Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regional conditions shape the food–energy–land nexus of low-carbon indoor farming

Abstract

Modern greenhouses and vertical farming projects promise increased food output per unit area relative to open-field farming. However, their high energy consumption calls for a low-carbon power supply such as solar photovoltaic and wind, which adds to cost and overall land footprint. Here we use geospatial and mathematical modelling to compare open-field and two indoor farming methods for vegetable production in nine city-regions chosen globally with varying land availability, climatic conditions and population density. We find that renewable electricity supply is more costly for greenhouses per unit energy demand satisfied, which is due to the greater fluctuation in their energy demand profile. However, greenhouses have a lower energy demand per unit food output, which makes them the least land-intensive option in most of the analysed regions. Our results challenge the land-savings claims of vertical farming compared with open-field production. We also show that regionalizing vegetable supply is feasible in most regions and give recommendations based on the regional context.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the land-use comparison approach for open-field farming and two CEA farming practices.
Fig. 2: Spatial analysis results and regional characteristics.
Fig. 3: Renewable energy system indicators.
Fig. 4: Combined land-use requirements for both growing and renewable energy supply.
Fig. 5: Regional land-use requirements of CEA practices.

Similar content being viewed by others

Data availability

The majority of the data that are important to interpret, verify and/or extend this work have been included either directly in the main text or detailed in Supplementary Tables 2 and 3. Further primary data are available at https://doi.org/10.6084/m9.figshare.14778804.v1 (ref. 95) and include the energy demand curves, vegetable basket and yield factor data, and the output from HOMER Pro and ArcGIS Pro. Publicly available third-party datasets are described in the Methods and are listed in refs. 58,59,60,61,62,64. Source data are provided with this paper.

Code availability

All computations are fully described in the Methods and in the Supplementary Information. HOMER Pro files and Excel files to generate the figures can be obtained from the corresponding author on reasonable request.

References

  1. Béné, C. Resilience of local food systems and links to food security—a review of some important concepts in the context of COVID-19 and other shocks. Food Secur. 12, 805–822 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Damage and Losses from Climate-Related Disasters in Agricultural Sectors (FAO, 2015); www.fao.org/3/a-i5128e.pdf

  3. Vogel, E. et al. The effects of climate extremes on global agricultural yields. Environ. Res. Lett. 14, 054010 (2019).

    Article  ADS  Google Scholar 

  4. Davis, K. F., Downs, S. & Gephart, J. A. Towards food supply chain resilience to environmental shocks. Nat. Food 2, 54–65 (2021).

    Article  Google Scholar 

  5. Shoup, M. E. Pandemic accelerates demand for fresh food and gives rise to the ‘contemporary consumer’ (2020); https://www.foodnavigator-usa.com/Article/2020/10/28/Pandemic-accelerates-demand-for-fresh-food-and-gives-rise-to-the-contemporary-consumer

  6. Richards, T. J. & Rickard, B. COVID-19 impact on fruit and vegetable markets. Can. J. Agric. Econ. 68, 189–194 (2020).

    Article  Google Scholar 

  7. Zasada, I. et al. Food beyond the city-analysing foodsheds and self-sufficiency for different food system scenarios in European metropolitan regions. City Cult. Soc. 16, 25–35 (2019).

    Article  Google Scholar 

  8. Growing Beyond the Hype: Controlled Environment Agriculture (S2G Ventures, 2020).

  9. 2020 Global CEA Census Report (Agritecture, 2020).

  10. Benke, K. & Tomkins, B. Future food-production systems: vertical farming and controlled-environment agriculture. Sustain. Sci. Pract. Policy 13, 13–26 (2017).

    Google Scholar 

  11. Barbosa, G. L. et al. Comparison of land, water, and energy requirements of lettuce grown using hydroponic vs conventional agricultural methods. Int. J. Environ. Res. Public Health 12, 6879–6891 (2015).

    Article  PubMed  Google Scholar 

  12. Graamans, L., Baeza, E., van den Dobbelsteen, A., Tsafaras, I. & Stanghellini, C. Plant factories versus greenhouses: comparison of resource use efficiency. Agric. Syst. 160, 31–43 (2018).

    Article  Google Scholar 

  13. Avgoustaki, D. D. & Xydis, G. Indoor vertical farming in the urban nexus context: business growth and resource savings. Sustain. 12, 1–18 (2020).

    Google Scholar 

  14. Teo, Y. L. & Go, Y. I. Techno-economic-environmental analysis of solar/hybrid/storage for vertical farming system: a case study. Malaysia. Renew. Energy Focus 37, 50–67 (2021).

    Article  Google Scholar 

  15. Herrero, M. et al. Innovation can accelerate the transition towards a sustainable food system. Nat. Food 1, 266–272 (2020).

    Article  Google Scholar 

  16. World Energy Outlook 2020 (IEA, 2020); https://www.iea.org/reports/world-energy-outlook-2020

  17. Saunders, P. J. Land Use Requirements of Solar and Wind Power Generation: Understanding a Decade of Academic Research (Energy Innovation Reform Project, 2020).

  18. Gao, L. & Bryan, B. A. Finding pathways to national-scale land-sector sustainability. Nature 544, 217–222 (2017).

    Article  CAS  PubMed  ADS  Google Scholar 

  19. Xie, Z. et al. Conservation opportunities on uncontested lands. Nat. Sustain. 3, 9–15 (2020).

    Article  Google Scholar 

  20. Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).

    Article  CAS  PubMed  ADS  Google Scholar 

  21. Graham-Rowe, D. Agriculture: Beyond food versus fuel. Nature 474, S6–S8 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Calvert, K. & Mabee, W. More solar farms or more bioenergy crops? Mapping and assessing potential land-use conflicts among renewable energy technologies in eastern Ontario, Canada. Appl. Geogr. 56, 209–221 (2015).

    Article  Google Scholar 

  23. Nie, Y. et al. A food–energy–water nexus approach for land use optimization. Sci. Total Environ. 659, 7–19 (2018).

    Article  PubMed  ADS  Google Scholar 

  24. Leung Pah Hang, M. Y., Martinez-Hernandez, E., Leach, M. & Yang, A. Insight-based approach for the design of integrated local food–energy–water systems. Environ. Sci. Technol. 51, 8643–8653 (2017).

    Article  CAS  PubMed  ADS  Google Scholar 

  25. Namany, S., Al-Ansari, T. & Govindan, R. Optimisation of the energy, water, and food nexus for food security scenarios. Comput. Chem. Eng. 129, 106513 (2019).

    Article  CAS  Google Scholar 

  26. Sasse, J.-P. & Trutnevyte, E. Regional impacts of electricity system transition in Central Europe until 2035. Nat. Commun. 11, 4972 (2020).

  27. Poggi, F., Firmino, A. & Amado, M. Planning renewable energy in rural areas: impacts on occupation and land use. Energy 155, 630–640 (2018).

    Article  Google Scholar 

  28. Sliz-Szkliniarz, B. Assessment of the renewable energy-mix and land use trade-off at a regional level: a case study for the Kujawsko-Pomorskie Voivodship. Land Use Policy 35, 257–270 (2013).

    Article  Google Scholar 

  29. The Water–Energy–Food Nexus: A New Approach in Support of Food Security and Sustainable Agriculture (FAO, 2014); http://www.fao.org/3/bl496e/bl496e.pdf

  30. De Ruiter, H., Macdiarmid, J. I., Matthews, R. B. & Smith, P. in Land Use Competition. Human–Environment Interactions Vol. 6 (eds Niewöhner J. et al.) 247–261 (Springer, 2016); https://doi.org/10.1007/978-3-319-33628-2

  31. Mead, B. R. et al. Is urban growing of fruit and vegetables associated with better diet quality and what mediates this relationship? Evidence from a cross-sectional survey. Appetite 163, 105218 (2021).

    Article  PubMed  Google Scholar 

  32. Kinnunen, P. et al. Local food crop production can fulfil demand for less than one-third of the population. Nat. Food 1, 229–237 (2020).

    Article  Google Scholar 

  33. Peters, C. J., Bills, N. L., Lembo, A. J., Wilkins, J. L. & Fick, G. W. Mapping potential foodsheds in New York State by food group: an approach for prioritizing which foods to grow locally. Renew. Agric. Food Syst. 27, 125–137 (2012).

    Article  Google Scholar 

  34. Martins-Turner, K., Grahle, A., Nagel, K. & Dietmar, G. Electrification of urban freight transport—a case study of the food retailing industry. Procedia Comput. Sci. 170, 757–763 (2020).

    Article  Google Scholar 

  35. Hemming, S., De Zwart, F., Elings, A., Righini, I. & Petropoulou, A. Remote control of greenhouse vegetable production with artificial intelligence—greenhouse climate, irrigation, and crop production. Sensors (Basel) 19, 1807 (2019).

    Article  CAS  ADS  Google Scholar 

  36. Drew, F. & Rhee, K. S. Energy use, cost, and product quality in preserving vegetables at home by canning, freezing, and dehydration. J. Food Sci. 45, 1561–1565 (1980).

    Article  CAS  Google Scholar 

  37. Li, M., Ho, K. K. H. Y., Hayes, M. & Ferruzzi, M. G. The roles of food processing in translation of dietary guidance for whole grains, fruits, and vegetables. Annu. Rev. Food Sci. Technol. 10, 569–596 (2019).

  38. Rae, C. & Bradley, F. Energy autonomy in sustainable communities—a review of key issues. Renew. Sustain. Energy Rev. 16, 6497–6506 (2012).

    Article  Google Scholar 

  39. Laugs, G. A. H., Benders, R. M. J. & Moll, H. C. Balancing responsibilities: effects of growth of variable renewable energy, storage, and undue grid interaction. Energy Policy 139, 111203 (2020).

    Article  Google Scholar 

  40. Kazem, H. A., Al-Badi, H. A. S., Al Busaidi, A. S. & Chaichan, M. T. Optimum design and evaluation of hybrid solar/wind/diesel power system for Masirah Island. Environ. Dev. Sustain. 19, 1761–1778 (2017).

    Article  Google Scholar 

  41. Khattab, N. M. et al. Hybrid renewable energy system for water desalination: a case study for small green house hydroponic cultivation in Egypt. ARPN J. Eng. Appl. Sci. 11, 12380–12390 (2016).

    CAS  Google Scholar 

  42. Johlas, H., Witherby, S. & Doyle, J. R. Storage requirements for high grid penetration of wind and solar power for the MISO region of North America: a case study. Renew. Energy 146, 1315–1324 (2020).

    Article  Google Scholar 

  43. Perez, M., Perez, R., Rábago, K. R. & Putnam, M. Overbuilding & curtailment: the cost-effective enablers of firm PV generation. Sol. Energy 180, 412–422 (2019).

    Article  ADS  Google Scholar 

  44. Dujardin, J., Kahl, A., Kruyt, B., Bartlett, S. & Lehning, M. Interplay between photovoltaic, wind energy and storage hydropower in a fully renewable Switzerland. Energy 135, 513–525 (2017).

    Article  Google Scholar 

  45. Weidner, T., Yang, A. & Hamm, M. W. Energy optimisation of plant factories and greenhouses for different climatic conditions. Energy Convers. Manag. 243, 114336 (2021).

    Article  Google Scholar 

  46. Miskin, C. K. et al. Sustainable co-production of food and solar power to relax land-use constraints. Nat. Sustain. 2, 972–980 (2019).

    Article  Google Scholar 

  47. New Energy Outlook 2019 (Bloomberg, 2019).

  48. Iocola, I. et al. Sustainability assessment of organic vegetable production using a qualitative multi-attribute model. Sustain. 10, 3820 (2018).

    Article  Google Scholar 

  49. Farm and Building in Circular Symbiosis (RISE, 2020); https://www.ri.se/en/our-stories/farm-and-building-in-circular-symbiosis

  50. FAOSTAT Statistics Database (FAO, 2021); http://www.fao.org/faostat/en/#home

  51. EU Fruit and Vegetables Market Observatory. The Tomato Market in the EU, Vol. 1: Production, Areas and Yields (European Commission, 2020); https://ec.europa.eu/info/sites/info/files/food-farming-fisheries/farming/documents/tomatoes-production_en.pdf

  52. Willett, W. et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).

    Article  PubMed  Google Scholar 

  53. Sokolow, J., Kennedy, G. & Attwood, S. Managing crop tradeoffs: a methodology for comparing the water footprint and nutrient density of crops for food system sustainability. J. Clean. Prod. 225, 913–927 (2019).

    Article  CAS  Google Scholar 

  54. Greater Tokyo Area (Wikipedia, accessed 25 February 2021); https://en.wikipedia.org/wiki/Greater_Tokyo_Area

  55. Greater Boston Metropolitan region (Wikipedia, accessed 25 February 2021); https://en.wikipedia.org/wiki/Greater_Boston

  56. Mälaren Valley (Wikipedia, accessed 25 February 2021); https://en.wikipedia.org/wiki/Malaren_Valley

  57. GADM database of Global Administrative Areas, version 3.6 (GADM, accessed 25 February 2021); https://gadm.org/download_world.html

  58. Gridded Population of the World v.4 (GPWv4): Population Count Adjusted to Match 2015 Revision of UN WPP Country Totals, Revision 11 (CIESIN, 2018).

  59. Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article  Google Scholar 

  60. Buchhorn, M. et al. Copernicus Global Land Service: Land Cover 100m: collection 3: epoch 2019: Globe v.3.0.1 https://doi.org/10.5281/zenodo.3939050 (2020).

  61. CORINE Land Cover (European Environment Agency, 2018); https://land.copernicus.eu/pan-european/corine-land-cover/clc2018

  62. GAP/LANDFIRE National Terrestrial Ecosystems 2011 (US Geological Survey, 2016); https://doi.org/10.5066/F7ZS2TM0

  63. Food Farms in Singapore (Singapore Food Agency, accessed 16 March 2021); https://www.sfa.gov.sg/food-farming/food-farms/farming-in-singapore

  64. Environmental Data Explorer—The Environmental Database (United Nations Environment Programme, accessed 10 March 2021); http://geodata.grid.unep.ch/results.php

  65. Willmott, C. & Feddema, J. A more rational climatic moisture index. Prof. Geogr. 44, 84–88 (1992).

    Article  Google Scholar 

  66. Ramankutty, N., Foley, J. A., Norman, J. & McSweeney, K. The global distribution of cultivable lands: current patterns and sensitivity to possible climate change. Glob. Ecol. Biogeogr. 11, 377–392 (2002).

    Article  Google Scholar 

  67. Nadal, A. et al. Urban planning and agriculture. Methodology for assessing rooftop greenhouse potential of non-residential areas using airborne sensors. Sci. Total Environ. 601–602, 493–507 (2017).

    Article  PubMed  ADS  Google Scholar 

  68. McDonald, R. I., Fargione, J., Kiesecker, J., Miller, W. M. & Powell, J. Energy sprawl or energy efficiency: climate policy impacts on natural habitat for the United States of America. PLoS ONE 4, e6802 (2009).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  69. Fthenakis, V. & Kim, H. C. Land use and electricity generation: a life-cycle analysis. Renew. Sustain. Energy Rev. 13, 1465–1474 (2009).

    Article  Google Scholar 

  70. McGowan, J. G. & Connors, S. R. Windpower: a turn of the century review. Annu. Rev. Energy Environ. 25, 147–197 (2000).

    Article  Google Scholar 

  71. Meier, P. H. Wind farms adapt to forest conditions. Renewable Energy World https://www.renewableenergyworld.com/wind-power/wind-farms-adapt-to-forest-conditions/#gref (2011).

  72. Cho, J. et al. Application of photovoltaic systems for agriculture: a study on the relationship between power generation and farming for the improvement of photovoltaic applications in agriculture. Energies 13, 1–18 (2020).

    Article  Google Scholar 

  73. Zappa, W. & van den Broek, M. Analysing the potential of integrating wind and solar power in Europe using spatial optimisation under various scenarios. Renew. Sustain. Energy Rev. 94, 1192–1216 (2018).

    Article  Google Scholar 

  74. Yue, C. D. & Wang, S. S. GIS-based evaluation of multifarious local renewable energy sources: a case study of the Chigu area of southwestern Taiwan. Energy Policy 34, 730–742 (2006).

    Article  Google Scholar 

  75. Deng, Y. Y. et al. Quantifying a realistic, worldwide wind and solar electricity supply. Glob. Environ. Chang. 31, 239–252 (2015).

    Article  Google Scholar 

  76. Dhunny, A. Z., Doorga, J. R. S., Allam, Z., Lollchund, M. R. & Boojhawon, R. Identification of optimal wind, solar and hybrid wind-solar farming sites using fuzzy logic modelling. Energy 188, 116056 (2019).

    Article  Google Scholar 

  77. Hoefnagels, R. et al. Long Term Potentials and Costs of RES Part I: Potentials, Diffusion and Technological Learning www.reshaping-res-policy.eu (2011).

  78. Wang, Q., M’Ikiugu, M. M. & Kinoshita, I. A GIS-based approach in support of spatial planning for renewable energy: a case study of Fukushima. Japan. Sustain. 6, 2087–2117 (2014).

    Google Scholar 

  79. Koc, A., Turk, S. & Şahin, G. Multi-criteria of wind–solar site selection problem using a GIS-AHP-based approach with an application in Igdir Province/Turkey. Environ. Sci. Pollut. Res. 26, 32298–32310 (2019).

    Article  CAS  Google Scholar 

  80. Yin, P. Y., Cheng, C. Y., Chen, H. M. & Wu, T. H. Risk-aware optimal planning for a hybrid wind-solar farm. Renew. Energy 157, 290–302 (2020).

    Article  Google Scholar 

  81. Aslam, M. A. et al. Can growing degree days and photoperiod predict spring wheat phenology? Front. Environ. Sci. 5, 1–10 (2017).

    Article  Google Scholar 

  82. Singh, S. Agrometeorological requirements for sustainable vegetable crops production. J. Food Prot. 2, 1–22 (2018).

    CAS  Google Scholar 

  83. Parthasarathi, T., Velu, G. & Jeyakumar, P. Impact of crop heat units on growth and developmental physiology of future crop production: a review. Res. Rev. J. Crop Sci. Technol. 2, 11–18 (2013).

    Google Scholar 

  84. Sabiiti, G. et al. in Limits to Climate Change Adaptation. Climate Change Management (eds Leal Filho W. & Nalau J.) 175–190 (Springer, 2018).

  85. Huang, C., Duiker, S. W., Deng, L., Fang, C. & Zeng, W. Influence of precipitation on maize yield in the eastern United States. Sustain. 7, 5996–6010 (2015).

    Article  Google Scholar 

  86. van der Velde, M., Tubiello, F. N., Vrieling, A. & Bouraoui, F. Impacts of extreme weather on wheat and maize in France: evaluating regional crop simulations against observed data. Clim. Change 113, 751–765 (2012).

    Article  ADS  Google Scholar 

  87. Archontoulis, S. V. et al. Predicting crop yields and soil-plant nitrogen dynamics in the US Corn Belt. Crop Sci. 60, 721–738 (2020).

    Article  CAS  Google Scholar 

  88. Seifert, C. & Moss, L. Understanding soil productivity ratings. Granular https://granular.ag/blog/understanding-soil-productivity-ratings/ (2020).

  89. Vegetables 2019 Summary (US Department of Agriculture, 2020).

  90. Powell, J. P. & Reinhard, S. Measuring the effects of extreme weather events on yields. Weather Clim. Extrem. 12, 69–79 (2015).

    Article  Google Scholar 

  91. Rickman, J. C., Bruhn, C. M. & Barrett, D. M. Nutritional comparison of fresh, frozen, and canned fruits and vegetables II. Vitamin A and carotenoids, vitamin E, minerals and fibe. J. Sci. Food Agric. 1243, 1237–1243 (2007).

    Google Scholar 

  92. Villarreal-Guerrero, F. et al. Simulated performance of a greenhouse cooling control strategy with natural ventilation and fog cooling. Biosyst. Eng. 111, 217–228 (2012).

    Article  Google Scholar 

  93. HOMER https://www.homerenergy.com

  94. Vallati, A., Grignaffini, S. & Romagna, M. A new method to energy saving in a micro grid. Sustainability 7, 13904–13919 (2015).

    Article  CAS  Google Scholar 

  95. Weidner, T., Yang, A., Förster, F. & Hamm, M. W. Primary data for food–energy–land nexus of low-carbon indoor farming study https://doi.org/10.6084/m9.figshare.14778804.v1 (2021).

  96. Imagery Hybrid [basemap], scale 1:2,940,408 to 1:170,000 (varying between regions). ‘World Imagery Hybrid’ (Esri, accessed 5 March 2021); https://www.arcgis.com/home/item.html?id=28f49811a6974659988fd279de5ce39f

Download references

Acknowledgements

Financial support for T.W. for the duration of his PhD project by the Clarendon Fund Scholarship is greatly appreciated. We thank the reviewers for their constructive feedback and generous efforts.

Author information

Authors and Affiliations

Authors

Contributions

T.W. developed the methodology, conducted the analysis and wrote the original draft. A.Y. aided in the conceptualization and development of the methodology, supervised T.W., validated the model and calculations and reviewed and edited the draft. F.F. validated parts of the methodology and the model and reviewed and edited the draft. M.W.H. conceptualized the work, validated the methodology, and reviewed and edited the draft.

Corresponding authors

Correspondence to Aidong Yang or Michael W. Hamm.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Food thanks Andrew Jenkins and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–16, Tables 1–12 and methods.

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weidner, T., Yang, A., Forster, F. et al. Regional conditions shape the food–energy–land nexus of low-carbon indoor farming. Nat Food 3, 206–216 (2022). https://doi.org/10.1038/s43016-022-00461-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43016-022-00461-7

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene