Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Tillage exacerbates the vulnerability of cereal crops to drought

Abstract

Soils used for crop production cover 15.5 million km2 and almost all have been tilled at some point in their history. However, it is unclear how the changes in soil depth and soil properties associated with tillage affect crop yields. Here we show that tillage on slopes thins soils and reduces wheat and maize yields. At the landscape scale, tillage erosion gradually reduces crop yields as the duration and intensity of tillage increase. Over the next 50–100 yr, the overall yields are likely to further decline as modern mechanized agriculture accelerates the process of tillage erosion compared with centuries of non-mechanized tillage. Arresting this downward trend will require more widespread adoption of no-tillage practices and avoidance of down-slope cultivation. The downward pressure on landscape-scale yields due to tillage erosion is expected to be amplified by climate-change-induced increases in dry spells during crop growth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Changes in soil properties and crop yields.
Fig. 2: The effects of soil loss and deposition on topsoil properties.
Fig. 3: Effects of topsoil removal on yields.
Fig. 4: Modelled biomass production and EVI.
Fig. 5: Changes in modelled cumulative landscape-scale biomass production.

Similar content being viewed by others

Data availability

Source data are provided with this paper.

Code availability

Aquacrop for GIS is available as an executable file from https://www.fao.org/aquacrop/software/aquacrop-gis/en/. SPEROS-C is available on request from P.F.

References

  1. Quinton, J. N., Govers, G., Van Oost, K. & Bardgett, R. D. The impact of agricultural soil erosion on biogeochemical cycling. Nat. Geosci. 3, 311–314 (2010).

    Article  ADS  CAS  Google Scholar 

  2. Van Oost, K., Govers, G., De Alba, S. & Quine, T. A. Tillage erosion: a review of controlling factors and implications for soil quality. Prog. Phys. Geogr. 30, 443–466 (2006).

    Article  Google Scholar 

  3. Wildemeersch, J. C. J. et al. Tillage erosion and controlling factors in traditional farming systems in Pinar del Río, Cuba. Catena 121, 344–353 (2014).

    Article  Google Scholar 

  4. Schjønning, P. et al. Driver–pressure–state–impact–response (DPSIR) analysis and risk assessment for soil compaction—a European perspective. Adv. Agron. 133, 183–237 (2015).

    Article  Google Scholar 

  5. Switoniak, M. Issues relating to classification of colluvial soils in young morainic areas (Chełmno and Brodnica Lake District, northern Poland). Soil Sci. An. 66, 57–66 (2015).

    Article  CAS  Google Scholar 

  6. Heckrath, G. et al. Tillage erosion and its effect on soil properties and crop yield in Denmark. J. Environ. Qual. 34, 312–324 (2005).

    CAS  PubMed  Google Scholar 

  7. Zhang, L. L. et al. Effect of soil erosion depth on crop yield based on topsoil removal method: a meta-analysis. Agron. Sustain. Dev. 41, 1–13 (2021).

    Article  CAS  Google Scholar 

  8. Bakker, M. M., Govers, G. & Rounsevell, M. D. A. The crop productivity–erosion relationship: an analysis based on experimental work. Catena 57, 55–76 (2004).

    Article  Google Scholar 

  9. Larney, F. J., Janzen, H. H., Olson, B. M. & Olson, A. F. Erosion–productivity–soil amendment relationships for wheat over 16 years. Soil Till. Res. 103, 73–83 (2009).

    Article  Google Scholar 

  10. Swan, J. B., Shaffer, M. J., Paulson, W. H. & Peterson, A. E. Simulating the effect of soil depths and climate factors on corn yield. Soil Sci. Soc. Am. J. 51, 1025–1032 (1987).

    Article  ADS  Google Scholar 

  11. Rejman, J., Iglik, I., Paluszek, J. & Rodzik, J. Soil redistribution and crop productivity in loess areas (Lublin Upland, Poland). Soil Till. Res. 143, 77–84 (2014).

    Article  Google Scholar 

  12. Gollany, H. T., Schumacher, T. E., Lindstrom, M. J., Evenson, P. D. & Lemme, G. D. Topsoil depth and desurfacing effects on properties and productivity of a Typic Argiustoll. Soil Sci. Soc. Am. J. 56, 220–225 (1992).

    Article  ADS  Google Scholar 

  13. Steduto, P., Hsiao, T. C., Raes, D. & Fereres, E. AquaCrop—the FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agron. J. 101, 426–437 (2009).

    Article  Google Scholar 

  14. Fiener, P., Dlugoß, V. & Van Oost, K. Erosion-induced carbon redistribution, burial and mineralisation—is the episodic nature of erosion processes important? Catena 133, 282–292 (2015).

    Article  CAS  Google Scholar 

  15. Wilken, F., Ketterer, M., Koszinski, S., Sommer, M. & Fiener, P. Understanding the role of water and tillage erosion from 239+240Pu tracer measurements and inverse modelling. SOIL 6, 549–564 (2020).

    Article  ADS  CAS  Google Scholar 

  16. Öttl, L. K. et al. Tillage erosion as main driver of in-field biomass patterns in an intensively used hummocky landscape. Land Degrad. Dev. 32, 3077–3091 (2021).

    Article  Google Scholar 

  17. Massee, T. W. & Waggoner, H. O. Productivity losses from soil erosion on dry cropland in the intermountain area. J. Soil Water Conserv. 40, 447–450 (1985).

    Google Scholar 

  18. Yang, W. G., Zhang, X. C., Gong, W., Ye, Y. Y. & Yang, Y. S. Soil erosion and corn yield in a cultivated catchment of the Chinese Mollisol region. PLoS ONE 14, https://doi.org/10.1371/journal.pone.0221553 (2019).

  19. Van Loo, M. et al. Human induced soil erosion and the implications on crop yield in a small mountainous Mediterranean catchment (SW-Turkey). Catena 149, 491–504 (2017).

    Article  CAS  Google Scholar 

  20. Mueller, L., Behrendt, A., Schalitz, G. & Schindler, U. Above ground biomass and water use efficiency of crops at shallow water tables in a temperate climate. Agric. Water Manag. 75, 117–136 (2005).

    Article  Google Scholar 

  21. Webber, H. et al. Diverging importance of drought stress for maize and winter wheat in Europe. Nat. Commun. 9, 4249 (2018).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  22. Reinermann, S., Gessner, U., Asam, S., Kuenzer, C. & Dech, S. The effect of droughts on vegetation condition in Germany: an analysis based on two decades of satellite earth observation time series and crop yield statistics. Remote Sens. 11, 1783 (2019).

    Article  ADS  Google Scholar 

  23. Fentahun, T., Amare, D. & Abera, M. Evaluation of single yoke implement, harnessed and drawn by horse for cultivation of farm lands in north-western Ethiopia. J. Agric. Res. 2, 38–46 (2014).

    Google Scholar 

  24. Keen, B. A. Physics in agriculture. Nature 116, 905–907 (1925).

    Article  ADS  Google Scholar 

  25. Helsel, Z. R. Fuel Requirements and Energy Savings Tips for Field Operations (Rutgers Cooperative Extension, 2007).

  26. Lobb, D. Understanding and managing the causes of soil variability. J. Soil Water Conserv. 66, 175A–179A (2011).

    Article  Google Scholar 

  27. Li, S., Lobb, D. A. & Lindstrom, M. J. Tillage translocation and tillage erosion in cereal-based production in Manitoba, Canada. Soil Till. Res. 94, 164–182 (2007).

    Article  Google Scholar 

  28. FAOSTAT (FAO, 2020).

  29. Pingali, P. in Handbook of Agricultural Economics Vol. 3 (eds R. Evenson & P. Pingali) Ch. 54, 2779–2805 (Elsevier, 2007).

  30. Sims, B. & Kienzle, J. Making mechanization accessible to smallholder farmers in sub-Saharan Africa. Environments 2, 136–166 (2015).

    Google Scholar 

  31. Papiernik, S. K. et al. Soil properties and productivity as affected by topsoil movement within an eroded landform. Soil Till. Res. 102, 67–77 (2009).

    Article  Google Scholar 

  32. Derpsch, R., Friedrich, T., Kassam, A. & Hongwen, L. Current status of adoption of no-till farming in the world and some of its main benefits. Int. J. Agric. Biol. Eng. 3, 1–25 (2010).

    Google Scholar 

  33. Allen, B. L., Cochran, V. L., Caesar, T. & Tanaka, D. L. Long-term effects of topsoil removal on soil productivity factors, wheat yield and protein content. Arch. Agron. Soil Sci. 57, 293–303 (2011).

    Article  CAS  Google Scholar 

  34. Gorji, M., Rafahi, H. & Shahoee, S. Effects of surface soil removal (simulated erosion) and fertilizer application on wheat yield. J. Agri. Sci. Tech. 10, 317–323 (2008).

    Google Scholar 

  35. Izaurralde, R. C., Malhi, S. S., Nyborg, M., Solberg, E. D., & Quiroga Jakas, M. C. Crop performance and soil properties in two artificially eroded soils in north-central Alberta. Agron. J. 98, 1298–1311 (2006).

    Article  Google Scholar 

  36. Tanaka, D. L. & Aase, J. K. Influence of topsoil removal and fertilizer application on spring wheat yields. Soil Sci. Soc. Am. J. 53, 228–232 (1989).

    Article  ADS  Google Scholar 

  37. Massee, T. W. Simulated erosion and fertilizer effects on winter wheat: cropping intermountain dryland area. Soil Sci. Soc. Am. J. 54, 1720–1725 (1990).

    Article  ADS  CAS  Google Scholar 

  38. Larney, F. J. et al. Soil erosion–crop productivity relationships for six Alberta soils. J. Soil Water Conserv. 50, 87–91 (1995).

    Google Scholar 

  39. Brunel, N., Meza, F., Ros, R. & Santibanez, F. Effects of topsoil loss on wheat productivity in dryland zones of Chile. J. Soil Sci. Plant Nutr. 11, 129–137 (2011).

    Article  Google Scholar 

  40. Dormaar, J. F., Lindwall, C. W. & Kozub, G. C. Restoring productivity to an artificially eroded dark brown chernozemic soil under dry land conditions. Can. J. Soil Sci. 66, 273–285 (1986).

    Article  Google Scholar 

  41. Van Oost, K. et al. in Soil Erosion and Carbon Dynamics 37–51 (CRC Press, 2005).

  42. Sommer, M., Gerke, H. H. & Deumlich, D. Modelling soil landscape genesis—a “time split” approach for hummocky agricultural landscapes. Geoderma 145, 480–493 (2008).

    Article  ADS  CAS  Google Scholar 

  43. Kappler, C. et al. Stratigraphy and age of colluvial deposits indicating Late Holocene soil erosion in northeastern Germany. Catena 170, 224–245 (2018).

    Article  Google Scholar 

  44. World Reference Base for Soil Resources 2014 (FAO, 2015); https://www.fao.org/3/i3794en/I3794en.pdf

  45. Koszinski, S., Gerke, H. H., Hierold, W. & Sommer, M. Geophysical-based modeling of a kettle hole catchment of the morainic soil landscape. Vadose Zone J. 12, https://doi.org/10.2136/vzj2013.02.0044 (2013).

  46. Saxton, K. E., Rawls, W. J., Romberger, J. S. & Papendick, R. I. Estimating generalized soil–water characteristics from texture. Soil Sci. Soc. Am. J. 50, 1031–1036 (1986).

    Article  ADS  Google Scholar 

  47. Govers, G., Vandaele, K., Desmet, P., Poesen, J. & Bunte, K. The role of tillage in soil redistribution on hillslopes. Eur. J. Soil Sci. 45, 469–478 (1994).

    Article  Google Scholar 

  48. Jin, X. et al. Winter wheat yield estimation based on multi-source medium resolution optical and radar imaging data and the AquaCrop model using the particle swarm optimization algorithm. ISPRS J. Photogramm. Remote Sens. 126, 24–37 (2017).

    Article  ADS  Google Scholar 

  49. Ritchie, H. & Roser, M. Crop Yields (OurWorldInData.org); https://ourworldindata.org/crop-yields

Download references

Acknowledgements

We acknowledge funding from the DAAD Research Stays for University Academics and Scientists programme (91725147) (J.N.Q.), the Soil Hydrology research platform underpinning innovation to manage water scarcity in European and Chinese cropping systems (H2020-SFS-2016-2017/H2020-SFS-2017-2) (J.N.Q.) and the DFG project ‘Tillage erosion affects crop yields and carbon balance in hummocky landscapes’ (FI 1216/12-1) (L.Ö.). We also acknowledge the Landscape Pedology Working Group, Leibniz Centre for Agricultural Landscape Research ZALF e.V., Müncheberg, Germany for support and data provision.

Author information

Authors and Affiliations

Authors

Contributions

J.N.Q. and P.F. contributed equally to the design, literature review, modelling and manuscript preparation. L.K.Ö. supported the modelling and evaluated the remote sensing data for the test site.

Corresponding author

Correspondence to Peter Fiener.

Ethics declarations

Competing interests

The authors declare no competing interests

Peer review

Peer review information

Nature Food thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of model quality and limitations, and Supplementary Figs. 1–4 and Tables 1 and 2.

Supplementary Data 1

Source data for Fig. 1.

Supplementary Data 2

Source data for Fig. 2.

Source data

Source Data Fig. 1

Graph source data.

Source Data Fig. 3

Graph source data.

Source Data Fig. 4

Graph source data.

Source Data Fig. 5

Graph source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quinton, J.N., Öttl, L.K. & Fiener, P. Tillage exacerbates the vulnerability of cereal crops to drought. Nat Food 3, 472–479 (2022). https://doi.org/10.1038/s43016-022-00533-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43016-022-00533-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing