Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Duplication of a manganese/cadmium transporter gene reduces cadmium accumulation in rice grain

Abstract

Global contamination of soils with toxic cadmium (Cd) is a serious health threat. Here we found that a tandem duplication of a gene encoding a manganese/Cd transporter, OsNramp5, was responsible for low-Cd accumulation in Pokkali, an old rice cultivar. This duplication doubled the expression of OsNramp5 gene but did not alter its spatial expression pattern and cellular localization. Higher expression of OsNramp5 increased uptake of Cd and Mn into the root cells but decreased Cd release to the xylem. Introgression of this allele into Koshihikari, an elite rice cultivar, through backcrossing significantly reduced Cd accumulation in the grain when cultivated in soil heavily contaminated with Cd but did not affect both grain yield and eating quality. This study not only reveals the molecular mechanism underlying low-Cd accumulation but also provides a useful target for breeding rice cultivars with low-Cd accumulation.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Fine mapping of a QTL gene responsible for low-Cd accumulation in rice.
Fig. 2: Comparison of genomic copy number and expression pattern of OsNramp5 between Koshihikari and Pokkali.
Fig. 3: Tissue and cellular localization and transport activity of OsNramp5 in Pokkali.
Fig. 4: Comparison of genomic copy number, gene expression of OsNramp5 and localization of OsNramp5 in Koshihikari and the BC4F3 line.
Fig. 5: Physiological and agronomical characterization of BC4F2/BC4F3 lines.
Fig. 6: Deposition pattern of Mn and Cd in roots of Koshihikari and the BC4F3 line.
Fig. 7: Concentrations of Cd and Mn in the root cell sap and xylem sap of Koshihikari and the BC4F3 line.
Fig. 8: A representative scheme for low-Cd accumulation in rice.

Data availability

The data that support the findings of this study are available from the corresponding author upon request. Source data are provided with this paper.

Code availability

Sequence data of this article have been registered in the DDBJ/GenBank/EMBL databases under the accession numbers LC717507 for duplicated OsNramp5 in Pokkali.

References

  1. Ma, J. F., Shen, R. F. & Shao, J. F. Transport of cadmium from soil to grain in cereal crops: a review. Pedosphere 31, 3–10 (2021).

    Article  Google Scholar 

  2. Zhao, F. J. & Wang, P. Arsenic and cadmium accumulation in rice and mitigation strategies. Plant Soil 446, 1–21 (2020).

    Article  CAS  Google Scholar 

  3. Horiguchi, H. et al. Hypoproduction of erythropoietin contributes to anemia in chronic cadmium intoxication: clinical study on Itai-itai disease in Japan. Arch. Toxicol. 68, 632–636 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Song, Y. et al. Dietary cadmium exposure assessment among the Chinese population. PLoS ONE 12, e0177978 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Sui, F. et al. Nramp5 expression and functionality likely explain higher cadmium uptake in rice than in wheat and maize. Plant Soil 433, 377–389 (2018).

    Article  CAS  Google Scholar 

  6. Sasaki, A., Yamaji, N., Yokosho, K. & Ma, J. F. Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell 24, 2155–2167 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ishikawa, S. et al. Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice. Proc. Natl Acad. Sci. USA 109, 19166–19171 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yang, M. et al. OsNRAMP5 contributes to manganese translocation and distribution in rice shoots. J. Exp. Bot. 65, 4849–4861 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yan, H. et al. Variation of a major facilitator superfamily gene contributes to differential cadmium accumulation between rice subspecies. Nat. Commun. 10, 2562 (2019).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  10. Chang, J. D. et al. OsNRAMP1 transporter contributes to cadmium and manganese uptake in rice. Plant Cell Environ. 43, 2476–2491 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Tan, L. et al. ZINC TRANSPORTER5 and ZINC TRANSPORTER9 function synergistically in zinc/cadmium uptake. Plant Physiol. 183, 1235–1249 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ueno, D. et al. Gene limiting cadmium accumulation in rice. Proc. Natl Acad. Sci. USA 107, 16500–16505 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Miyadate, H. et al. OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles. New Phytol. 189, 190–199 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Takahashi, R. et al. The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice. Plant Cell Environ. 35, 1948–1957 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Yamaji, N., Xia, J., Mitani-Ueno, N., Yokosho, K. & Ma, J. F. Preferential delivery of zinc to developing tissues in rice is mediated by P-type heavy metal ATPase OsHMA2. Plant Physiol. 162, 927–939 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Uraguchi, S. et al. Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains. Proc. Natl Acad. Sci. USA 108, 20959–20964 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hao, X. et al. A node-expressed transporter OsCCX2 is involved in grain cadmium accumulation of rice. Front. Plant Sci. 9, 476 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  18. Lu, C. et al. Producing cadmium-free Indica rice by overexpressing OsHMA3. Environ. Int. 126, 619–626 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Arao, T. & Ae, N. Genotypic variations in cadmium levels of rice grain. Soil Sci. Plant Nutr. 49, 473–479 (2003).

    Article  CAS  Google Scholar 

  20. Ueno, D. et al. A major quantitative trait locus controlling cadmium translocation in rice (Oryza sativa). New Phytol. 182, 644–653 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Liu, C. L. et al. Natural variation in the promoter of OsHMA3 contributes to differential grain cadmium accumulation between Indica and Japonica rice. J. Integr. Plant Biol. 62, 314–329 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Ebana, K., Kojima, Y., Fukuoka, S., Nagamine, T. & Kawase, M. Development of mini core collection of Japanese rice landrace. Breed. Sci. 58, 281–291 (2008).

    Article  Google Scholar 

  23. Yu, E., Yamaji, N., Mao, C., Wang, H. & Ma, J. F. Lateral roots but not root hairs contribute to high uptake of manganese and cadmium in rice. J. Exp. Bot. 72, 7219–7228 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Yang, C., Zhang, Y. & Huang, C. Reduction in cadmium accumulation in japonica rice grains by CRISPR/Cas9-mediated editing of OsNRAMP5. J. Integr. Agr. 18, 688–697 (2019).

    Article  CAS  Google Scholar 

  25. Chang, J. D. et al. Overexpression of the manganese/cadmium transporter OsNRAMP5 reduces cadmium accumulation in rice grain. J. Exp. Bot. 71, 5705–5715 (2020).

    Article  CAS  PubMed  Google Scholar 

  26. Hoshikawa, K. The Growing Rice Plant (Nosan Gyoson Bunka Kyokai, 1989).

  27. Huang, S., Wang, P., Yamaji, N. & Ma, J. F. Plant nutrition for human nutrition: hints from rice research and future perspectives. Mol. Plant 13, 825–835 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Ma, J. F. et al. A silicon transporter in rice. Nature 440, 688–691 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Ma, J. F. et al. An efflux transporter of silicon in rice. Nature 448, 209–212 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Huang, S. et al. Boron uptake in rice is regulated post-translationally via a clathrin-independent pathway. Plant Physiol. 188, 1649–1664 (2022).

    Article  CAS  PubMed  Google Scholar 

  31. Ueno, D. et al. A polarly localized transporter for efficient manganese uptake in rice. Nat. Plants 1, 15170 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Zou, C., Lehti-Shiu, M. D., Thomashow, M. & Shiu, S. H. Evolution of stress-regulated gene expression in duplicate genes of Arabidopsis thaliana. PLoS Genet. 5, e1000581 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Kondrashov, F. A. Gene duplication as a mechanism of genomic adaptation to a changing environment. Proc. R. Soc. B 279, 5048–5057 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Chow, E. W. L., Morrow, C. A., Djordjevic, J. T., Wood, I. A. & Fraser, J. A. Microevolution of Cryptococcus neoformans driven by massive tandem gene amplification. Mol. Biol. Evol. 29, 1987–2000 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Sutton, T. et al. Boron-toxicity tolerance in barley arising from efflux transporter amplification. Science 318, 1446–1449 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Nadeem, F. et al. Comparative response of two rice (Oryza sativa L.) cultivars to applied zinc and manganese for mitigation of salt stress. J. Soil Sci. Plant Nutr. 20, 2059–2072 (2020).

    Article  CAS  Google Scholar 

  37. Ma, J. F., Tamai, K., Ichii, M. & Wu, G. F. A rice mutant defective in Si uptake. Plant Physiol. 130, 2111–2117 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yonemaru, J., Ebana, K. & Yano, M. HapRice, an SNP haplotype database and a web tool for rice. Plant Cell Physiol. 55, e9 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Wang, S., Basten, C. J. & Zeng, Z. B. Windows QTL Cartographer 2.5 (North Carolina State Univ., 2012).

  40. Hiei, Y. & Komari, T. Agrobacterium-mediated transformation of rice using immature embryos or calli induced from mature seed. Nat. Protoc. 3, 824 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Murray, M. G. & Thompson, W. F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8, 4321–4325 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yamaji, N. & Ma, J. F. Spatial distribution and temporal variation of the rice silicon transporter Lsi1. Plant Physiol. 143, 1306–1313 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yamaji, N., Sasaki, A., Xia, J. X., Yokosho, K. & Ma, J. F. A node-based switch for preferential distribution of manganese in rice. Nat. Commun. 4, 2442 (2013).

    Article  ADS  PubMed  CAS  Google Scholar 

  44. Tamai, K. & Ma, J. F. Reexamination of silicon effects on rice growth and production under field conditions using a low silicon mutant. Plant Soil 307, 21–27 (2008).

    Article  CAS  Google Scholar 

  45. Iijima, K. et al. Endosperm enzyme activity is responsible for texture and eating quality of cooked rice grains in Japanese cultivars. Biosci. Biotech. Bioch. 83, 502–510 (2019).

    Article  CAS  Google Scholar 

  46. Yamaji, N. & Ma, J. F. Bioimaging of multiple elements by high-resolution LAICP-MS reveals altered distribution of mineral elements in the nodes of rice mutants. Plant J. 99, 1254–1263 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. Suzuki, T. et al. iQuant2: software for rapid and quantitative imaging using laser ablation-ICP mass spectrometry. Mass Spectrom. 7, A0065 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Japan Society for the Promotion of Science (JSPS) (KAKENHI grant numbers 16H06296 and 21H05034 to J.F.M.) and the Key Project of the National Natural Science Foundation of China (number 42020104004 to R.F.S.). We thank A. Morita, Y. Takahashi, M. Hikasa, Y. Murasawa and S. Rikiishi for their experimental assistance.

Author information

Authors and Affiliations

Authors

Contributions

J.F.M. designed the research. E.Y., W.W., N.Y., S.F., J.C., D.U., T.A., F.D., K.H., M.Y., R.F.S. and J.F.M. performed the experiment. E.Y., W.W., N.Y. and J.F.M. analysed the data. E.Y. and J.F.M. wrote the paper.

Corresponding author

Correspondence to Jian Feng Ma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Food thanks Steve P. McGrath, Sébastien Thomine and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10 and Tables 1–5.

Reporting Summary.

Source data

Source Data Fig. 1

Original data for Fig. 1.

Source Data Fig. 2

Original data for Fig. 2.

Source Data Fig. 4

Original data for Fig. 4.

Source Data Fig. 5

Original data for Fig. 5.

Source Data Fig. 6

Original data for Fig. 6.

Source Data Fig. 7

Original data for Fig. 7.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yu, E., Wang, W., Yamaji, N. et al. Duplication of a manganese/cadmium transporter gene reduces cadmium accumulation in rice grain. Nat Food 3, 597–607 (2022). https://doi.org/10.1038/s43016-022-00569-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43016-022-00569-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing