Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Carbon benefits of enlisting nature for crop protection

Pesticide-centred crop protection is highly carbon-intensive, with product synthesis, distribution and field application generating up to 136.6 MtCO2 equivalent per year. Carbon financing offers an opportunity to bring more natural and sustainable alternatives to scale.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Tonitto, C., Woodbury, P. B. & McLellan, E. L. Environ. Sci. Policy 87, 64–73 (2018).

    Article  Google Scholar 

  2. Carlson, K. M. et al. Nat. Clim. Change 7, 63–68 (2017).

    Article  ADS  CAS  Google Scholar 

  3. Carson, R., Darling, L. & Darling, L. Silent Spring (Houghton Mifflin, 1962).

  4. Audsley, E., Stacey, K. F., Parsons, D. J. & Williams, A. G. Estimation of the Greenhouse Gas Emissions from Agricultural Pesticide Manufacture and Use (Cranfield Univ., 2009).

  5. Heimpel, G. E., Yang, Y., Hill, J. D. & Ragsdale, D. W. PLoS ONE 8, e72293 (2013).

    Article  ADS  CAS  Google Scholar 

  6. Lal, R. Environ. Int. 30, 981–990 (2004).

    Article  CAS  Google Scholar 

  7. Crippa, M. et al. Nat. Food 2, 198–209 (2021).

    Article  CAS  Google Scholar 

  8. Labrie, G. et al. PLoS ONE 15, e0229136 (2020).

    Article  CAS  Google Scholar 

  9. Tang, F. H., Lenzen, M., McBratney, A. & Maggi, F. Nat. Geosci. 14, 206–210 (2021).

    Article  ADS  CAS  Google Scholar 

  10. Mason, P. G. Biological Control: Global Impacts, Challenges and Future Directions of Pest Management (CSIRO, 2021).

  11. Deguine, J. P. et al. Agron. Sustain. Dev. 41, 1–35 (2021).

    Article  Google Scholar 

  12. Wyckhuys, K. A. G. et al. J. Environ. Manage. 307, 114529 (2022).

    Article  Google Scholar 

  13. Van den Berg, H. & Jiggins, J. World Dev. 35, 663–686 (2007).

    Article  Google Scholar 

  14. Godfray, H. C. J. et al. Science 327, 812–818 (2010).

    Article  ADS  CAS  Google Scholar 

  15. Huang, J. et al. Environ. Res. Lett. 13, 064027 (2018).

    Article  ADS  Google Scholar 

  16. Pecenka, J. R. et al. Proc. Natl Acad. Sci. USA 118, e2108429118 (2021).

    Article  CAS  Google Scholar 

  17. Naranjo, S. E., Ellsworth, P. C. & Frisvold, G. B. Annu. Rev. Entomol. 60, 621–645 (2015).

    Article  CAS  Google Scholar 

  18. Tamburini, G. et al. Sci. Adv. 6, eaba1715 (2020).

    Article  ADS  Google Scholar 

  19. Wolf, S. A. & Ghosh, R. Land Use Policy 96, 103552 (2020).

    Article  Google Scholar 

  20. Wyckhuys, K. A. G. et al. Environ. Res. Lett. 13, 094005 (2018).

    Article  ADS  Google Scholar 

  21. Bridge, G. et al. Prog. Hum. Geogr. 44, 724–742 (2020).

    Article  Google Scholar 

  22. Gautam, M. et al. Repurposing Agricultural Policies and Support: Options to Transform Agriculture and Food Systems to Better Serve the Health of People, Economies, and the Planet (The World Bank and IFPRI, 2022).

  23. Tooker, J. F., O’Neal, M. E. & Rodriguez-Saona, C. Annu. Rev. Entomol. 65, 81–100 (2020).

    Article  CAS  Google Scholar 

  24. van Lenteren, J. C. et al. BioControl 63, 39–59 (2018).

    Article  Google Scholar 

  25. Parnell, J. J. et al. Front. Plant Sci. 7, 1110 (2016).

    Article  Google Scholar 

  26. Herrero, M. et al. Nat. Food 1, 266–272 (2020).

    Article  Google Scholar 

  27. Rosenzweig, C. et al. Nat. Food 1, 94–97 (2020).

    Article  Google Scholar 

  28. Rana, J. & Paul, J. J. Retail. Consum. Serv. 38, 157–165 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to G. E. Heimpel for his insightful comments on an earlier draft of this Comment. The development of this manuscript was funded by the Food and Agriculture Organization (FAO) through LOA/RAP/2021/57, executed by the University of Queensland.

Author information

Authors and Affiliations

Authors

Contributions

K.A.G.W. led the idea generation, writing, analytics and editing process. M.J.F., W.Z. and Y.D.G. all actively contributed to writing and editing.

Corresponding author

Correspondence to Kris A. G. Wyckhuys.

Ethics declarations

Competing interests

K.A.G.W. is chief executive officer of Chrysalis Consulting, a firm that provides tailored support to biological control and biodiversity-friendly agriculture. The other authors declare no competing interests.

Peer review

Peer review information

Nature Food thanks Eva Wollenberg and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wyckhuys, K.A.G., Furlong, M.J., Zhang, W. et al. Carbon benefits of enlisting nature for crop protection. Nat Food 3, 299–301 (2022). https://doi.org/10.1038/s43016-022-00510-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43016-022-00510-1

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene