Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dietary change in high-income nations alone can lead to substantial double climate dividend

Abstract

A dietary shift from animal-based foods to plant-based foods in high-income nations could reduce greenhouse gas emissions from direct agricultural production and increase carbon sequestration if resulting spared land was restored to its antecedent natural vegetation. We estimate this double effect by simulating the adoption of the EAT–Lancet planetary health diet by 54 high-income nations representing 68% of global gross domestic product and 17% of population. Our results show that such dietary change could reduce annual agricultural production emissions of high-income nations’ diets by 61% while sequestering as much as 98.3 (55.6–143.7) GtCO2 equivalent, equal to approximately 14 years of current global agricultural emissions until natural vegetation matures. This amount could potentially fulfil high-income nations’ future sum of carbon dioxide removal (CDR) obligations under the principle of equal per capita CDR responsibilities. Linking land, food, climate and public health policy will be vital to harnessing the opportunities of a double climate dividend.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Changes in net carbon sequestration and net GHG emissions due to dietary change in high-income countries.
Fig. 2: Potential sequestration and emissions changes due to dietary changes.
Fig. 3: Potential carbon sequestration and emissions changes due to removal of non-EAT–Lancet food items.

Similar content being viewed by others

Data availability

All generated data are available in the main text or the supplementary materials. Secondary data used in this study are all from publicly available sources and referenced in the Methods section. Source data are provided with this paper.

Code availability

All codes used in the analysis are available upon request.

References

  1. Clark, M. A. et al. Global food system emissions could preclude achieving the 1.5 ° and 2 °C climate change targets. Science 370, 705–708 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Willett, W. et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).

    Article  PubMed  Google Scholar 

  4. Searchinger, T., Waite, R., Hanson, C. & Ranganathan, J. Creating a Sustainable Food Future: A Menu of Solutions to Feed Nearly 10 Billion People by 2050 (World Resources Institute, 2019).

  5. Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Sahlin, K. R., Röös, E. & Gordon, L. J. ‘Less but better’ meat is a sustainability message in need of clarity. Nat. Food 1, 520–522 (2020).

  7. Behrens, P. et al. Evaluating the environmental impacts of dietary recommendations. Proc. Natl Acad. Sci. USA 114, 13412–13417 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Marques, A. et al. Increasing impacts of land use on biodiversity and carbon sequestration driven by population and economic growth. Nat. Ecol. Evol. 3, 628–637 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Fargione, J. E. et al. Natural climate solutions for the United States. Sci. Adv. 4, eaat1869 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  10. Lamb, A. et al. The potential for land sparing to offset greenhouse gas emissions from agriculture. Nat. Clim. Change 6, 488–492 (2016).

    Article  ADS  Google Scholar 

  11. Erb, K. H. et al. Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature 553, 73–76 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Searchinger, T. D., Wirsenius, S., Beringer, T. & Dumas, P. Assessing the efficiency of changes in land use for mitigating climate change. Nature 564, 249–253 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Cook-Patton, S. C. et al. Mapping carbon accumulation potential from global natural forest regrowth. Nature 585, 545–550 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Soto-Navarro, C. et al. Mapping co-benefits for carbon storage and biodiversity to inform conservation policy and action. Phil. Trans. R. Soc. B 375, 20190128 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sanderman, J., Hengl, T. & Fiske, G. J. Soil carbon debt of 12,000 years of human land use. Proc. Natl Acad. Sci. USA 114, 9575–9580 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. D’Odorico, P. et al. The global food–energy–water nexus. Rev. Geophys. 56, 456–531 (2018).

    Article  Google Scholar 

  17. Morren, M., Mol, J. M., Blasch, J. E. & Malek, Ž. Changing diets—testing the impact of knowledge and information nudges on sustainable dietary choices. J. Environ. Psychol. 75, 101610 (2021).

    Article  Google Scholar 

  18. Eker, S., Reese, G. & Obersteiner, M. Modelling the drivers of a widespread shift to sustainable diets. Nat. Sustain. 2, 725–735 (2019).

    Article  Google Scholar 

  19. Bruckner, M. et al. FABIO—the construction of the food and agriculture biomass input–output model. Environ. Sci. Technol. 53, 11302–11312 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. FAOSTAT (Food and Agriculture Organization of the United Nations, 2020); https://www.fao.org/faostat/

  21. Spawn, S. A., Sullivan, C. C., Lark, T. J. & Gibbs, H. K. Harmonized global maps of above and belowground biomass carbon density in the year 2010. Sci. Data 7, 112 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sun, Z., Scherer, L., Tukker, A. & Behrens, P. Linking global crop and livestock consumption to local production hotspots. Glob. Food Sec. 25, 100323 (2019).

    Article  Google Scholar 

  23. Kanemoto, K., Moran, D. & Hertwich, E. G. Mapping the carbon footprint of nations. Environ. Sci. Technol. 50, 10512–10517 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Semba, R. D. et al. Adoption of the ‘planetary health diet’ has different impacts on countries’ greenhouse gas emissions. Nat. Food 1, 481–484 (2020).

    Article  Google Scholar 

  25. Crippa, M. et al. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2, 198–209 (2021).

    Article  Google Scholar 

  26. Hayek, M. N., Harwatt, H., Ripple, W. J. & Mueller, N. D. The carbon opportunity cost of animal-sourced food production on land. Nat. Sustain. 4, 21–24 (2021).

    Article  Google Scholar 

  27. Yang, Y. et al. Restoring abandoned farmland to mitigate climate change on a full earth. One Earth 3, 176–186 (2020).

    Article  Google Scholar 

  28. Heinrich, V. H. A. et al. Large carbon sink potential of secondary forests in the Brazilian Amazon to mitigate climate change. Nat. Commun. 12, 1785 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jones, H. P. et al. Restoration and repair of Earth’s damaged ecosystems. Proc. R. Soc. B 285, 20172577 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Poorter, L. et al. Biomass resilience of Neotropical secondary forests. Nature 530, 211–214 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Drever, C. R. et al. Natural climate solutions for Canada. Sci. Adv. 7, eabd6034 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Duveiller, G. et al. Revealing the widespread potential of forests to increase low level cloud cover. Nat. Commun. 12, 4337 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. De Vrese, M. et al. Probiotics—compensation for lactase insufficiency. Am. J. Clin. Nutr. 73, 421s–429s (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Scherer, L., Behrens, P. & Tukker, A. Opportunity for a dietary win–win–win in nutrition, environment, and animal welfare. One Earth 1, 349–360 (2019).

    Article  Google Scholar 

  35. Shepon, A., Eshel, G., Noor, E. & Milo, R. The opportunity cost of animal based diets exceeds all food losses. Proc. Natl Acad. Sci. USA 115, 3804–3809 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shepon, A., Eshel, G., Noor, E. & Milo, R. Energy and protein feed-to-food conversion efficiencies in the US and potential food security gains from dietary changes. Environ. Res. Lett. 11, 105002 (2016).

    Article  ADS  Google Scholar 

  37. Laroche, P. C. S. J., Schulp, C. J. E., Kastner, T. & Verburg, P. H. Telecoupled environmental impacts of current and alternative Western diets. Glob. Environ. Change 62, 102066 (2020).

    Article  Google Scholar 

  38. Scherer, L. A., Verburg, P. H. & Schulp, C. J. E. Opportunities for sustainable intensification in European agriculture. Glob. Environ. Change 48, 43–55 (2018).

    Article  Google Scholar 

  39. Lire Wachamo, H. Review on health benefit and risk of coffee consumption. Med. Aromat. Plants 6, 301 (2017).

    Article  Google Scholar 

  40. Osorio-Paz, I., Brunauer, R. & Alavez, S. Beer and its non-alcoholic compounds in health and disease. Crit. Rev. Food Sci. Nutr. 60, 3492–3505 (2019).

    Article  PubMed  Google Scholar 

  41. Zaitsu, M., Takeuchi, T., Kobayashi, Y. & Kawachi, I. Light to moderate amount of lifetime alcohol consumption and risk of cancer in Japan. Cancer 126, 1031–1040 (2020).

    Article  PubMed  Google Scholar 

  42. de Coninck, P. & Gilmore, I. Long overdue: a fresh start for EU policy on alcohol and health. Lancet 395, 10–13 (2020).

    Article  PubMed  Google Scholar 

  43. Manthey, J. et al. Global alcohol exposure between 1990 and 2017 and forecasts until 2030: a modelling study. Lancet 393, 2493–2502 (2019).

    Article  PubMed  Google Scholar 

  44. Bansback, B. Future directions for the global meat industry? EuroChoices 13, 4–11 (2014).

    Article  Google Scholar 

  45. Xue, L. et al. Efficiency and carbon footprint of the German meat supply chain. Environ. Sci. Technol. 53, 5133–5142 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Anzani, C., Boukid, F., Drummond, L., Mullen, A. M. & Álvarez, C. Optimising the use of proteins from rich meat co-products and non-meat alternatives: nutritional, technological and allergenicity challenges. Food Res. Int. 137, 109575 (2020).

    Article  CAS  PubMed  Google Scholar 

  47. IPCC Special Report on Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) (WMO, 2018).

  48. Pozo, C., Galán-Martín, Á., Reiner, D. M., Mac Dowell, N. & Guillén-Gosálbez, G. Equity in allocating carbon dioxide removal quotas. Nat. Clim. Change 10, 640–646 (2020).

    Article  ADS  CAS  Google Scholar 

  49. Folberth, C. et al. The global cropland-sparing potential of high-yield farming. Nat. Sustain. 3, 281–289 (2020).

    Article  Google Scholar 

  50. Khanna, M. et al. Redefining marginal land for bioenergy crop production. Glob. Change Biol. Bioenergy 13, 1590–1609 (2021).

    Article  Google Scholar 

  51. Goldstein, A. et al. Protecting irrecoverable carbon in Earth’s ecosystems. Nat. Clim. Change 10, 287–295 (2020).

    Article  ADS  CAS  Google Scholar 

  52. Yang, Y., Tilman, D., Furey, G. & Lehman, C. Soil carbon sequestration accelerated by restoration of grassland biodiversity. Nat. Commun. 10, 718 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  53. Lewis, S. L., Wheeler, C. E., Mitchard, E. T. A. & Koch, A. Restoring natural forests is the best way to remove atmospheric carbon. Nature 568, 25–28 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  54. van Zalk, J. & Behrens, P. The spatial extent of renewable and non-renewable power generation: a review and meta-analysis of power densities and their application in the U.S. Energy Policy 123, 83–91 (2018).

    Article  Google Scholar 

  55. Ko, S., Lautala, P. & Handler, R. M. Securing the feedstock procurement for bioenergy products: a literature review on the biomass transportation and logistics. J. Clean. Prod. 200, 205–218 (2018).

    Article  Google Scholar 

  56. Favero, A., Daigneault, A. & Sohngen, B. Forests: carbon sequestration, biomass energy, or both? Sci. Adv. 6, eaay6792 (2020).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  57. Kalt, G. et al. Natural climate solutions versus bioenergy: can carbon benefits of natural succession compete with bioenergy from short rotation coppice? Glob. Change Biol. Bioenergy 11, 1283–1297 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Field, J. L. et al. Robust paths to net greenhouse gas mitigation and negative emissions via advanced biofuels. Proc. Natl Acad. Sci. USA 117, 21968–21977 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tilman, D., Hill, J. & Lehman, C. Carbon-negative biofuels from low-input high-diversity grassland biomass. Science 314, 1598–1600 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  60. Robertson, G. P. et al. Cellulosic biofuel contributions to a sustainable energy future: choices and outcomes. Science 356, eaal2324 (2017).

    Article  PubMed  Google Scholar 

  61. Philipso, C. D. et al. Active restoration accelerates the carbon recovery of human-modified tropical forests. Science 369, 838–841 (2020).

    Article  ADS  Google Scholar 

  62. Zahawi, R. A., Reid, J. L. & Holl, K. D. Hidden costs of passive restoration. Restor. Ecol. 22, 284–287 (2014).

    Article  Google Scholar 

  63. Salzman, J., Bennett, G., Carroll, N., Goldstein, A. & Jenkins, M. The global status and trends of payments for ecosystem services. Nat. Sustain. 1, 136–144 (2018).

    Article  Google Scholar 

  64. Growing Better: Ten Critical Transitions to Transform Food and Land Use (The Food and Land Use Coalition, 2019).

  65. The State of Food Security and Nutrition in the World 2020. Transforming Food Systems for Affordable Healthy Diets (FAO, IFAD, UNICEF, WFP and WHO, 2020); https://www.fao.org/documents/card/en/c/ca9692en

  66. Scown, M. W., Brady, M. V. & Nicholas, K. A. Billions in misspent EU agricultural subsidies could support the sustainable development goals. One Earth 3, 237–250 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Roe, S. et al. Contribution of the land sector to a 1.5 °C world. Nat. Clim. Change 9, 817–828 (2019).

    Article  ADS  Google Scholar 

  68. Haberl, H. et al. A systematic review of the evidence on decoupling of GDP, resource use and GHG emissions, part II: synthesizing the insights. Environ. Res. Lett. 15, 065003 (2020).

    Article  ADS  Google Scholar 

  69. Keyßer, L. T. & Lenzen, M. 1.5 °C degrowth scenarios suggest the need for new mitigation pathways. Nat. Commun. 12, 2676 (2021).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  70. Malins, C., Plevin, R. & Edwards, R. How robust are reductions in modeled estimates from GTAP-BIO of the indirect land use change induced by conventional biofuels? J. Clean. Prod. 258, 120716 (2020).

    Article  Google Scholar 

  71. Yu, Y., Feng, K., Hubacek, K. & Sun, L. Global implications of China’s future food consumption. J. Ind. Ecol. 20, 593–602 (2016).

    Article  Google Scholar 

  72. International Food Policy Research Institute Global Spatially-Disaggregated Crop Production Statistics Data for 2010 version 2.0. Harvard Dataverse https://doi.org/10.7910/DVN/PRFF8V (2019).

  73. Ramankutty, N., Evan, A. T., Monfreda, C. & Foley, J. A. Farming the planet: 1. geographic distribution of global agricultural lands in the year 2000. Glob. Biogeochem. Cycles https://doi.org/10.1029/2007GB002952 (2008).

  74. Wolf, J. et al. Biogenic carbon fluxes from global agricultural production and consumption. Glob. Biogeochem. Cycles 29, 1617–1639 (2015).

    Article  ADS  CAS  Google Scholar 

  75. Lal, R. Digging deeper: a holistic perspective of factors affecting soil organic carbon sequestration in agroecosystems. Glob. Change Biol. 24, 3285–3301 (2018).

    Article  ADS  Google Scholar 

  76. De Sousa, L. M. et al. SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty. Soil 7, 217–240 (2021).

    Article  Google Scholar 

  77. Jackson, R. B. et al. The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls. Annu. Rev. Ecol. Evol. Syst. 48, 419–445 (2017).

    Article  Google Scholar 

  78. Sloat, L. L. et al. Increasing importance of precipitation variability on global livestock grazing lands. Nat. Clim. Change 8, 214–218 (2018).

    Article  ADS  Google Scholar 

  79. Hirvonen, K., Bai, Y., Headey, D. & Masters, W. A. Affordability of the EAT–Lancet reference diet: a global analysis. Lancet Glob. Health 8, e59–e66 (2020).

    Article  PubMed  Google Scholar 

  80. Hanley-Cook, G. T. et al. EAT–Lancet diet score requires minimum intake values to predict higher micronutrient adequacy of diets in rural women of reproductive age from five low- and middle-income countries. Br. J. Nutr. 126, 92–100 (2020).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank N. Ramankutty and L. L. Sloat for providing us the latest pastureland map data in the year 2010. The contribution of Z.S. was funded by the China Scholarship Council (201706040080). The contribution of M.B. was funded by the European Research Council (grant agreement number 725525) and the Austrian Science Fund (project number P 31598_G31). The contribution of S.A.S.-L. to this work was supported by the National Science Foundation’s Graduate Research Fellowship Program under grant no. DGE-1747503. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

All authors provided input into the final manuscript. P.B. designed the study. Z.S., S.A.S.-L. and M.B. contributed data. Z.S. performed the analysis with the help of P.B. and L.S. Z.S., L.S. and P.B. led the writing with contributions by A.T., S.A.S.-L., M.B. and H.K.G.

Corresponding author

Correspondence to Zhongxiao Sun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review information

Nature Food thanks Manfred Lenzen, Rylie Pelton, Christian Reynolds, Michael Clark and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publishers note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Discussion and Figs. 1–11.

Reporting Summary

Supplementary Tables

Supplementary Table 1: crop-specific parameters used to calculate AGBC and BGBC. Supplementary Table 2: mapping relationship between FABIO sectors and EAT–Lancet diet groups. Supplementary Table 3: food and energy composition of the EAT–Lancet diet. Supplementary Table 4: country code and ISO3 for countries of FABIO. Supplementary Table 5: mapping relationship of countries between FABIO and the International Fertilizer Association (IFA). Supplementary Table 6: mapping relationship of crops between FABIO and IFA. Supplementary Table 7: mapping relationship of countries between FABIO and environmentally extended input–output database (EXIOBASE). Supplementary Table 8: mapping relationship of sectors between FABIO and EXIOBASE. Supplementary Table 9: Per capita daily food difference between national average diet and EAT–Lancet diet. Supplementary Table 10: time horizon to PNV from existing studies. Supplementary Table 11: percentage of carbon sequestration due to dietary change fulfilling national CDR obligations in high-income countries.

Source data

Source Data Fig. 1

Source data for Fig. 1.

Source Data Fig. 2

Source data for Fig. 2.

Source Data Fig. 3

Source data for Fig. 3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Scherer, L., Tukker, A. et al. Dietary change in high-income nations alone can lead to substantial double climate dividend. Nat Food 3, 29–37 (2022). https://doi.org/10.1038/s43016-021-00431-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43016-021-00431-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing