Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dietary shifts can reduce premature deaths related to particulate matter pollution in China

A Publisher Correction to this article was published on 07 January 2022

This article has been updated


Shifting towards more meat-intensive diets may have indirect health consequences through environmental degradation. Here we examine how trends in dietary patterns in China over 1980–2010 have worsened fine particulate matter (PM2.5) pollution, thereby inducing indirect health impacts. We show that changes in dietary composition alone, mainly by driving the rising demands for meat and animal feed, have enhanced ammonia (NH3) emissions from Chinese agriculture by 63% and increased annual PM2.5 by up to ~10 µg m–3 (~20% of total PM2.5 increase) over the period. Such effects are more than double that driven by increased food production solely due to population growth. Shifting the current diet towards a less meat-intensive recommended diet can decrease NH3 emission by ~17% and PM2.5 by 2–6 µg m–3, and avoid ~75,000 Chinese annual premature deaths related to PM2.5.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Trends in daily per capita food consumption.
Fig. 2: Trends in national food production and utilization.
Fig. 3: Worsening of PM2.5 air quality due to dietary changes.
Fig. 4: Indirect health cost of dietary changes related to PM2.5 pollution.
Fig. 5: Environmental and indirect health benefits of less meat-intensive diets.

Data availability

The datasets generated during this study are available on the Zenodo repository ( Source data are provided with this paper.

Code availability

Programming language R version 4.1.0 (ref. 57) was used for analysis and visualization in this study. A publicly released map of China was obtained from the National Geomatics Center of China (, and all map-related operations were performed using programming language R version 4.1.0 (ref. 57). The R code is available on the Zenodo repository ( The code for the GEOS-Chem chemical transport model is available on the GitHub repository (

Change history


  1. He, P., Baiocchi, G., Hubacek, K., Feng, K. & Yu, Y. The environmental impacts of rapidly changing diets and their nutritional quality in China. Nat. Sustain. 1, 122–127 (2018).

    Article  Google Scholar 

  2. Lam, H.-M., Remais, J., Fung, M. C., Xu, L. & Sun, S. S. M. Food supply and food safety issues in China. Lancet 381, 2044–2053 (2013).

    Article  PubMed  Google Scholar 

  3. Afshin, A. et al. Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 393, 1958–1972 (2019).

    Article  Google Scholar 

  4. Stocks, T. et al. Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet 387, 1377–1396 (2016).

    Article  Google Scholar 

  5. Zhou, M. et al. Mortality, morbidity, and risk factors in China and its provinces, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 394, 1145–1158 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tilman, D. & Clark, M. Global diets link environmental sustainability and human health. Nature 515, 518–522 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Springmann, M. et al. Options for keeping the food system within environmental limits. Nature 562, 519–525 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Clark, M., Springmann, M., Hill, J. & Tilman, D. Multiple health and environmental impacts of foods. Proc. Natl Acad. Sci. USA 116, 23357–23362 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).

    Article  PubMed  Google Scholar 

  11. Ciais, P. et al. in IPCC Climate Change 2013: The Physical Science Basis Carbon (eds Stocker, T. F. et al.) Ch. 6 (Cambridge Univ. Press, 2013).

  12. Paulot, F. et al. Ammonia emissions in the United States, European Union, and China derived by high-resolution inversion of ammonium wet deposition data: Interpretation with a new agricultural emissions inventory (MASAGE_NH3). J. Geophys. Res. Atmos. 119, 4343–4364 (2014).

    Article  ADS  CAS  Google Scholar 

  13. Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D. & Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525, 367–371 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Bauer, S. E., Tsigaridis, K. & Miller, R. Significant atmospheric aerosol pollution caused by world food cultivation. Geophys. Res. Lett. 43, 5394–5400 (2016).

    Article  ADS  Google Scholar 

  15. Apte, J., Marshall, J. D., Cohen, A. J. & Brauer, M. Addressing global mortality from ambient PM2.5. Environ. Sci. Technol. 49, 8057–8066 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Aunan, K., Hansen, M. H. & Wang, S. Introduction: air pollution in China. China Q. 234, 279–298 (2018).

    Article  Google Scholar 

  17. Shaddick, G. et al. Data integration for the assessment of population exposure to ambient air pollution for global burden of disease assessment. Environ. Sci. Technol. 52, 9069–9078 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Zhang, Q. et al. Drivers of improved PM2.5 air quality in China from 2013 to 2017. Proc. Natl Acad. Sci. USA 116, 24463–24469 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chinese Nutrition Society Chinese Dietary Guidelines (People’s Medical Publishing House, 2012).

  20. FAOSTAT: FAO Statistical Databases. (Food and Agriculture Organization of the United Nations, 2017).

  21. National Bureau of Statistics of China. (China Statistics Press, 2020).

  22. The China Health and Nutrition Survey. (The Carolina Population Center at the University of North Carolina at Chapel Hill and the National Institute for Nutrition and Health at the Chinese Center for Disease Control and Prevention, 2002).

  23. Zhang, L. et al. Agricultural ammonia emissions in China: reconciling bottom-up and top-down estimates. Atmos. Chem. Phys. 18, 339–355 (2018).

    Article  ADS  CAS  Google Scholar 

  24. Schiferl, L. D. et al. An investigation of ammonia and inorganic particulate matter in California during the CalNex campaign. J. Geophys. Res. Atmos. 119, 1883–1902 (2014).

    Article  ADS  CAS  Google Scholar 

  25. Nenes, A., Pandis, S. N., Weber, R. J. & Russell, A. Aerosol pH and liquid water content determine when particulate matter is sensitive to ammonia and nitrate availability. Atmos. Chem. Phys. 20, 3249–3258 (2020).

    Article  ADS  CAS  Google Scholar 

  26. Yang, G. et al. Rapid health transition in China, 1990–2010: findings from the Global Burden of Disease Study 2010. Lancet 381, 1987–2015 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Burnett, R. et al. Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. Proc. Natl Acad. Sci. USA115, 9592–9597 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Alexandratos, N. & Bruinsma, J. World Agriculture Towards 2030/2050: The 2012 Revision (Food and Agriculture Organization of the United Nations, 2012).

  29. Godfray, H. C. J. et al. Meat consumption, health, and the environment. Science 361, eaam5324 (2018).

  30. Du, Y. et al. A global strategy to mitigate the environmental impact of China’s ruminant consumption boom. Nat. Commun. 9, 4133 (2018).

  31. Huang, G. et al. The environmental and socioeconomic trade-offs of importing crops to meet domestic food demand in China. Environ. Res. Lett. 14, 094021 (2019).

    Article  ADS  CAS  Google Scholar 

  32. Chen, X. et al. Producing more grain with lower environmental costs. Nature 514, 486–489 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Fung, K. M., Tai, A. P., Yong, T., Liu, X. & Lam, H. M. Co-benefits of intercropping as a sustainable farming method for safeguarding both food security and air quality. Environ. Res. Lett. 14, 044011 (2019).

    Article  ADS  CAS  Google Scholar 

  34. Guo, Y. et al. Air quality, nitrogen use efficiency and food security in China are improved by cost-effective agricultural nitrogen management. Nat. Food 1, 648–658 (2020).

    Article  Google Scholar 

  35. Foley, J. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Bajželj, B. et al. Importance of food-demand management for climate mitigation. Nat. Clim. Change 4, 924–929 (2014).

    Article  ADS  Google Scholar 

  37. Hasegawa, T., Havlík, P., Frank, S., Palazzo, A. & Valin, H. Tackling food consumption inequality to fight hunger without pressuring the environment. Nat. Sustain. 2, 826–833 (2019).

    Article  Google Scholar 

  38. Rosenzweig, C. et al. Climate change responses benefit from a global food system approach. Nat. Food 1, 94–97 (2020).

    Article  Google Scholar 

  39. Domingo, N. G. G. et al. Air quality-related health damages of food. Proc. Natl Acad. Sci. USA 118, e2013637118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang, Y. G. et al. Prevalence of primary adult lactose malabsorption in three populations of northern China. Hum. Genet. 67, 103–106 (1984).

    Article  CAS  PubMed  Google Scholar 

  41. Yang, Y. et al. The prevalence of lactase deficiency and lactose intolerance in Chinese children of different ages. Chin. Med. J. 113, 1129–1132 (2000).

    CAS  PubMed  Google Scholar 

  42. Smith, H. in Moral Foods (eds Leung, A. K. C, Caldwell, M. L., Ku, R. J. S. & Yano, C. R.) Ch. 12, 262-284 (University of Hawaii Press, 2000).

  43. Cai, W. et al. The Lancet Countdown on PM2.5 pollution-related health impacts of China’s projected carbon dioxide mitigation in the electric power generation sector under the Paris Agreement: a modelling study. Lancet Planet. Health 2, e151–e161 (2018).

    Article  PubMed  Google Scholar 

  44. Liang, X. et al. Air quality and health benefits from fleet electrification in China. Nat. Sustain. 2, 962–971 (2019).

    Article  Google Scholar 

  45. Liu, M. et al. Ammonia emission control in China would mitigate haze pollution and nitrogen deposition, but worsen acid rain. Proc. Natl Acad. Sci. USA 116, 7760–7765 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xu, Z. et al. High efficiency of livestock ammonia emission controls in alleviating particulate nitrate during a severe winter haze episode in northern China. Atmos. Chem. Phys. 19, 5605–5613 (2019).

    Article  ADS  CAS  Google Scholar 

  47. Gustavsson, J., Cederberg, C., Sonesson, U., Van Otterdijk, R. & Meybeck, A. Global Food Losses and Food Waste (Food and Agriculture Organization of the United Nations, 2011).

  48. Willett, W. et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).

    Article  PubMed  Google Scholar 

  49. Monfreda, C., Ramankutty, N. & Foley, J. A. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Glob. Biogeochem. Cycles 22, GB1022 (2008).

  50. EarthStat. University of Minnesota’s Institute on the Environment and the Ramankutty Lab at the University of British Columbia, Vancouver, (2015).

  51. GEOS-Chem (

  52. Van Donkelaar, A., Martin, R. V. & Park, R. J. Estimating ground‐level PM2.5 using aerosol optical depth determined from satellite remote sensing. J. Geophys. Res. Atmos. 111, D21201 (2006).

  53. Shaddick, G. et al. Data integration model for air quality: a hierarchical approach to the global estimation of exposures to ambient air pollution. J. R. Stat. Soc. Ser. C 67, 231–253 (2018).

    Article  MathSciNet  Google Scholar 

  54. Geng, G. et al. Estimating long-term PM2.5 concentrations in China using satellite-based aerosol optical depth and a chemical transport model. Remote Sens. Environ. 166, 262–270 (2015).

    Article  ADS  Google Scholar 

  55. Vasilakos, P., Russell, A., Weber, R. & Nenes, A. Understanding nitrate formation in a world with less sulfate. Atmos. Chem. Phys. 18, 12765–12775 (2018).

    Article  ADS  CAS  Google Scholar 

  56. Weber, R. J., Guo, H., Russell, A. G. & Nenes, A. High aerosol acidity despite declining atmospheric sulfate concentrations over the past 15 years. Nat. Geosci. 9, 282–285 (2016).

    Article  ADS  CAS  Google Scholar 

  57. The R Project for Statistical Computing (R Core Team, 2021).

Download references


This work was supported by funding (MD18518) from the CUHK–Exeter Joint Centre for Environmental Sustainability and Resilience (ENSURE) awarded to the whole team, Research Grants Council (RGC) General Research Fund (14323116) awarded to A.P.K.T., and RGC Area of Excellence Scheme (AoE/M-403/16) awarded to H.-M.L.

Author information

Authors and Affiliations



A.P.K.T. and H.-M.L. conceived the concepts and strategies. A.P.K.T. devised the overall methodology and supervised the writing of the manuscript. X.L. processed and analysed food and agricultural data, conducted GEOS-Chem simulations, analysed results and drafted the manuscript. Y.C. and L.Z. provided the NH3 emission model and scenarios. G.S. provided PM2.5 for 2010 at 0.1° × 0.1° spatial resolution, and participated in the writing of the manuscript. X.Y. and H.-M.L. participated in the discussion and writing of the manuscript.

Corresponding author

Correspondence to Amos P. K. Tai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review information

Nature Food thanks Eri Saikawa, Matthew Hayek and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes, Figs. 1–12 and Tables 1–8.

Source data

Source Data Fig. 1

Source data for Fig. 1.

Source Data Fig. 2

Source data for Fig. 2.

Source Data Fig. 3

Source data for Fig. 3.

Source Data Fig. 4

Source data for Fig. 4.

Source Data Fig. 5

Source data for Fig. 5.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Tai, A.P.K., Chen, Y. et al. Dietary shifts can reduce premature deaths related to particulate matter pollution in China. Nat Food 2, 997–1004 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing