al. Manure and mineral fertilizer effects on crop yield and soil carbon sequestration: a meta-analysis and modeling across China. Glob. Biogeochem. Cycl. 32, 1659–1672 (2018).

    Article  CAS  ADS  Google Scholar 

  39. Wang, D. D. et al. Scale effect of climate on soil organic carbon in the Uplands of Northeast China. J. Soils Sediments 10, 1007–1017 (2010).

    Article  CAS  Google Scholar 

  40. Armour, J. D., Nelson, P. N., Daniells, J. W., Rasiah, V. & Inman-Bamber, N. G. Nitrogen leaching from the root zone of sugarcane and bananas in the humid tropics of Australia. Agric. Ecosyst. Environ. 180, 68–78 (2013).

    Article  CAS  Google Scholar 

  41. Velthof, G. L., Kuikman, P. J. & Oenema, O. Nitrous oxide emission from animal manures applied to soil under controlled conditions. Biol. Fertil. Soils 37, 221–230 (2003).

    Article  CAS  Google Scholar 

  42. Qian, P. & Schoenau, J. J. Availability of nitrogen in solid manure amendments with different C:N ratios. Can. J. Soil Sci. 82, 219–225 (2002).

    Article  Google Scholar 

  43. Chen, Y., Wang, J., Wang, J. Y., Chang, S. X. & Wang, S. Q. The quality and quantity of exogenous organic carbon input control microbial NO3 immobilization: a meta-analysis. Soil Biol. Biochem. 115, 357–363 (2017).

    Article  CAS  Google Scholar 

  44. Machado, D., Sarmiento, L. & Gonzalez-Prieto, S. The use of organic substrates with contrasting C/N ratio in the regulation of nitrogen use efficiency and losses in a potato agroecosystem. Nutr. Cycl. Agroecosyst. 88, 411–427 (2010).

    Article  Google Scholar 

  45. Six, J., Frey, S. D., Thiet, R. K. & Batte, K. M. Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci. Soc. Am. J. 70, 555–569 (2006).

    Article  CAS  ADS  Google Scholar 

  46. Mooshammer, M., Wanek, W., Zechmeister-Boltenstern, S. & Richter, A. Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources. Front. Microbiol. 5, 1–10 (2014).

    Article  Google Scholar 

  47. Zechmeister-Boltenstern, S. et al. The application of ecological stoichiometry to plant–microbial–soil organic matter transformations. Ecol. Monogr. 85, 133–155 (2015).

    Article  Google Scholar 

  48. Butcher, K., Wick, A. F., DeSutter, T., Chatterjee, A. & Harmon, J. Soil salinity: a threat to global food security. Agron. J. 108, 2189–2200 (2016).

    Article  CAS  Google Scholar 

  49. Rath, K. M. & Rousk, J. Salt effects on the soil microbial decomposer community and their role in organic carbon cycling: a review. Soil Biol. Biochem. 81, 108–123 (2015).

    Article  CAS  Google Scholar 

  50. Guo, Z. C. et al. Does animal manure application improve soil aggregation? Insights from nine long-term fertilization experiments. Sci. Total Environ. 660, 1029–1037 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  51. Jeong, S. T., Kim, J. W., Hwang, H. Y., Kim, P. J. & Kim, S. Y. Beneficial effect of compost utilization on reducing greenhouse gas emissions in a rice cultivation system through the overall management chain. Sci. Total Environ. 613614, 115–122 (2018).

    Article  PubMed  ADS  CAS  Google Scholar 

  52. Jin, S. Q. et al. Decoupling livestock and crop production at the household level in China. Nat. Sustain. 4, 48–55 (2021).

    Article  Google Scholar 

  53. Hedges, L. V., Curevitch, J. & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).

    Article  Google Scholar 

  54. Adams, D. C., Gurevitch, J. & Rosenberg, M. S. Resampling tests for meta-analysis of ecological data. Ecology 78, 1277–1283 (1997).

    Article  Google Scholar 

  55. Li, T. Y. et al. Enhanced-efficiency fertilizers are not a panacea for resolving the nitrogen problem. Glob. Chang. Biol. 24, 511–521 (2018).

    Article  Google Scholar 

  56. Wu, K. N. & Zhao, R. Soil texture classification and its application in China (In Chinese). Acta. Pedol. Sin. 56, 227–241 (2019).

    Google Scholar 

  57. Food and Agriculture Organization of the United Nations. FAOSTAT Online Database http://www.fao.org/faostat/en/#home (2018).

  58. Zhang, X. Y. et al. Benefits and trade-offs of replacing synthetic fertilizers by animal manures in crop production in China: a meta-analysis. Glob. Chang. Biol. 00, 1–13 (2020).

    ADS  Google Scholar 

  59. Assessing compost quality for agriculture. University of California, Agricultural and Natural Resources https://doi.org/10.3733/ucanr.8514 (2016).

  60. Gurevitch, J. & Hedges, L. V. Statistical issues in ecological meta-analyses. Ecology 80, 1142–1149 (1999).

    Article  Google Scholar 

  61. Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–812 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Hou, E. Q. et al. Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems. Nat. Commun. 11, 637 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  63. Greenwell, B., Boehmke, B., Cunningham, J. & GBM Developers. gbm: Generalized Boosted Regression Models. R package version 2.1.5. https://CRAN.R-project.org/package=gbm (2019).

Download references

Acknowledgements

This work was financially supported by National Key Technologies R&D Program of China (grant 2016YFD0201303), Green and High-efficiency Fertilizer Innovation Program, Academy of Green Intelligent Compound Fertilizer, CNSIG Anhui Hongsifang Fertilizer Co., Ltd. and Chaohu Lake Non-point Source Pollution Key Technology Research, Construction of agricultural carbon neutrality account in Quzhou City, Zhejiang Province, Agricultural Technology Experiment Demonstration and Service Support Program in 2021, Graduate International Training Program of China Agricultural University, and the ‘Fight Food Waste Cooperative Research Centre’ under funding received from Australian Government’s Cooperative Research Centre Program.

Author information

Authors and Affiliations

Authors

Contributions

W.Z. conceived the research and established the methodology. W.Z., S.Z. and S.S proposed the PCS concept. S.Z. collected and analysed the data. W.Z., S.Z. and S.S. designed figures and tables. W.Z., S.Z. and S.S. wrote the manuscript with edits from H.G., T.L., X.C., Y.H., D.C., J.T., Z.D. and F.Z.

Corresponding author

Correspondence to Weifeng Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Food thanks Marcel van der Heijden, Rebecca Ryals, Shu Kee Lam and Zengqiang Zhang for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text 1–4, Figs. 1–23, Tables 1–16, references and meta-analysis reference list.

Reporting Summary

Supplementary Data 1

The global compost effects observations dataset.

Source data

Source Data Fig. 1

Statistical source data for Fig. 1.

Source Data Fig. 2

Statistical source data for Fig. 2.

Source Data Fig. 3

Statistical source data for Fig. 3.

Source Data Fig. 4

Statistical source data for Fig. 4.

Source Data Fig. 6

Statistical source data for Fig. 6.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., Schmidt, S., Gao, H. et al. A precision compost strategy aligning composts and application methods with target crops and growth environments can increase global food production. Nat Food 3, 741–752 (2022). https://doi.org/10.1038/s43016-022-00584-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43016-022-00584-x

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene