Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A wiring diagram to integrate physiological traits of wheat yield potential

Abstract

As crop yields are pushed closer to biophysical limits, achieving yield gains becomes increasingly challenging and will require more insight into deterministic pathways to yields. Here, we propose a wiring diagram as a platform to illustrate the interrelationships of the physiological traits that impact wheat yield potential and to serve as a decision support tool for crop scientists. The wiring diagram is based on the premise that crop yield is a function of photosynthesis (source), the investment of assimilates into reproductive organs (sinks) and the underlying processes that enable expression of both. By illustrating these linkages as coded wires, the wiring diagram can show connections among traits that may not have been apparent, and can inform new research hypotheses and guide crosses designed to accumulate beneficial traits and alleles in breeding. The wiring diagram can also serve to create an ever-richer common point of reference for refining crop models in the future.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Graphical representation of how source and sink strengths may interact with crop developmental stage to determine yield.
Fig. 2: Schematic representation of two analytical frameworks for dissecting wheat yield.
Fig. 3: A generalized wiring diagram for wheat.

References

  1. Manners, R. & van Etten, J. Are agricultural researchers working on the right crops to enable food and nutrition security under future climates? Glob. Environ. Change 53, 182–194 (2018).

    Article  Google Scholar 

  2. Araus, J. L., Kefauver, S. C., Zaman-Allah, M., Olsen, M. S. & Cairns, J. E. Translating high-throughput phenotyping into genetic gain. Trends Plant Sci. 23, 451–466 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. Varshney, R. K. et al. 5Gs for crop genetic improvement. Curr. Opin. Plant Biol. 56, 190–196 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. Pingali, P. L. Green Revolution: impacts, limits, and the path ahead. Proc. Natl Acad. Sci. USA 109, 12302–12308 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. Lantican, M. A. et al. Impacts of International Wheat Research 1994-2014 (CIMMYT, 2016).

  6. Challinor, A. J. et al. A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Change 4, 287–297 (2014).

    ADS  Article  Google Scholar 

  7. Crespo-Herrera, L. A. et al. Genetic yield gains in CIMMYT’S international elite spring wheat yield trials by modeling the genotype × environment interaction. Crop Sci. 57, 789–801 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  8. Singh, R. P. et al. Emergence and spread of new races of wheat stem rust fungus: continued threat to food security and prospects of genetic control. Phytopathology 105, 872–884 (2015).

    PubMed  Article  Google Scholar 

  9. Xiong, W. et al. Increased ranking change in wheat breeding under climate change. Nat. Plants 7, 1207–1212 (2021).

    PubMed  Article  Google Scholar 

  10. Reynolds, M. et al. Addressing research bottlenecks to crop productivity. Trends Plant Sci. 26, 607–630 (2021).

    CAS  PubMed  Article  Google Scholar 

  11. Paul, M. J., Watson, A. & Griffiths, C. A. Linking fundamental science to crop improvement through understanding source and sink traits and their integration for yield enhancement. J. Exp. Bot. 71, 2270–2280 (2020).

    CAS  PubMed  Article  Google Scholar 

  12. Chang, T.-G. & Zhu, X.-G. Source–sink interaction: a century old concept under the light of modern molecular systems biology. J. Exp. Bot. 68, 4417–4431 (2017).

    CAS  PubMed  Article  Google Scholar 

  13. Reynolds, M. P. et al. Strategic crossing of biomass and harvest index—source and sink—achieves genetic gains in wheat. Euphytica 213, 257 (2017).

    Article  Google Scholar 

  14. Lichthardt, C., Chen, T.-W., Stahl, A. & Stützel, H. Co-evolution of sink and source in the recent breeding history of winter wheat in Germany. Front. Plant Sci. 10, 1771 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  15. Molero, G. & Reynolds, M. P. Spike photosynthesis measured at high throughput indicates genetic variation independent of flag leaf photosynthesis. Field Crops Res. 255, 107866 (2020).

    Article  Google Scholar 

  16. Valluru, R., Reynolds, M. P., Davies, W. J. & Sukumaran, S. Phenotypic and genome‐wide association analysis of spike ethylene in diverse wheat genotypes under heat stress. New Phytol. 214, 271–283 (2017).

    CAS  PubMed  Article  Google Scholar 

  17. Whingwiri, E. E., Kuo, J. & Stern, W. R. The vascular system in the rachis of a wheat ear. Ann. Bot. 48, 189–202 (1981).

    Article  Google Scholar 

  18. Braun, D. M., Wang, L. & Ruan, Y. Understanding and manipulating sucrose phloem loading, unloading, metabolism, and signalling to enhance crop yield and food security. J. Exp. Bot. 65, 1713–1735 (2014).

    CAS  PubMed  Article  Google Scholar 

  19. Regmi, K. C. et al. Improved yield and photosynthate partitioning in AVP1 expressing wheat (Triticum aestivum) plants. Front. Plant Sci. 11, 273 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  20. Slafer, G. A. & Savin, R. in Encyclopedia of Plant and Crop Science (ed. Goodman, R.) 1–4 (Taylor & Francis, 2006).

  21. Slafer, G. A., Savin, R. & Sadras, V. O. Coarse and fine regulation of wheat yield components in response to genotype and environment. Field Crops Res. 157, 71–83 (2014).

    Article  Google Scholar 

  22. Bouman, B. A. M., van Keulen, H., van Laar, H. H. & Rabbinge, R. The ‘School of de Wit’ crop growth simulation models: a pedigree and historical overview. Agric. Syst. 52, 171–198 (1996).

    Article  Google Scholar 

  23. Amir, J. & Sinclair, T. R. A model of the temperature and solar-radiation effects on spring wheat growth and yield. Field Crops Res. 28, 47–58 (1991).

    Article  Google Scholar 

  24. Asseng, S. et al. Uncertainty in simulating wheat yields under climate change. Nat. Clim. Change 3, 827–832 (2013).

    ADS  CAS  Article  Google Scholar 

  25. Mondal, S. et al. Fifty years of semi-dwarf spring wheat breeding at CIMMYT: grain yield progress in optimum, drought and heat stress environments. Field Crops Res. 250, 107757 (2020).

    Article  Google Scholar 

  26. Ferrante, A., Cartelle, J., Savin, R. & Slafer, G. A. Yield determination, interplay between major components and yield stability in a traditional and a contemporary wheat across a wide range of environments. Field Crops Res. 203, 114–127 (2017).

    Article  Google Scholar 

  27. Aisawi, K. A. B., Reynolds, M. P., Singh, R. P. & Foulkes, M. J. The physiological basis of the genetic progress in yield potential of CIMMYT spring wheat cultivars from 1966 to 2009. Crop Sci. 55, 1749–1764 (2015).

    Article  Google Scholar 

  28. Fischer, R. A. Number of kernels in wheat crops and the influence of solar radiation and temperature. J. Agric. Sci. 105, 447–461 (1985).

    Article  Google Scholar 

  29. Fischer, R. A. Wheat physiology: a review of recent developments. Crop Pasture Sci. 62, 95–114 (2011).

    Article  Google Scholar 

  30. Slafer, G. A., Savin, R., Pinochet, D. & Calderini, D. in Crop Physiology Case Histories for Major Crops (eds Sadras, V. & Calderini, D.) 99–163 (Academic, 2021).

  31. Calderini, D. F. et al. Overcoming the trade-off between grain weight and number in wheat by the ectopic expression of expansin in developing seeds leads to increased yield potential. New Phytol. 230, 629–640 (2021).

    CAS  PubMed  Article  Google Scholar 

  32. Luquet, D., Dingkuhn, M., Kim, H., Tambour, L. & Clement-Vidal, A. EcoMeristem, a model of morphogenesis and competition among sinks in rice. 1. Concept, validation and sensitivity analysis. Funct. Plant Biol. 33, 309–323 (2006).

    PubMed  Article  Google Scholar 

  33. Prasad, P. V. V. & Djanaguiraman, M. Response of floret fertility and individual grain weight of wheat to high temperature stress: sensitive stages and thresholds for temperature and duration. Funct. Plant Biol. 41, 1261–1269 (2014).

    CAS  PubMed  Article  Google Scholar 

  34. Reynolds, M. et al. Raising yield potential in wheat. J. Exp. Bot. 60, 1899–1918 (2009).

    CAS  PubMed  Article  Google Scholar 

  35. Serrago, R. A., Alzueta, I., Savin, R. & Slafer, G. A. Understanding grain yield responses to source–sink ratios during grain filling in wheat and barley under contrasting environments. Field Crops Res. 150, 42–51 (2013).

    Article  Google Scholar 

  36. Rivera-Amado, C. et al. Optimizing dry-matter partitioning for increased spike growth, grain number and harvest index in spring wheat. Field Crops Res. 240, 154–167 (2019).

    Article  Google Scholar 

  37. López-Calcagno, P. E. et al. Stimulating photosynthetic processes increases productivity and water-use efficiency in the field. Nat. Plants 6, 1054–1063 (2020).

    PubMed  Article  CAS  Google Scholar 

  38. Lyra, D. H. et al. Gene-based mapping of trehalose biosynthetic pathway genes reveals association with source- and sink-related yield traits in a spring wheat panel. Food Energy Secur. 10, e292 (2021).

    PubMed  PubMed Central  Article  Google Scholar 

  39. Wang, Y. et al. Transcriptome association identifies regulators of wheat spike architecture. Plant Physiol. 175, 746–757 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. Hu, J. et al. QTL mapping for yield-related traits in wheat based on four RIL populations. Theor. Appl. Genet. 133, 917–933 (2020).

    CAS  PubMed  Article  Google Scholar 

  41. Amini, F., Franco, F. R., Hu, G. & Wang, L. The look ahead trace back optimizer for genomic selection under transparent and opaque simulators. Sci. Rep. 11, 4124 (2021).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. Richards, R. A. Physiological traits used in the breeding of new cultivars for water-scarce environments. Agric. Water Manag. 80, 197–211 (2006).

    Article  Google Scholar 

  43. Juliana, P. et al. Improving grain yield, stress resilience and quality of bread wheat using large-scale genomics. Nat. Genet. 51, 1530–1539 (2019).

    CAS  PubMed  Article  Google Scholar 

  44. Uauy, C., Wulff, B. B. H. & Dubcovsky, J. Combining traditional mutagenesis with new high-throughput sequencing and genome editing to reveal hidden variation in polyploid wheat. Annu. Rev. Genet. 51, 435–454 (2017).

    CAS  PubMed  Article  Google Scholar 

  45. Messina, C. D. et al. On the dynamic determinants of reproductive failure under drought in maize. in sil. Plants 1, diz003 (2019).

    Article  Google Scholar 

  46. Kassie, B. T., Asseng, S., Porter, C. H. & Royce, F. S. Performance of DSSAT-Nwheat across a wide range of current and future growing conditions. Eur. J. Agron. 81, 27–36 (2016).

    Article  Google Scholar 

  47. Asseng, S. et al. Hot ÿspots of wheat yield decline with rising temperatures. Glob. Change Biol. 23, 2464–2472 (2017).

    ADS  Article  Google Scholar 

  48. Asseng, S. et al. Hot spots of wheat yield decline with rising temperatures. Glob. Change Biol. 23, 2464–2472 (2017).

    ADS  Article  Google Scholar 

  49. Rosenzweig, C. et al. The Agricultural Model Intercomparison and Improvement Project (AgMIP): protocols and pilot studies. Agric. For. Meteorol. 170, 166–182 (2013).

    ADS  Article  Google Scholar 

  50. Maiorano, A. et al. Crop model improvement reduces the uncertainty of the response to temperature of multi-model ensembles. Field Crops Res. 202, 5–20 (2017).

    Article  Google Scholar 

  51. Wang, E. et al. The uncertainty of crop yield projections is reduced by improved temperature response functions. Nat. Plants 3, 17102 (2017).

    PubMed  Article  Google Scholar 

  52. Yan, L. et al. Allelic variation at the VRN-1 promoter region in polyploid wheat. Theor. Appl. Genet. 109, 1677–1686 (2004).

    CAS  PubMed  Article  Google Scholar 

  53. Boden, S. A. et al. Ppd-1 is a key regulator of inflorescence architecture and paired spikelet development in wheat. Nat. Plants 1, 14016 (2015).

    CAS  PubMed  Article  Google Scholar 

  54. Miralles, D., Katz, S. D., Colloca, A. & Slafer, G. A. Floret development in near isogenic wheat lines differing in plant height. Field Crops Res. 59, 21–30 (1998).

    Article  Google Scholar 

  55. Dreisigacker, S. et al. Effect of flowering time-related genes on biomass, harvest index, and grain yield in CIMMYT elite spring bread wheat. Biology 10, 855 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. Hyles, J., Bloomfield, M. T., Hunt, J. R., Trethowan, R. M. & Trevaskis, B. Phenology and related traits for wheat adaptation. Heredity 125, 417–430 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

We are indebted to R. Richards, Y. Manes and J. LeGouis for reviewing a first draft of the wiring diagram. We acknowledge the role that the IWYP played in identifying the need for a tool to drive crop research and physiological breeding, and thank the IWYP for financial support to develop the wiring diagram.

Author information

Authors and Affiliations

Authors

Contributions

R.B.F. proposed the creation of a wiring diagram for wheat traits. M.P.R. and G.A.S. led the writing of the paper. All authors contributed suggestions and reviewed and refined the text.

Corresponding authors

Correspondence to Matthew Paul Reynolds or Gustavo Ariel Slafer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Food thanks Hussein Shimelis, Penny Tricker, Zhongfu Ni, Xin-Guang Zhu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Reynolds, M.P., Slafer, G.A., Foulkes, J.M. et al. A wiring diagram to integrate physiological traits of wheat yield potential. Nat Food 3, 318–324 (2022). https://doi.org/10.1038/s43016-022-00512-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43016-022-00512-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing