Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

International food trade benefits biodiversity and food security in low-income countries


To achieve the United Nations Sustainable Development Goals related to food security and biodiversity, understanding their interrelationships is essential. By examining datasets comprising 189 food items across 157 countries during 2000–2018, we found that high-income countries exported more food to low-income countries than they imported. Many low-income countries, especially those with biodiversity hotspots, increasingly acted as net importers, suggesting that imports from high-income countries can benefit biodiversity in low-income countries. Because low-income countries without hotspots have rapidly raised their amounts of food exports to hotspot countries, such exports might help further reduce negative impacts on biodiversity. The increasing complexity of food trade among countries with and without biodiversity hotspots requires innovative approaches to minimize the negative impacts of global food production and trade on biodiversity in countries worldwide.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Quantity of net food trade between high-hotspot countries, low-hotspot countries and non-hotspot countries with high and low income.
Fig. 2: Annual food flows (Mt).
Fig. 3: Spatial distributions of income, hotspots, net trade (export–import) and population.
Fig. 4: Changes in agricultural intensification and agricultural area in high-hotspot countries, low-hotspot countries and non-hotspot countries, with each group subdivided into high- and low-income countries.

Data availability

All data analysed during the current study are available from the corresponding author on reasonable request. The data that support the findings of this study are available within the paper, its Supplementary Information and Supplementary Data 1.

Code availability

The codes to perform our panel data analyses can be found at


  1. Sustainable Development Goals (United Nations, 2015);

  2. Nilsson, M., Griggs, D. & Visbeck, M. Policy: map the interactions between Sustainable Development Goals. Nature 534, 320–322 (2016).

    ADS  PubMed  Article  Google Scholar 

  3. Lu, Y., Nakicenovic, N., Visbeck, M. & Stevance, A.-S. Policy: five priorities for the UN Sustainable Development Goals. Nature 520, 432–433 (2015).

    ADS  PubMed  Article  Google Scholar 

  4. Xu, Z. et al. Impacts of international trade on global sustainable development. Nat. Sustain. (2020).

  5. Xu, Z. et al. Assessing progress towards sustainable development over space and time. Nature 577, 74–78 (2020).

    ADS  CAS  PubMed  Article  Google Scholar 

  6. Liu, J. An integrated framework for achieving Sustainable Development Goals around the world. Ecol. Econ. Soc. 1, 11–17 (2018).

    Article  Google Scholar 

  7. Zhao, Z. et al. Synergies and tradeoffs among Sustainable Development Goals across boundaries in a metacoupled world. Sci. Total Environ. (2020).

  8. Liu, J. in The International Encyclopedia of Geography: People, the Earth, Environment, and Technology (eds Richardson, D. et al.) 1–8 (John Wiley & Sons, 2020).

  9. Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).

    ADS  CAS  PubMed  Article  Google Scholar 

  10. Carole, D. & Ignacio, R.-I. Environmental impacts of food trade via resource use and greenhouse gas emissions. Environ. Res. Lett. 11, 035012 (2016).

    Article  Google Scholar 

  11. Crist, E., Mora, C. & Engelman, R. The interaction of human population, food production, and biodiversity protection. Science 356, 260–264 (2017).

    ADS  CAS  PubMed  Article  Google Scholar 

  12. Wiedmann, T. & Lenzen, M. Environmental and social footprints of international trade. Nat. Geosci. 11, 314–321 (2018).

    ADS  CAS  Article  Google Scholar 

  13. Delzeit, R., Zabel, F., Meyer, C. & Václavík, T. Addressing future trade-offs between biodiversity and cropland expansion to improve food security. Reg. Environ. Change 17, 1429–1441 (2017).

    Article  Google Scholar 

  14. Marques, A. et al. Increasing impacts of land use on biodiversity and carbon sequestration driven by population and economic growth. Nat. Ecol. Evol. 3, 628–637 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  15. Porkka, M., Kummu, M., Siebert, S. & Varis, O. From food insufficiency towards trade dependency: a historical analysis of global food availability. PLoS ONE 8, e82714 (2013).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  16. Wood, S. A., Smith, M. R., Fanzo, J., Remans, R. & DeFries, R. S. Trade and the equitability of global food nutrient distribution. Nat. Sustain. 1, 34–37 (2018).

    Article  Google Scholar 

  17. MacDonald, G. K. et al. Rethinking agricultural trade relationships in an era of globalization. Bioscience 65, 275–289 (2015).

    Article  Google Scholar 

  18. Godfray, H. C. J. et al. Food security: the challenge of feeding 9 billion people. Science 327, 812–818 (2010).

    ADS  CAS  PubMed  Article  Google Scholar 

  19. DeFries, R. S., Rudel, T., Uriarte, M. & Hansen, M. Deforestation driven by urban population growth and agricultural trade in the twenty-first century. Nat. Geosci. 3, 178–181 (2010).

    ADS  CAS  Article  Google Scholar 

  20. Moran, D. & Kanemoto, K. Identifying species threat hotspots from global supply chains. Nat. Ecol. Evol. 1, 0023 (2017).

    Article  Google Scholar 

  21. Lenzen, M. et al. International trade drives biodiversity threats in developing nations. Nature 486, 109–112 (2012).

    ADS  CAS  PubMed  Article  Google Scholar 

  22. Dalin, C., Wada, Y., Kastner, T. & Puma, M. J. Groundwater depletion embedded in international food trade. Nature 543, 700–704 (2017).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. Chaudhary, A. & Kastner, T. Land use biodiversity impacts embodied in international food trade. Glob. Environ. Change 38, 195–204 (2016).

    Article  Google Scholar 

  24. Tilman, D. et al. Future threats to biodiversity and pathways to their prevention. Nature 546, 73–81 (2017).

    ADS  CAS  PubMed  Article  Google Scholar 

  25. Green, J. M. H. et al. Linking global drivers of agricultural trade to on-the-ground impacts on biodiversity. Proc. Natl Acad. Sci. USA (2019).

  26. Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).

    CAS  PubMed  Article  Google Scholar 

  27. Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).

    ADS  CAS  PubMed  Article  Google Scholar 

  28. Hoffman, M., Koenig, K., Bunting, G., Costanza, J. & Williams, K. J. Biodiversity hotspots (version 2016.1). Zenodo (2016).

  29. World Development Indicators (World Bank, 2020);

  30. Liu, J. et al. Framing sustainability in a telecoupled world. Ecol. Soc. 18, 26 (2013).

    CAS  Article  Google Scholar 

  31. Hull, V. & Liu, J. Telecoupling: a new frontier for global sustainability. Ecol. Soc. (2018).

  32. Kapsar, K. E. et al. Telecoupling research: the first five years. Sustainability 11, 1033 (2019).

    Article  Google Scholar 

  33. Richards, D. R. & Friess, D. A. Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proc. Natl Acad. Sci. USA 113, 344–349 (2016).

    ADS  CAS  PubMed  Article  Google Scholar 

  34. Chung, M. G., Kapsar, K., Frank, K. A. & Liu, J. The spatial and temporal dynamics of global meat trade networks. Sci. Rep. 10, 16657 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. Soterroni, A. C. et al. Expanding the soy moratorium to Brazil’s Cerrado. Sci. Adv. 5, eaav7336 (2019).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  36. Phalan, B., Onial, M., Balmford, A. & Green, R. E. Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science 333, 1289–1291 (2011).

    ADS  CAS  PubMed  Article  Google Scholar 

  37. Bardgett, R. D. et al. Combatting global grassland degradation. Nat. Rev. Earth Environ. 2, 720–735 (2021).

    ADS  Article  Google Scholar 

  38. Dengler, J., Janišová, M., Török, P. & Wellstein, C. Biodiversity of Palaearctic grasslands: a synthesis. Agric. Ecosyst. Environ. 182, 1–14 (2014).

    Article  Google Scholar 

  39. Wimberly, M. C., Narem, D. M., Bauman, P. J., Carlson, B. T. & Ahlering, M. A. Grassland connectivity in fragmented agricultural landscapes of the north-central United States. Biol. Conserv. 217, 121–130 (2018).

    Article  Google Scholar 

  40. Wu, W. et al. Global cropping intensity gaps: increasing food production without cropland expansion. Land Use Policy 76, 515–525 (2018).

    Article  Google Scholar 

  41. Dou, Y., da Silva, R. F. B., Yang, H. & Liu, J. Spillover effect offsets the conservation effort in the Amazon. J. Geogr. Sci. 28, 1715–1732 (2018).

    Article  Google Scholar 

  42. Sun, J. et al. Importing food damages domestic environment: evidence from global soybean trade. Proc. Natl Acad. Sci. USA (2018).

  43. Liu, J. et al. Spillover systems in a telecoupled Anthropocene: typology, methods, and governance for global sustainability. Curr. Opin. Environ. Sustain. 33, 58–69 (2018).

    Article  Google Scholar 

  44. Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).

    PubMed  Article  CAS  Google Scholar 

  45. Post-2020 Global Biodiversity Framework: Discussion Paper Adopted by the Conference of the Parties CBD/POST2020/PREP/1/1 (UNEP, 2019);

  46. Ehrlich, P. R. & Harte, J. Food security requires a new revolution. Int. J. Environ. Stud. 72, 908–920 (2015).

    Article  Google Scholar 

  47. Redford, K. H. et al. Mainstreaming biodiversity: conservation for the twenty-first century. Front. Ecol. Evol. 3, 137 (2015).

    Article  Google Scholar 

  48. Pe’er, G. et al. EU agricultural reform fails on biodiversity. Science 344, 1090–1092 (2014).

    ADS  PubMed  Article  Google Scholar 

  49. Liu, J. Consumption Patterns and Biodiversity (Biodiversity Programme of the Royal Society, 2020);

  50. Liu, J., Daily, G. C., Ehrlich, P. R. & Luck, G. W. Effects of household dynamics on resource consumption and biodiversity. Nature 421, 530–533 (2003).

    ADS  CAS  PubMed  Article  Google Scholar 

  51. World Population Prospects (United Nations Department of Economic and Social Affairs Population Division, 2019);

  52. FAOSTAT Statistics Database (UN FAO, 2020);

  53. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021);

  54. Kastner, T., Kastner, M. & Nonhebel, S. Tracing distant environmental impacts of agricultural products from a consumer perspective. Ecol. Econ. 70, 1032–1040 (2011).

    Article  Google Scholar 

  55. Liu, J. Forest sustainability in China and implications for a telecoupled world. Asia Pac. Policy Stud. 1, 230–250 (2014).

    Article  Google Scholar 

  56. Torres-Reyna, O. Getting Started in Fixed/Random Effects Models Using R (Data & Statistical Services, Princeton Univ., 2010).

  57. Chung, M. G., Dietz, T. & Liu, J. Global relationships between biodiversity and nature-based tourism in protected areas. Ecosyst. Serv. 34, 11–23 (2018).

    Article  Google Scholar 

  58. O’Brien, R. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 41, 673–690 (2007).

    Article  Google Scholar 

Download references


We thank S. Nichols for helpful comments on earlier drafts, as well as the organizations that provided the data for this study. Funding was provided by the US National Science Foundation (grant no. 1924111, J.L.), Michigan AgBioResearch (J.L.) and the Sustainable Michigan Endowment Project (M.G.C.).

Author information

Authors and Affiliations



M.G.C. analysed the model and drafted the manuscript. M.G.C. and J.L. conceived of the study, revised the manuscript and reviewed the manuscript.

Corresponding author

Correspondence to Jianguo Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Food thanks Kamal Bawa, Stuart Pimm and Cibele Queiroz for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Spatial distribution of biodiversity hotspots.

Raw data from Myers et al.27 and Hoffman et al.28.

Extended Data Fig. 2 Average annual food flows (Mt/year) from 2000 to 2018. Food flows between high-hotspot countries (HHC), low-hotspot countries (LHC), and non-hotspot countries (NHC) with high- and low-income.

Non-hotspot countries are marked by red, high-hotspot countries by dark green, and low-hotspot countries by light green. The arc length of an outer circle indicates the sum of food exported and imported in each group. The arc length of a middle circle refers to the quantity of food exports. The inner arc length shows the quantity of food imports. Raw data from UN FAO52.

Extended Data Fig. 3 Spatial distribution of per capita crop production (kg/capita) and per capita harvested areas (m2/capita) in 2010.

(a) county-level of crop production, (b) hotspot-level of crop production, (c) county-level of harvested area, and (d) hotspot-level of harvested area.

Extended Data Fig. 4 Number of countries with different percentages of biodiversity hotspots (land area with biodiversity hotspots out of total terrestrial land area).

Raw data from Myers et al.27 and Hoffman et al.28.

Extended Data Fig. 5 Quantity of net food trade between high-hotspot countries (HHC), low-hotspot countries (LHC), and non-hotspot countries (NHC) with high and low income.

The group of high-, low-, and non-hotspot countries were classified with the proportion of biodiversity hotspots in harvested areas: (a) Blue indicates net food trade (export–import) in 2000, red indicates net food trade in 2018, and cyan indicates average net annual food trade from 2000–2018. The net amounts of food trade in each group are not linearly increased or decreased over time. The net amounts of food trade in 2000 and 2018 can be lower or higher than those in other mid-years. (b) The amounts of net food trade between high-income and low-income countries in high-hotspot countries (HHC), low-hotspot countries (LHC), and non-hotspot countries (NHC) from 2000–2018. Non-hotspot countries are indicated by red, high-hotspot countries by dark green, and low-hotspot countries by light green.

Supplementary information

Supplementary Information

Supplementary Tables 1–8 and methods.

Reporting Summary

Supplementary Data 1

Food trade, land savings and subnational analyses from 2000 to 2018.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chung, M.G., Liu, J. International food trade benefits biodiversity and food security in low-income countries. Nat Food 3, 349–355 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing