Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Occurrence of crop pests and diseases has largely increased in China since 1970

Abstract

Crop pests and diseases (CPDs) are emerging threats to global food security, but trends in the occurrence of pests and diseases remain largely unknown due to the lack of observations for major crop producers. Here, on the basis of a unique historical dataset with more than 5,500 statistical records, we found an increased occurrence of CPDs in every province of China, with the national average rate of CPD occurrence increasing by a factor of four (from 53% to 218%) during 1970–2016. Historical climate change is responsible for more than one-fifth of the observed increment of CPD occurrence (22% ± 17%), ranging from 2% to 79% in different provinces. Among the climatic factors considered, warmer nighttime temperatures contribute most to the increasing occurrence of CPDs (11% ± 9%). Projections of future CPDs show that at the end of this century, climate change will lead to an increase in CPD occurrence by 243% ± 110% under a low-emissions scenario (SSP126) and 460% ± 213% under a high-emissions scenario (SSP585), with the magnitude largely dependent on the impacts of warmer nighttime temperatures and decreasing frost days. This observation-based evidence highlights the urgent need to accurately account for the increasing risk of CPDs in mitigating the impacts of climate change on food production.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Spatial and temporal pattern of Or.
Fig. 2: Occurrence of different CPDs from 1970 to 2016.
Fig. 3: Correlations between anomaly of potential driving factors and anomaly of Or.
Fig. 4: Contribution of climate change to change of Or from 1970 to 2016.
Fig. 5: Or projection from 2020 to 2100 under two scenarios.

Data availability

The CRU TS 4.01 climate dataset is publicly available at https://catalogue.ceda.ac.uk/uuid/58a8802721c94c66ae45c3baa4d814d0. Two future scenario datasets in CMIP6 are publicly available at https://www.isimip.org/gettingstarted/input-data-bias-correction/. Agricultural data at the provincial scale is publicly open at https://data.stats.gov.cn/english/. The CPD dataset is available at https://doi.org/10.6084/m9.figshare.16866736.v2. Source data are provided with this paper.

Code availability

All data were processed using MATLAB v2018b. Most of statistical analysis was carried out in MATLAB v2018b. The Bayesian hierarchical analysis was carried out in R studio (based on R version 3.5.2) with the Open BUGS API. The figures were produced in Origin Pro 2020b and ArcGIS 10.7. Figure 2 was produced with MATLAB code (https://www.mathworks.com/matlabcentral/fileexchange/45639-hexscatter-m). Other codes are available upon request.

References

  1. Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).

    ADS  CAS  PubMed  Google Scholar 

  2. The Future of Food and Agriculture—Alternative Pathways to 2050 (Food and Agriculture Organization of the United Nations, 2018).

  3. Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).

    ADS  CAS  PubMed  Google Scholar 

  5. Zhang, W. et al. Closing yield gaps in China by empowering smallholder farmers. Nature 537, 671–674 (2016).

    ADS  CAS  PubMed  Google Scholar 

  6. Chakraborty, S. & Newton, A. C. Climate change, plant diseases and food security: an overview. Plant Pathol. 60, 2–14 (2011).

    Google Scholar 

  7. Oerke, E. C. Crop losses to pests. J. Agri. Sci. 144, 31–43 (2005).

    Google Scholar 

  8. Bebber, D. P., Ramotowski, M. A. T. & Gurr, S. J. Crop pests and pathogens move polewards in a warming world. Nat. Clim. Change 3, 985–988 (2013).

    ADS  Google Scholar 

  9. Deutsch, C. A. et al. Increase in crop losses to insect pests in a warming climate. Science 361, 916–919 (2018).

    ADS  CAS  PubMed  Google Scholar 

  10. Delcour, I., Spanoghe, P. & Uyttendaele, M. Literature review: impact of climate change on pesticide use. Food Res. Int. 68, 7–15 (2015).

    Google Scholar 

  11. Ziska, L. H. Increasing minimum daily temperatures are associated with enhanced pesticide use in cultivated soybean along a latitudinal gradient in the mid-western United States. PLoS ONE 9, e98516 (2014).

    ADS  PubMed  PubMed Central  Google Scholar 

  12. Lamichhane, J. R. et al. Robust cropping systems to tackle pests under climate change. A review. Agron. Sustain. Dev. 35, 443–459 (2014).

    Google Scholar 

  13. Bebber, D. P. et al. Many unreported crop pests and pathogens are probably already present. Glob. Change Biol. 25, 2703–2713 (2019).

    ADS  Google Scholar 

  14. Bale, J. S. et al. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob. Change Biol. 8, 1–16 (2002).

    ADS  Google Scholar 

  15. Garrett, K. A., Dendy, S. P., Frank, E. E., Rouse, M. N. & Travers, S. E. Climate change effects on plant disease: genomes to ecosystems. Annu. Rev. Phytopathol. 44, 489–509 (2006).

    CAS  PubMed  Google Scholar 

  16. Hruska, A. J. Fall armyworm (Spodoptera frugiperda) management by smallholders. CAB Rev. 14, 1–11 (2019).

    Google Scholar 

  17. Sutherst, R. W. et al. Adapting to crop pest and pathogen risks under a changing climate. Wiley Interdiscip. Rev. Clim. Change 2, 220–237 (2011).

    Google Scholar 

  18. Donatelli, M. et al. Modelling the impacts of pests and diseases on agricultural systems. Agric. Syst. 155, 213–224 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Jones, J. W. et al. Toward a new generation of agricultural system data, models, and knowledge products: state of agricultural systems science. Agric. Syst. 155, 269–288 (2017).

    PubMed  PubMed Central  Google Scholar 

  20. Miller, S. A., Beed, F. D. & Harmon, C. L. Plant disease diagnostic capabilities and networks. Annu. Rev. Phytopathol. 47, 15–38 (2009).

    CAS  PubMed  Google Scholar 

  21. Bebber, D. P., Holmes, T., Smith, D. & Gurr, S. J. Economic and physical determinants of the global distributions of crop pests and pathogens. New Phytol. 202, 901–910 (2014).

    PubMed  PubMed Central  Google Scholar 

  22. Savary, S. et al. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 3, 430–439 (2019).

    PubMed  Google Scholar 

  23. An early warning news about the mirgating condition of Fall Armyworm in China from National Agro-Tech Extension and Service Center https://www.natesc.org.cn/News/des?id=eaf064ae-6582-47c1-a9f3-a58969fd47b3&kind=HYTX (in Chinese, available in Nov.2021).

  24. Piao, S. et al. The impacts of climate change on water resources and agriculture in China. Nature 467, 43–51 (2010).

    ADS  CAS  PubMed  Google Scholar 

  25. Chown, S. L., Sorensen, J. G. & Terblanche, J. S. Water loss in insects: an environmental change perspective. J. Insect Physiol. 57, 1070–1084 (2011).

    CAS  PubMed  Google Scholar 

  26. Bjorkman, A. D. et al. Plant functional trait change across a warming tundra biome. Nature 562, 57–62 (2018).

    ADS  CAS  PubMed  Google Scholar 

  27. National Agricultural Technology Extension and Service Center. Technical Specification Manual of Major Crop Pest and Disease Observation and Forecast in China (China Agriculture Press, 2010).

  28. Olfert, O., Weiss, R. M. & Elliott, R. H. Bioclimatic approach to assessing the potential impact of climate change on wheat midge (Diptera: Cecidomyiidae) in North America. Can. Entomol. 148, 52–67 (2015).

    Google Scholar 

  29. Savary, S., Teng, P. S., Willocquet, L. & Nutter, F. W. Quantification and modeling of crop losses: a review of purposes. Annu. Rev. Phytopathol. 44, 89–112 (2006).

    CAS  PubMed  Google Scholar 

  30. Chakraborty, S. Migrate or evolve: options for plant pathogens under climate change. Glob. Change Biol. 19, 1985–2000 (2013).

    ADS  Google Scholar 

  31. Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chaloner, T. M., Gurr, S. J. & Bebber, D. P. Plant pathogen infection risk tracks global crop yields under climate change. Nat. Clim. Change 11, 710–715 (2021).

    ADS  Google Scholar 

  33. Carvalho, J. L. N. et al. Agronomic and environmental implications of sugarcane straw removal: a major review. Glob. Change Biol. Bioenergy 9, 1181–1195 (2017).

    CAS  Google Scholar 

  34. Savary, S., Horgan, F., Willocquet, L. & Heong, K. L. A review of principles for sustainable pest management in rice. Crop Prot. 32, 54–63 (2012).

    Google Scholar 

  35. Frolking, S. et al. Combining remote sensing and ground census data to develop new maps of the distribution of rice agriculture in China. Glob. Biogeochem. Cycles 16, 38-31–38-10 (2002).

    Google Scholar 

  36. Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 dataset. Int. J. Climatol. 34, 623–642 (2014).

    Google Scholar 

  37. Harvell, C. D. et al. Climate warming and disease risks for terrestrial and marine biota. Science 296, 2158–2162 (2002).

    ADS  CAS  PubMed  Google Scholar 

  38. Scherm, H. Climate change: can we predict the impacts on plant pathology and pest management? Can. J. Plant Pathol. 26, 267–273 (2004).

    Google Scholar 

  39. Cheke, R. A. & Tratalos, J. A. Migration, patchiness, and population processes illustrated by two migrant pests. Bioscience 57, 145–154 (2007).

    Google Scholar 

  40. Eyring, V. et al. Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    ADS  Google Scholar 

  41. O’Neill, B. C. et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).

    ADS  Google Scholar 

  42. van Vuuren, D. P. et al. The representative concentration pathways: an overview. Climatic Change 109, 5–31 (2011).

    ADS  Google Scholar 

  43. Lange, S. Trend-preserving bias adjustment and statistical downscaling with ISIMIP3BASD (v1.0). Geosci. Model Dev. 12, 3055–3070 (2019).

    ADS  Google Scholar 

  44. Gregory, P. J., Johnson, S. N., Newton, A. C. & Ingram, J. S. Integrating pests and pathogens into the climate change/food security debate. J. Exp. Bot. 60, 2827–2838 (2009).

    CAS  PubMed  Google Scholar 

  45. Allen, R. G., Pereira, L. S., Raes, D. & Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements FAO irrigation and drainage paper 56 (FAO, 1998).

  46. Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).

    PubMed  PubMed Central  Google Scholar 

  47. Kahiluoto, H. et al. Decline in climate resilience of European wheat. Proc. Natl Acad. Sci. USA 116, 123–128 (2019).

    CAS  PubMed  Google Scholar 

  48. Folke, C. et al. Regime shifts, resilience, and biodiversity in ecosystem management. Annu. Rev. Ecol. Evol. Syst. 35, 557–581 (2004).

    Google Scholar 

  49. Renard, D. & Tilman, D. National food production stabilized by crop diversity. Nature 571, 257–260 (2019).

    ADS  CAS  PubMed  Google Scholar 

  50. Clark, J. S. Why environmental scientists are becoming Bayesians. Ecol. Lett. 8, 2–14 (2005).

    Google Scholar 

  51. Clark, J. S. & Gelfand, A. E. A future for models and data in environmental science. Trends Ecol. Evol. 21, 375–380 (2006).

    PubMed  Google Scholar 

  52. Gelfand, A. E. & Smith, A. F. M. Sampling-based approaches to calculating marginal densities. J. Am. Stat. Assoc. 85, 398–409 (1990).

    MathSciNet  MATH  Google Scholar 

  53. Lunn, D., Spiegelhalter, D., Thomas, A. & Best, N. The BUGS project: evolution, critique and future directions. Stat. Med. 28, 3049–3067 (2009).

    MathSciNet  PubMed  Google Scholar 

  54. Brooks, S. P. & Gelman, A. General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 7, 434–455 (1998).

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (42171096). We thank M. He, Q. Liu and L. Jin for their help in preparing the manuscript. T. Pugh acknowledges support from BECC and MERGE.

Author information

Authors and Affiliations

Authors

Contributions

X.W. designed the study. C.W. collected data and performed analyses. C.W., X.W., Z.J., C.M. and S.P. wrote the manuscript. All authors contributed to the interpretation of the results and manuscript revisions.

Corresponding author

Correspondence to Xuhui Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Food thanks Daniel Bebber, Nathaniel Newlands and Jay Lamichhane for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–17 and Tables 1–4.

Reporting Summary

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Wang, X., Jin, Z. et al. Occurrence of crop pests and diseases has largely increased in China since 1970. Nat Food 3, 57–65 (2022). https://doi.org/10.1038/s43016-021-00428-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43016-021-00428-0

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing