Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Integrating degrowth and efficiency perspectives enables an emission-neutral food system by 2100

Abstract

Degrowth proponents advocate reducing ecologically destructive forms of production and resource throughput in wealthy economies to achieve environmental goals, while transforming production to focus on human well-being. Here we present a quantitative model to test degrowth principles in the food and land system. Our results confirm that reducing and redistributing income alone, within current development paradigms, leads to limited greenhouse gas (GHG) emission mitigation from agriculture and land-use change, as the nutrition transition towards unsustainable diets already occurs at relatively low income levels. Instead, we show that a structural, qualitative food system transformation can achieve a steady-state food system economy that is net GHG-neutral by 2100 while improving nutritional outcomes. This sustainable transformation reduces material throughput via a convergence towards a needs-based food system, is enabled by a more equitable income distribution and includes efficient resource allocation through the pricing of GHG emissions as a complementary strategy. It thereby integrates degrowth and efficiency perspectives.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Development of emissions, material throughput and economic activity for six scenarios.

Data availability

Generated data and replication scripts have been archived at: https://doi.org/10.5281/zenodo.5543427

Code availability

MAgPIE is an open-source model available at: https://github.com/magpiemodel/magpie. The model documentation for the exact version of MAgPIE used in this study (v.4.3.4) can be found at https://rse.pik-potsdam.de/doc/magpie/4.3.4/.

References

  1. Schneider, F., Kallis, G. & Martinez-Alier, J. Crisis or opportunity? Economic degrowth for social equity and ecological sustainability. Introduction to this special issue. J. Clean. Prod. 18, 511–518 (2010).

    Article  Google Scholar 

  2. Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).

    ADS  PubMed  Article  CAS  Google Scholar 

  3. Hickel, J. et al. Urgent need for post-growth climate mitigation scenarios. Nat. Energy 6, 766–768 (2021).

    ADS  Article  Google Scholar 

  4. Hickel, J. What does degrowth mean? A few points of clarification. Globalizations 18, 1105–1111 (2021).

    Article  Google Scholar 

  5. Xue, J., Arler, F. & Næss, P. Is the degrowth debate relevant to China? Environ. Dev. Sustain 14, 85–109 (2012).

    Article  Google Scholar 

  6. Victor, P. A. Growth, degrowth and climate change: a scenario analysis. Ecol. Econ. 84, 206–212 (2012).

    Article  Google Scholar 

  7. Kallis, G. et al. Research on degrowth. Annu. Rev. Environ. Resour. 43, 291–316 (2018).

    Article  Google Scholar 

  8. D’Alisa, G., Demaria, F. & Kallis, G. Degrowth: A Vocabulary for a New Era (Routledge, 2014).

  9. Otero, I. et al. Biodiversity policy beyond economic growth. Conserv. Lett. 13, e12713 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  10. Keyßer, L. T. & Lenzen, M. 1.5 °C degrowth scenarios suggest the need for new mitigation pathways. Nat. Commun. 12, 2676 (2021).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  11. Nieto, J., Carpintero, Ó., Miguel, L. J. & de Blas, I. Macroeconomic modelling under energy constraints: global low carbon transition scenarios. Energy Policy 137, 111090 (2020).

    Article  Google Scholar 

  12. Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2019); https://doi.org/10.5281/zenodo.3831674

  13. Rockström, J., Edenhofer, O., Gaertner, J. & DeClerck, F. Planet-proofing the global food system. Nat. Food 1, 3–5 (2020).

    Article  Google Scholar 

  14. Crippa, M. et al. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2, 198–209 (2021).

    CAS  Article  Google Scholar 

  15. Clark, M. A. et al. Global food system emissions could preclude achieving the 1.5° and 2 °C climate change targets. Science 370, 705–708 (2020).

    ADS  CAS  PubMed  Article  Google Scholar 

  16. Cosme, I., Santos, R. & O’Neill, D. W. Assessing the degrowth discourse: a review and analysis of academic degrowth policy proposals. J. Clean. Prod. 149, 321–334 (2017).

    Article  Google Scholar 

  17. Daly, H. E. Allocation, distribution, and scale: towards an economics that is efficient, just, and sustainable. Ecol. Econ. 6, 185–193 (1992).

    Article  Google Scholar 

  18. Dietrich, J. P. et al. MAgPIE 4—a modular open-source framework for modeling global land systems. Geosci. Model Dev. 12, 1299–1317 (2019).

    ADS  CAS  Article  Google Scholar 

  19. Leclère, D. et al. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 585, 551–556 (2020).

    ADS  PubMed  Article  CAS  Google Scholar 

  20. Bodirsky, B. L. et al. Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution. Nat. Commun. 5, 3858 (2014).

    ADS  CAS  PubMed  Article  Google Scholar 

  21. Springmann, M. et al. Options for keeping the food system within environmental limits. Nature 562, 519–525 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  22. Soergel, B. et al. A sustainable development pathway for climate action within the UN 2030 Agenda. Nat. Clim. Change 11, 656–664 (2021).

    ADS  Article  Google Scholar 

  23. Bodirsky, B. L. et al. The ongoing nutrition transition thwarts long-term targets for food security, public health and environmental protection. Sci Rep. 10, 19778 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. Stevanović, M. et al. The impact of high-end climate change on agricultural welfare. Sci. Adv. 2, e1501452 (2016).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  25. Masters, W. A. et al. The nutrition transition and agricultural transformation: a Preston curve approach. Agric. Econ. 47, 97–114 (2016).

    Article  Google Scholar 

  26. Hubacek, K., Baiocchi, G., Feng, K. & Patwardhan, A. Poverty eradication in a carbon constrained world. Nat. Commun. 8, 912 (2017).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  27. Popkin, B. M., Corvalan, C. & Grummer-Strawn, L. M. Dynamics of the double burden of malnutrition and the changing nutrition reality. Lancet 395, 65–74 (2020).

    PubMed  Article  Google Scholar 

  28. Springmann, M., Godfray, H. C. J., Rayner, M. & Scarborough, P. Analysis and valuation of the health and climate change cobenefits of dietary change. Proc. Natl Acad. Sci. USA 113, 4146–4151 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).

    Article  Google Scholar 

  30. Jakob, M., Lamb, W. F., Steckel, J. C., Flachsland, C. & Edenhofer, O. Understanding different perspectives on economic growth and climate policy. WIREs Clim. Change 11, e677 (2020).

    Article  Google Scholar 

  31. Daly, H. Ecological Economics and Sustainable Development: Selected Essays (Edward Elgar, 2008).

  32. Tubb, C. & Seba, T. Rethinking food and agriculture 2020–2030: the second domestication of plants and animals, the disruption of the cow, and the collapse of industrial livestock farming. Ind. Biotechnol. 17, 57––72 (2021).

    Article  Google Scholar 

  33. Yi, J. et al. Post-farmgate food value chains make up most of consumer food expenditures globally. Nat. Food 2, 417–425 (2021).

    Article  Google Scholar 

  34. Latka, C. et al. Paying the price for environmentally sustainable and healthy EU diets. Glob. Food Secur 28, 100437 (2021).

    Article  Google Scholar 

  35. O’Neill, D. W. Measuring progress in the degrowth transition to a steady state economy. Ecol. Econ. 84, 221–231 (2012).

    Article  Google Scholar 

  36. Willett, W. et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).

    PubMed  Article  Google Scholar 

  37. Hawkes, C. et al. Smart food policies for obesity prevention. Lancet 385, 2410–2421 (2015).

    PubMed  Article  Google Scholar 

  38. Swinburn, B. et al. Monitoring and benchmarking government policies and actions to improve the healthiness of food environments: a proposed Government Healthy Food Environment Policy Index. Obes. Rev. 14, 24–37 (2013).

    PubMed  Article  Google Scholar 

  39. Campos, S., Doxey, J. & Hammond, D. Nutrition labels on pre-packaged foods: a systematic review. Public Health Nutr. 14, 1496–1506 (2011).

    PubMed  Article  Google Scholar 

  40. Magnus, A., Haby, M. M., Carter, R. & Swinburn, B. The cost-effectiveness of removing television advertising of high-fat and/or high-sugar food and beverages to Australian children. Int. J. Obes. 2005 33, 1094–1102 (2009).

    CAS  Google Scholar 

  41. Girard, A. W. & Olude, O. Nutrition education and counselling provided during pregnancy: effects on maternal, neonatal and child health outcomes. Paediatr. Perinat. Epidemiol. 26, 191–204 (2012).

    PubMed  Article  Google Scholar 

  42. Cook, S. L., Nasser, R., Comfort, B. L. Webster & Larsen, D. K. Effect of nutrition counselling on client perceptions and eating behaviour. Can. J. Diet. Pract. Res. 67, 171–177 (2006).

    PubMed  Article  Google Scholar 

  43. Taber, D. R., Chriqui, J. F., Powell, L. & Chaloupka, F. J. Association between state laws governing school meal nutrition content and student weight status: implications for new USDA school meal standards. JAMA Pediatr. 167, 513–519 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  44. Allais, O. & Nichèle, V. Capturing structural changes in French meat and fish demand over the period 1991–2002. Eur. Rev. Agric. Econ. 34, 517–538 (2007).

    Article  Google Scholar 

  45. Witt, U. in Demand, Complexity, and Long-run Economic Evolution (eds Chai, A. & Baum, C. M.) 117–139 (Springer, 2019); https://doi.org/10.1007/978-3-030-02423-9_7

  46. Fankhauser, S., Tol, R. S. J. & Pearce, D. W. The aggregation of climate change damages: a welfare theoretic approach. Environ. Resour. Econ 10, 249–266 (1997).

    Article  Google Scholar 

  47. OECD Guidelines on Measuring Subjective Well-being (OECD, 2013).

  48. Hirvonen, K., Bai, Y., Headey, D. & Masters, W. A. Affordability of the EAT–Lancet reference diet: a global analysis. Lancet Glob. Health 8, e59–e66 (2020).

    PubMed  Article  Google Scholar 

  49. Soergel, B. et al. Combining ambitious climate policies with efforts to eradicate poverty. Nat. Commun. 12, 2342 (2021).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. Murray, B. & Rivers, N. British Columbia’s revenue-neutral carbon tax: a review of the latest ‘grand experiment’ in environmental policy. Energy Policy 86, 674–683 (2015).

    Article  Google Scholar 

  51. Pacheco, F. A. L., Sanches Fernandes, L. F., Valle Junior, R. F., Valera, C. A. & Pissarra, T. C. T. Land degradation: multiple environmental consequences and routes to neutrality. Curr. Opin. Environ. Sci. Health 5, 79–86 (2018).

    Article  Google Scholar 

  52. World Social Report 2020: Inequality in a Rapidly Changing World (UN, 2020); https://doi.org/10.18356/7f5d0efc-en

  53. Bauer, N. et al. Shared Socio-Economic Pathways of the energy sector—quantifying the narratives. Glob. Environ. Change 42, 316–330 (2017).

    Article  Google Scholar 

  54. Gerten, D. et al. Feeding ten billion people is possible within four terrestrial planetary boundaries. Nat. Sustain 3, 200–208 (2020).

    Article  Google Scholar 

  55. Gaupp, F. et al. Food system development pathways for healthy, nature-positive and inclusive food systems. Nat. Food 2, 928–934 (2021).

    Article  Google Scholar 

  56. Gustavsson, J., Cederberg, C. & Sonesson, U. Global Food Losses and Food Waste: Extent, Causes and Prevention. Study Conducted for the International Congress Save Food! at Interpack 2011, Düsseldorf, Germany (FAO, 2011).

  57. Weindl, I. et al. Livestock and human use of land: productivity trends and dietary choices as drivers of future land and carbon dynamics. Glob. Planet. Change 159, 1–10 (2017).

    ADS  Article  Google Scholar 

  58. Wang, X. et al. Beyond land-use intensity: assessing future global crop productivity growth under different socioeconomic pathways. Technol. Forecast. Soc. Change 160, 120208 (2020).

    Article  Google Scholar 

  59. Dietrich, J. P., Schmitz, C., Lotze-Campen, H., Popp, A. & Müller, C. Forecasting technological change in agriculture—an endogenous implementation in a global land use model. Technol. Forecast. Soc. Change 81, 236–249 (2014).

    Article  Google Scholar 

  60. Pikaar, I. et al. Decoupling livestock from land use through industrial feed production pathways. Environ. Sci. Technol. 52, 7351–7359 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  61. Schmitz, C. et al. Agricultural trade and tropical deforestation: interactions and related policy options. Reg. Environ. Change 15, 1757–1772 (2015).

    Article  Google Scholar 

  62. Popp, A. et al. Land-use transition for bioenergy and climate stabilization: model comparison of drivers, impacts and interactions with other land use based mitigation options. Clim. Change 123, 495–509 (2014).

    ADS  Article  Google Scholar 

  63. Strefler, J. et al. Carbon dioxide removal technologies are not born equal. Environ. Res. Lett. 16, 074021 (2021).

    ADS  CAS  Article  Google Scholar 

  64. Hurtt, G. C. et al. Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6. Geosci. Model Dev. 13, 5425–5464 (2020).

    ADS  CAS  Article  Google Scholar 

  65. Windisch, M. G., Davin, E. L. & Seneviratne, S. I. Prioritizing forestation based on biogeochemical and local biogeophysical impacts. Nat. Clim. Change 11, 867–871 (2021).

    ADS  CAS  Article  Google Scholar 

  66. Kreidenweis, U. et al. Afforestation to mitigate climate change: impacts on food prices under consideration of albedo effects. Environ. Res. Lett. 11, 085001 (2016).

    ADS  Article  Google Scholar 

  67. Windisch, M. G. et al. Accounting for local temperature effect substantially alters afforestation patterns. Environ. Res. Lett. 17, 024030 (2022).

    ADS  Article  Google Scholar 

  68. IPCC Guidelines for National Greenhouse Gas Inventories (IPCC, 2006); https://www.ipcc.ch/report/2006-ipcc-guidelines-for-national-greenhouse-gas-inventories/

  69. Lucas, P. L., van Vuuren, D. P., Olivier, J. G. J. & den Elzen, M. G. J. Long-term reduction potential of non-CO2 greenhouse gases. Environ. Sci. Policy 10, 85–103 (2007).

    Article  Google Scholar 

  70. Popp, A. et al. Land-use futures in the shared socio-economic pathways. Glob. Environ. Change 42, 331–345 (2017).

    Article  Google Scholar 

  71. The World Bank Group A to Z 2016 83b–83b, ‘High-Income Countries’ (World Bank, 2015); https://doi.org/10.1596/978-1-4648-0484-7_high_income_countries

  72. Jackson, T. Prosperity without Growth: Foundations for the Economy of Tomorrow (Routledge, 2016).

  73. Kubiszewski, I. & Costanza, R. in The Sustainability Practitioner’s Guide to Social Analysis and Assessment (eds Murray, J., McBain, D. & Wiedmann, T.) 44–51 (Common Ground Publishing, 2015).

  74. Kriegler, E. et al. Fossil-fueled development (SSP5): an energy and resource intensive scenario for the 21st century. Glob. Environ. Change 42, 297–315 (2017).

    Article  Google Scholar 

  75. Luderer, G. et al. Description of the REMIND Model (Version 1.6) https://doi.org/10.2139/ssrn.2697070 (2015).

  76. Hickel, J. The sustainable development index: measuring the ecological efficiency of human development in the anthropocene. Ecol. Econ. 167, 106331 (2020).

    Article  Google Scholar 

  77. Alexander, S. Planned economic contraction: the emerging case for degrowth. Environ. Polit. 21, 349–368 (2012).

    Article  Google Scholar 

  78. Infante Amate, J. & González de Molina, M. ‘Sustainable de-growth’ in agriculture and food: an agro-ecological perspective on Spain’s agri-food system (year 2000). J. Clean. Prod. 38, 27–35 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

D.M.-C.C. and F.B. are supported by the Deutsche Bundesstiftung Umwelt (DBU). B.L.B. has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement numbers 776479 (COACCH), 689150 (SIM4NEXUS) and 821010 (CASCADES) and from the Norwegian Research Council (Greenplantfoods). E.J.M.B. acknowledges support from FABLE 2.0 grant agreement number 94120, which is funded by FOLU grant agreement number 94120. F.B. and F.G. receive funding from the Food System Economics Commission, which is funded by the Rockefeller Foundation (2020FOD008) and the Wellcome Trust (221362/Z/20/Z). SHAPE is part of AXIS, an ERA-NET initiated by JPI Climate, and funded by FORMAS (Sweden), FFG/BMWFW (Austria), DLR/BMBF (Germany, grant number 01LS19XXY), NWO (Netherlands) and RCN (Norway) with co-funding by the European Union (grant number 776608). Funding from the German Federal Ministry of Education and Research (BMBF) in the context of the project ‘FOCUS—food security and sustained coastal livelihoods through linking land and ocean’ (031B0787B) is gratefully acknowledged. Further support is provided by the Global Commons Stewardship (GCS) project, funded by the University of Tokyo.

Author information

Authors and Affiliations

Authors

Contributions

B.L.B. and D.M.-C.C. designed the study and drafted the manuscript. B.L.B., D.M.-C.C., I.W., E.J.M.B. and H.L.-C. contributed to core model development. D.M.-C.C. undertook the modelling and analysis. All authors contributed to discussing the results and writing the paper.

Corresponding author

Correspondence to David Meng-Chuen Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Food thanks Manfred Lenzen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text 1 and 2, Table 1 and Figs. 1–4.

Reporting Summary

Supplementary Data

Detailed model outputs and indicators across scenarios and years.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bodirsky, B.L., Chen, D.MC., Weindl, I. et al. Integrating degrowth and efficiency perspectives enables an emission-neutral food system by 2100. Nat Food 3, 341–348 (2022). https://doi.org/10.1038/s43016-022-00500-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43016-022-00500-3

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing