Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ozone pollution threatens the production of major staple crops in East Asia

Abstract

East Asia is a hotspot of surface ozone (O3) pollution, which hinders crop growth and reduces yields. Here, we assess the relative yield loss in rice, wheat and maize due to O3 by combining O3 elevation experiments across Asia and air monitoring at about 3,000 locations in China, Japan and Korea. China shows the highest relative yield loss at 33%, 23% and 9% for wheat, rice and maize, respectively. The relative yield loss is much greater in hybrid than inbred rice, being close to that for wheat. Total O3-induced annual loss of crop production is estimated at US$63 billion. The large impact of O3 on crop production urges us to take mitigation action for O3 emission control and adaptive agronomic measures against the rising surface O3 levels across East Asia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Current ozone pollution in East Asia as shown by the six-month (from 1 April to 30 September) AOT40.
Fig. 2: O3-enrichment experiments for rice, wheat and maize conducted in Asia.
Fig. 3: EDU experiments for rice, wheat and maize conducted in Asia.
Fig. 4: RYLs for different crops calculated from Asian-specific exposure–RY relationships and the AOT40 values across China, Japan and South Korea.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the paper and its Supplementary Information and Supplementary Data. Source data are provided with this paper.

Code availability

The custom algorithm used for this study are available in the Methods.

References

  1. Monks, P. S. et al. Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmos. Chem. Phys. 15, 8889–8973 (2015).

    Article  ADS  CAS  Google Scholar 

  2. Myhre, et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 8 (Cambridge Univ. Press, 2013).

  3. Sitch, S., Cox, P. M., Collins, W. J. & Huntingford, C. Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Nature 448, 791–794 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Ainsworth, E. A., Yendrek, C. R., Sitch, S., Collins, W. J. & Emberson, L. D. The effects of tropospheric ozone on net primary productivity and implications for climate change. Annu. Rev. Plant Biol. 63, 637–661 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Cooper, O. R. et al. Global distribution and trends of tropospheric ozone: an observation-based review. Elem. Sci. Anth. 2, 000029 (2014).

    Article  Google Scholar 

  6. Zhang, L. et al. Potential sources of nitrous acid (HONO) and their impacts on ozone: a WRF‐Chem study in a polluted subtropical region. J. Geophys. Res. Atmos. 121, 3645–3662 (2016).

    Article  ADS  CAS  Google Scholar 

  7. Fleming, Z. L. et al. Tropospheric ozone assessment report: present-day ozone distribution and trends relevant to human health. Elem. Sci. Anth. 6, 12 (2018).

    Article  Google Scholar 

  8. Lu, X. et al. Severe surface ozone pollution in China: a global perspective. Environ. Sci. Technol. Lett. 5, 487–494 (2018).

    Article  CAS  Google Scholar 

  9. Ainsworth, E. A. Understanding and improving global crop response to ozone pollution. Plant J. 90, 886–897 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. McGrath, J. M. et al. An analysis of ozone damage to historical maize and soybean yields in the United States. Proc. Natl Acad. Sci. USA 112, 14390–14395 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Unger, N., Zheng, Y., Yue, X. & Harper, K. L. Mitigation of ozone damage to the world’s land ecosystems by source sector. Nat. Clim. Change 10, 134–137 (2020).

    Article  ADS  CAS  Google Scholar 

  12. Mills, G. et al. Closing the global ozone yield gap: quantification and cobenefits for multistress tolerance. Glob. Change Biol. 24, 4869–4893 (2018).

    Article  ADS  Google Scholar 

  13. Sampedro, J. et al. Future impacts of ozone driven damages on agricultural systems. Atmos. Environ. 231, 117538 (2020).

    Article  CAS  Google Scholar 

  14. FAOSTAT (FAO, accessed 4 August 2021); http://www.fao.org/faostat/en/#data

  15. Feng, Z. et al. Economic losses due to ozone impacts on human health, forest productivity and crop yield across China. Environ. Int. 131, 104966 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Feng, Z. et al. Impacts of current ozone pollution on wheat yield in China as estimated with observed ozone, meteorology and day of flowering. Atmos. Environ. 217, 116945 (2019).

  17. Agathokleous, E., Koike, T., Watanabe, M., Hoshika, Y. & Saitanis, C. J. Ethylene-di-urea (EDU), an effective phytoprotectant against O3 deleterious effects and a valuable research tool. J. Agric. Meteorol. 71, 185–195 (2015).

    Article  Google Scholar 

  18. Manning, W. J., Paoletti, E., Sandermann, H. Jr & Ernst, D. Ethylenediurea (EDU): a research tool for assessment and verification of the effects of ground level ozone on plants under natural conditions. Environ. Pollut. 159, 3283–3293 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Zhao, H., Zheng, Y., Zhang, Y. & Li, T. Evaluating the effects of surface O3 on three main food crops across China during 2015–2018. Environ. Pollut. 258, 113794 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Lu, X. et al. Rapid increases in warm-season surface ozone and resulting health impact in China since 2013. Environ. Sci. Technol. Lett. 7, 240–247 (2020).

    Article  CAS  Google Scholar 

  21. Emberson, L. D. et al. A comparison of North American and Asian exposure–response data for ozone effects on crop yields. Atmos. Environ. 43, 1945–1953 (2009).

    Article  ADS  CAS  Google Scholar 

  22. Pleijel, H., Broberg, M. C. & Uddling, J. Ozone impact on wheat in Europe, Asia and North America—a comparison. Sci. Total Environ. 664, 908–914 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Pleijel, H., Broberg, M. C., Uddling, J. & Kobayashi, K. Letter to the editor regarding Pleijel et al. 2019: ozone sensitivity of wheat in different continents—an addendum. Sci. Total Environ. 773, 146335 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Mills, G. et al. A synthesis of AOT40-based response functions and critical levels of ozone for agricultural and horticultural crops. Atmos. Environ. 41, 2630–2643 (2007).

    Article  ADS  CAS  Google Scholar 

  25. Chang, K. L., Petropavlovskikh, I., Cooper, O. R. & Schultz, M. G. Regional trend analysis of surface ozone observations from monitoring networks in eastern North America, Europe and East Asia. Elem. Sci. Anth. 5, 50 (2017).

    Article  Google Scholar 

  26. Sicard, P., Serra, R. & Rossello, P. Spatiotemporal trends in ground-level ozone concentrations and metrics in France over the time period 1999–2012. Environ. Res. 149, 122–144 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Sicard, P. Ground-level ozone over time: an observation-based global overview. Curr. Opin. Env. Sci. Health 19, 100226 (2021).

    Article  Google Scholar 

  28. Zhang, G. et al. Ethylenediurea (EDU) protects inbred but not hybrid cultivars of rice from yield losses due to surface ozone. Environ. Sci. Pollut. Res. https://doi.org/10.1007/s11356-021-15032-9 (2021).

  29. Tang, H. et al. A projection of ozone-induced wheat production loss in China and India for the years 2000 and 2020 with exposure-based and flux-based approaches. Glob. Change Biol. 19, 2739–2752 (2013).

    Article  ADS  Google Scholar 

  30. Hu, T., Liu, S., Xu, Y., Feng, Z. & Calatayud, V. Assessment of O3-induced yield and economic losses for wheat in the North China Plain from 2014 to 2017, China. Environ. Pollut. 258, 113828 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Burney, J. & Ramanathan, V. Recent climate and air pollution impacts on Indian agriculture. Proc. Natl Acad. Sci. USA 111, 16319–16324 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhai, S. et al. Fine particulate matter (PM2.5) trends in China, 2013–2018: separating contributions from anthropogenic emissions and meteorology. Atmos. Chem. Phys. 19, 11031–11041 (2019).

    Article  ADS  CAS  Google Scholar 

  33. Hu, Z., Tian, Y. & Xiu, Q. Review of extension and analysis on current status of hybrid rice in China. Hybrid Rice 31, 1–8 (2016).

    Google Scholar 

  34. Pang, J., Kobayashi, K. & Zhu, J. G. Yield and photosynthetic characteristics of flag leaves in Chinese rice (Oryza sativa L.) varieties subjected to free-air release of ozone. Agric. Ecosys. Environ. 132, 203–211 (2009).

    Article  CAS  Google Scholar 

  35. Shi, G. et al. Effects of elevated O3 concentration on winter wheat and rice yields in the Yangtze River Delta, China. Agric. Ecosys. Environ. 131, 178–184 (2009).

    Article  CAS  Google Scholar 

  36. Wang, Y. et al. Investigations on spikelet formation in hybrid rice as affected by elevated tropospheric ozone concentration in China. Agric. Ecosys. Environ. 150, 63–71 (2012).

    Article  CAS  Google Scholar 

  37. Sicard, P. et al. Amplified ozone pollution in cities during the COVID-19 lockdown. Sci. Total Environ. 735, 139542 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li, K. et al. Anthropogenic drivers of 2013–2017 trends in summer surface ozone in China. Proc. Natl Acad. Sci. USA 116, 422–427 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Gao, M. et al. Ozone pollution over China and India: seasonality and sources. Atmos. Chem. Phys. 20, 4399–4414 (2020).

    Article  ADS  CAS  Google Scholar 

  40. van Dingenen, R. et al. The global impact of ozone on agricultural crop yields under current and future air quality legislation. Atmos. Environ. 43, 604–618 (2009).

    Article  ADS  Google Scholar 

  41. Avnery, S., Mauzerall, D. L., Liu, J. & Horowitz, L. W. Global crop yield reductions due to surface ozone exposure: 1. Year 2000 crop production losses and economic damage. Atmos. Environ. 45, 2284–2296 (2011).

    Article  ADS  CAS  Google Scholar 

  42. Pleijel, H., Broberg, M. C., Uddling, J. & Mills, G. Current surface ozone concentrations significantly decrease wheat growth, yield and quality. Sci. Total Environ. 613-614, 687–692 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Chen, X. et al. Producing more grain with lower environmental costs. Nature 514, 486–489 (2014).

    Article  ADS  CAS  Google Scholar 

  44. Feng, Z. et al. Emerging challenges of ozone impacts on Asian plants: actions are needed to protect ecosystem health. Ecosys. Health Sust. 7, 1911602 (2021).

    Article  Google Scholar 

  45. Mills, G. et al. Tropospheric ozone assessment report: present-day tropospheric ozone distribution and trends relevant to vegetation. Elem. Sci. Anth. 6, 47 (2018).

    Article  Google Scholar 

  46. Alexandratos, N. & Bruinsma, J. World Agriculture Towards 2030/2050: The 2012 Revision ESA Working Paper No. 12-03 (FAO, 2012).

  47. Lal, D. M. et al. Tropospheric ozone and aerosol long-term trends over the Indo-Gangetic Plain (IGP), India. Atmos. Res. 116, 82–92 (2012).

    Article  CAS  Google Scholar 

  48. Lu, X. et al. Lower tropospheric ozone over India and its linkage with the South Asian monsoon. Atmos. Chem. Phys. 18, 3101–3118 (2018).

    Article  ADS  CAS  Google Scholar 

  49. Mills, G. et al. III. Mapping Critical Levels for Vegetation (Centre of Ecology & Hydrology, 2017); https://icpvegetation.ceh.ac.uk/sites/default/files/Chapter%203%20-%20Mapping%20critical%20levels%20for%20vegetation.pdf

  50. Luo, Y., Zhang, Z., Chen, Y., Li, Z. & Tao, F. ChinaCropPhen1km: a high-resolution crop phenological dataset for three staple crops in China during 2000–2015 based on leaf area index (LAI) products. Earth Syst. Sci. Data 12, 197–214 (2020).

    Article  ADS  Google Scholar 

  51. Sacks, W. J., Deryng, D., Foley, J. A. & Ramankutty, N. Crop planting dates: an analysis of global patterns. Glob. Ecol. Biogeogr. 19, 607–620 (2010).

    Google Scholar 

  52. Feng, Z., Uddling, J., Tang, H., Zhu, J. & Kobayashi, K. Comparison of crop yield sensitivity to ozone between open-top chamber and free-air experiments. Glob. Change Biol. 24, 2231–2238 (2018).

    Article  ADS  Google Scholar 

  53. Wang, X. et al. Assessing the impact of ambient ozone on growth and yield of a rice (Oryza sativa L.) and a wheat (Triticum aestivum L.) cultivar grown in the Yangtze Delta, China, using three rates of application of ethylenediurea (EDU). Environ. Pollut. 148, 390–395 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Fatima, A. et al. Assessment of ozone sensitivity in three wheat cultivars using ethylenediurea. Plants 8, 80 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  55. Singh, S. & Agrawal, S. B. Impact of tropospheric ozone on wheat (Triticum aestivum L.) in the eastern Gangetic plains of India as assessed by ethylenediurea (EDU) application during different developmental stages. Agric. Ecosys. Environ. 138, 214–221 (2010).

    Article  CAS  Google Scholar 

  56. Feng, Z., Jiang, L., Calatayud, V., Dai, L. & Paoletti, E. Intraspecific variation in sensitivity of winter wheat (Triticum aestivum L.) to ambient ozone in northern China as assessed by ethylenediurea (EDU). Environ. Sci. Pollut. Res. 25, 29208–29218 (2018).

    Article  CAS  Google Scholar 

  57. Singh, A. A., Chaurasia, M., Gupta, V., Agrawal, M. & Agrawal, S. B. Responses of Zea mays L. cultivars ‘Buland’ and ‘Prakash’ to an antiozonant ethylene diurea grown under ambient and elevated levels of ozone. Acta Physiol. Plant. 40, https://doi.org/10.1007/s11738-018-2666-z (2018).

Download references

Acknowledgements

This study received funding from the National Natural Science Foundation of China (no. 42130714 and M-0105) and the Chinese Academy of Sciences President’s International Fellowship Initiative (PIFI) for Senior Scientists (grant no. 2018VCA0026; 2016VBA057). E.P. acknowledges the LIFE15 project MOTTLES and V.C. project ELEMENTAL (CGL 2017-83538-C3-3-R, MINECO-FEDER).

Author information

Authors and Affiliations

Authors

Contributions

Z.F., E.P. and X.Y. initially designed the study. Z.F. had a leading role, served as the hub of communication among the authors and supervised the production of the manuscript. Y.X. checked the O3 observation data and calculated AOT40. L.D. collected the O3 dose and yield of crops and EDU studies. L.D. and K.K. estimated the O3 dose–response functions and made Figs. 2 and 3. T.Z. estimated the regional yield loss and made Figs. 1 and 4. R.P. and Y.O. provided the O3 data in South Korea. Z.F., E.A., V.C., X.Y. and K.K. drafted the paper. A.M., E.P. and all other coauthors reviewed the integrated manuscript, substantially contributed intellectual inputs and approved the final version for publication.

Corresponding authors

Correspondence to Zhaozhong Feng, Kazuhiko Kobayashi or Xu Yue.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Food thanks Nadine Unger, Steven Davis and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8, Tables 1–7, references and text.

Reporting Summary

Supplementary Data

Raw data of the crop yields in ozone exposure experiments conducted in Asia.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Z., Xu, Y., Kobayashi, K. et al. Ozone pollution threatens the production of major staple crops in East Asia. Nat Food 3, 47–56 (2022). https://doi.org/10.1038/s43016-021-00422-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43016-021-00422-6

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene