Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Stimulation of ambient energy generated electric field on crop plant growth

Abstract

Eco-friendly technologies are of great significance to agricultural sustainability due to the environmental damage caused by agricultural activities. Here, we report a wind and rain energy-driven electrical stimulation system for enhancing crop production. The system is based on an all-weather triboelectric nanogenerator (AW-TENG), which is composed of a bearing-and-hair structured triboelectric nanogenerator (TENG) and a raindrop-driven TENG. Treated by the self-generated high-voltage electric field, the system can increase pea seeds germination speed by ~26.3% and pea yield by ~17.9%. By harvesting environmental wind and raindrop energy, the AW-TENG can be used to drive various agricultural sensors for optimizing plant growth. This work provides a fresh direction for self-powered systems in safe, efficient and eco-friendly agricultural production improvement and may profoundly contribute to the construction of a sustainable economy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SESS for enhancing crop production.
Fig. 2: Structure and output performance of the BH-TENG.
Fig. 3: Germination promotion of the SESS.
Fig. 4: Growth acceleration of the SESS.
Fig. 5: Applications of the AW-TENG in self-powered agricultural sensing.

Data availability

All relevant data are included in the article, Supplementary Information and in the Source Data files provided with this paper. All the other raw data are available from the authors on request.

References

  1. Gruber, K. Re-igniting the green revolution with wild crops. Nat. Plants 2, 16048 (2016).

    Article  PubMed  Google Scholar 

  2. Kesavan, P. C. & Swaminathan, M. S. Modern technologies for sustainable food and nutrition security. Curr. Sci. 115, 1876–1883 (2018).

    Article  CAS  Google Scholar 

  3. Duhan, J. S. et al. Nanotechnology: the new perspective in precision agriculture. Biotechnol. Rep. 15, 11–23 (2017).

    Article  Google Scholar 

  4. Molina-Santiago, C. & Matilla, M. A. Chemical fertilization: a short-term solution for plant productivity? Microb. Biotechnol. 13, 1311–1313 (2020).

    Article  PubMed  Google Scholar 

  5. Landrigan, P. J. et al. The Lancet Commission on pollution and health. Lancet 391, 462–512 (2018).

    Article  PubMed  Google Scholar 

  6. Schmiedchen, K., Petri, A. K., Driessen, S. & Bailey, W. H. Systematic review of biological effects of exposure to static electric fields. Part II: Invertebrates and plants. Environ. Res. 160, 60–76 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Krueger, A. P., Kotaka, S. & Andriese, P. C. Studies on the effects of gaseous ions on plant growth. I. The influence of positive and negative air ions on the growth of Avena sativa. J. Gen. Physiol. 45, 879–895 (1962).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Costanzo, E. The influence of an electric field on the growth of soy seedlings. J. Electrostat. 66, 417–420 (2008).

    Article  Google Scholar 

  9. Acosta-Santoyo, G., Herrada, R. A., De Folter, S. & Bustos, E. Stimulation of the germination and growth of different plant species using an electric field treatment with IrO2-Ta2O5|Ti electrodes. J. Chem. Technol. Biotechnol. 93, 1488–1494 (2018).

    Article  CAS  Google Scholar 

  10. Fan, F. R., Tian, Z. Q. & Wang, Z. L. Flexible triboelectric generator. Nano Energy 1, 328–334 (2012).

    Article  CAS  Google Scholar 

  11. Wu, C., Wang, A. C., Ding, W., Guo, H. & Wang, Z. L. Triboelectric nanogenerator: a foundation of the energy for the new era. Adv. Energy Mater. 9, 1802906 (2019).

    Article  Google Scholar 

  12. Ouyang, H. et al. Symbiotic cardiac pacemaker. Nat. Commun. 10, 1821 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  13. Song, Y. et al. Wireless battery-free wearable sweat sensor powered by human motion. Sci. Adv. 6, eaay9842 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shi, Q. et al. Deep learning enabled smart mats as a scalable floor monitoring system. Nat. Commun. 11, 4609 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Luo, J., Gao, W. & Wang, Z. L. The triboelectric nanogenerator as an innovative technology toward intelligent sports. Adv. Mater. 33, 2004178 (2021).

    Article  CAS  Google Scholar 

  16. Luo, J. et al. Flexible and durable wood-based triboelectric nanogenerators for self-powered sensing in athletic big data analytics. Nat. Commun. 10, 5147 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  17. Leung, S. F. et al. Blue energy fuels: converting ocean wave energy to carbon-based liquid fuels via CO2 reduction. Energ. Environ. Sci. 13, 1300–1308 (2020).

    Article  CAS  Google Scholar 

  18. Jiang, T. et al. Robust swing-structured triboelectric nanogenerator for efficient blue energy harvesting. Adv. Energy Mater. 10, 2000064 (2020).

    Article  ADS  CAS  Google Scholar 

  19. Li, C. et al. Self-powered electrospinning system driven by a triboelectric nanogenerator. ACS Nano 11, 10439–10445 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Jiang, C. et al. All-electrospun flexible triboelectric nanogenerator based on metallic MXene nanosheets. Nano Energy 59, 268–276 (2019).

    Article  CAS  Google Scholar 

  21. Guo, H. et al. A highly efficient triboelectric negative air ion generator. Nat. Sustain. 4, 147–153 (2021).

    Article  Google Scholar 

  22. Ding, W. et al. Tribopump: a low-cost, hand-powered water disinfection system. Adv. Energy Mater. 9, 1901320 (2019).

    Article  Google Scholar 

  23. Han, K. et al. Self-powered electrocatalytic ammonia synthesis directly from air as driven by dual triboelectric nanogenerators. Energ. Environ. Sci. 13, 2450–2458 (2020).

    Article  CAS  Google Scholar 

  24. Shang, W. et al. Rotational pulsed triboelectric nanogenerators integrated with synchronously triggered mechanical switches for high efficiency self-powered systems. Nano Energy 82, 105725 (2021).

    Article  CAS  Google Scholar 

  25. Wu, J., Xi, Y. & Shi, Y. Toward wear-resistive, highly durable and high performance triboelectric nanogenerator through interface liquid lubrication. Nano Energy 72, 104659 (2020).

    Article  CAS  Google Scholar 

  26. Zhou, L. et al. Simultaneously enhancing power density and durability of sliding-mode triboelectric nanogenerator via interface liquid lubrication. Adv. Energy Mater. 10, 2002920 (2020).

    Article  CAS  Google Scholar 

  27. Wang, S., Xie, Y., Niu, S., Lin, L. & Wang, Z. L. Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Adv. Mater. 26, 2818–2824 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Chen, P. et al. Rationally segmented triboelectric nanogenerator with a constant direct-current output and low crest factor. Energ. Environ. Sci. 14, 4523–4532 (2021).

    Article  CAS  Google Scholar 

  29. Hou, F. F. & Thseng, F. S. Studies on the screening technique for pregermination flooding tolerance in soybean. Jpn. J. Crop. Sci. 61, 447–453 (1992).

    Article  Google Scholar 

  30. Chun, M. S., Ying, Z. H. & Hui, K. X. Effects of dry-heat treatment at 76°C on germination and vigour of radish seed. Seed. Sci. Technol. 31, 193–197 (2003).

    Article  Google Scholar 

  31. Hillis, D. G., Fletcher, J., Solomon, K. R. & Sibley, P. K. Effects of ten antibiotics on seed germination and root elongation in three plant species. Arch. Environ. Con. Tox. 60, 220–232 (2011).

    Article  CAS  Google Scholar 

  32. Basiry, M. & Esehaghbeygi, A. Cleaning and charging of seeds with an electrostatic separator. Appl. Eng. Agric. 28, 143–147 (2012).

    Article  Google Scholar 

  33. Wang, G. et al. The effect of high-voltage electrostatic field (HVEF) on aged rice (Oryza sativa l.) seeds vigor and lipid peroxidation of seedlings. J. Electrostat. 67, 759–764 (2009).

    Article  CAS  Google Scholar 

  34. Luo, K. et al. Direct exposure of wheat seeds to high-voltage electrostatic fields adversely affects the performance of Sitobion avenae (Hemiptera: Aphididae). J. Econ. Entomol. 109, 2418–2423 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Wang, J. et al. Investigation of low-current direct stimulation for rehabilitation treatment related to muscle function loss using self-powered teng system. Adv. Sci. 6, 1900149 (2019).

    Article  Google Scholar 

  36. Jiang, D. et al. Emerging implantable energy harvesters and self-powered implantable medical electronics. ACS Nano 14, 6436–6448 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Wang, X., Li, X. & Li, Y. A modified Coomassie brilliant blue staining method at nanogram sensitivity compatible with proteomic analysis. Biotechnol. Lett. 29, 1599–1603 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Murr, L. E. Plant growth response in an electrokinetic field. Nature 207, 1177–1178 (1965).

    Article  ADS  Google Scholar 

  39. Fanizza, G., Dellagatta, C. & Bagnulo, C. A nondestructive determination of leaf chlorophyll in Vitis vinifera. Ann. Appl. Biol. 119, 203–205 (1991).

    Article  Google Scholar 

  40. Ruiz-Espinoza, F. H. et al. Field evaluation of the relationship between chlorophyll content in basil leaves and a portable chlorophyll meter (SPAD-502) readings. J. Plant Nutr. 33, 423–438 (2010).

    Article  CAS  Google Scholar 

  41. Uddling, J., Gelang-Alfredsson, J., Piikki, K. & Pleijel, H. Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings. Photosynth. Res. 91, 37–46 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Sui, X. et al. The complex character of photosynthesis in cucumber fruit. J. Exp. Bot. 68, 1625–1637 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Krupa, S. et al. Ambient ozone and plant health. Plant Dis. 85, 4–12 (2001).

    Article  PubMed  Google Scholar 

  44. Sandermann, H. Ozone and plant health. Annu. Rev. Phytopathol. 34, 347–366 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Bortolin, R. C. et al. Effects of chronic elevated ozone concentration on the redox state and fruit yield of red pepper plant Capsicum baccatum. Ecotox. Environ. Safe. 100, 114–121 (2014).

    Article  CAS  Google Scholar 

  46. Singh, P., Singh, I. & Shah, K. Reduced activity of nitrate reductase under heavy metal cadmium stress in rice: an in silico answer. Front. Plant. Sci. 9, 1948 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lee, S. J. et al. Bacillus subtilis strain L1 promotes nitrate reductase activity in Arabidopsis and elicits enhanced growth performance in Arabidopsis, lettuce, and wheat. J. Plant. Res. 133, 231–244 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Wong, M. C., Xu, W. & Hao, J. Microplasma-discharge-based nitrogen fixation driven by triboelectric nanogenerator toward self-powered mechano-nitrogenous fertilizer supplier. Adv. Funct. Mater. 29, 1904090 (2019).

    Article  CAS  Google Scholar 

  49. Tang, W., Chen, B. D. & Wang, Z. L. Recent progress in power generation from water/liquid droplet interaction with solid surfaces. Adv. Funct. Mater. 29, 1901069 (2019).

    Article  CAS  Google Scholar 

  50. Lai, Y. C., Hsiao, Y. C., Wu, H. M. & Wang, Z. L. Waterproof fabric-based multifunctional triboelectric nanogenerator for universally harvesting energy from raindrops, wind, and human motions and as self-powered sensors. Adv. Sci. 6, 1801883 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Key R&D Project from Minister of Science and Technology (no. 2016YFA0202704), National Natural Science Foundation of China (no. 52002028), National Science Fund of Excellent Young Scholars of China (grant no. 31922063), China Postdoctoral Science Foundation (no. BX20190324, 2020M680650) and Beijing Municipal Science & Technology Commission (no. Z171100002017017). Experiments on plant phenotypes were supported by Beijing EcoTech Science and Technology Ltd, Ecolab. We also thank S. Dai for helpful assistance in experiments.

Author information

Authors and Affiliations

Authors

Contributions

J.L., J.P. and Z.L.W. conceived the idea. X.L., J.L. and K.H. designed and fabricated the device. X.L., J.L., X.S. and Z.R. carried out the pea planting, phenotype characterization and physical and chemical experiments. X.L., J.L. and X.S. performed the electrical measurement and Supplementary Videos. Y.X. and Y.Y. provided assistance with the experiments. X.L., J.L., J.P. and Z.L.W. wrote the manuscript. All the authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Jianjun Luo, Jianfeng Ping or Zhong Lin Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review information

Nature Food thanks Zhuangzhi Sun, Jianhua Hao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–33 and Notes 1–11.

Reporting Summary

Supplementary Video 1

The detailed rotation situations of the traditional rotation-mode TENG under the simulated natural wind.

Supplementary Video 2

The detailed rotation situations of the BH-TENG under the simulated natural wind.

Supplementary Video 3

Nitrogen oxides generated by the AW-TENG induced microplasma discharge.

Supplementary Video 4

O3 generated by the AW-TENG induced microplasma discharge.

Supplementary Data 1

Statistical source data of Supplementary figures.

Supplementary Data 2

Statistical source data of Supplementary figures.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Luo, J., Han, K. et al. Stimulation of ambient energy generated electric field on crop plant growth. Nat Food 3, 133–142 (2022). https://doi.org/10.1038/s43016-021-00449-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43016-021-00449-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing