Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Shifts towards healthy diets in the US can reduce environmental impacts but would be unaffordable for poorer minorities

Abstract

Environmental implications of food choice are the focus of increasingly extensive research, but less is known about the impacts of dietary patterns of different socio-economic groups of a country, and the trade-offs between nutritional quality and environmental impacts of diet within those groups. We evaluate the impacts of US household dietary patterns on greenhouse gas emissions, blue water footprint, land use and energy consumption across supply chains using an environmentally extended input–output analysis. We compare the nutritional quality of these dietary patterns using healthy eating index scores across individuals’ income and other socio-economic characteristics. Individuals with higher income or education levels are more likely to adopt healthier diets but are also responsible for larger environmental impacts of diet primarily due to a higher consumption of dairy and livestock products, seafood and items with lower energy density but higher nutrient density. Our optimization shows that a healthy diet with lower environmental impacts is achievable within current food budgets for almost 95% of people, and results in average decreases of 2% in food-related greenhouse gas emissions, 24% in land use and 4% in energy consumption, but a 28% increase in blue water consumption. However, such dietary patterns are unaffordable for 38% of Black and Hispanic individuals in the lowest income and education groups. Policies that affect income and food prices making nutritious food more affordable would be needed to achieve better nutrition and improved environmental outcomes simultaneously, particularly for more vulnerable socio-economic groups.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: HEI in total and of each HEI component by deciles of income over the 2015–2016 period.
Fig. 2: Environmental impacts per capita and their composition by food group for deciles of income over the 2015–2016 period.
Fig. 3: LMDI decomposition by income groups over the 2015–2016 period.
Fig. 4: Environmental impacts of shifting to healthy diets by income decile based on the data of 2015–2016 period.
Fig. 5: Mosaic plots of the racial and educational level composition of individuals who cannot and can afford the improved diets.

Data availability

All the data used in this study are publicly available except the 2015 US input–output table, which can be purchased from IMPLAN and is available upon request due to the data use agreement. The NHANES data can be retrieved from https://www.cdc.gov/nchs/nhanes/index.htm. The Center for Nutrition Policy and Promotion food prices database is available at https://www.fns.usda.gov/resource/cnpp-data. The distribution of cost comes from https://www.bea.gov/industry/industry-underlying-estimates. The FNDDS and FPED databases are available at https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/food-surveys-research-group/docs/. Source data are provided with this paper.

Code availability

The NHANES data were processed using R studio (based on R v3.6.1) and Stata v14.0. The input–output analysis was conducted in MATLAB v2018a. The statistical analysis and the LMDI decomposition were completed in Stata v14.0. The optimization was carried out in MATLAB v2018a. The figures were produced in R studio (based on R v3.6.1). All code is available upon request.

References

  1. 1.

    Nesheim, M. C., Oria, M. & Yih, P. T. (eds) A Framework for Assessing Effects of the Food System (National Academies Press, 2015).

  2. 2.

    Ranganathan, J. et al. Shifting Diets for a Sustainable Food Future (World Resources Institute, 2016).

  3. 3.

    Springmann, M., Godfray, H. C. J., Rayner, M. & Scarborough, P. Analysis and valuation of the health and climate change cobenefits of dietary change. Proc. Natl Acad. Sci. USA 113, 4146–4151 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Tilman, D. & Clark, M. Global diets link environmental sustainability and human health. Nature 515, 518–522 (2014).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    Auestad, N. & Fulgoni, V. L. What current literature tells us about sustainable diets: emerging research linking dietary patterns, environmental sustainability, and economics. Adv. Nutr. 6, 19–36 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Popkin, B. M., Adair, L. S. & Ng, S. W. Global nutrition transition and the pandemic of obesity in developing countries. Nutr. Rev. 70, 3–21 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    Willett, W. et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  8. 8.

    Dekker, L. H. et al. Socio-economic status and ethnicity are independently associated with dietary patterns: the HELIUS-Dietary Patterns study. Food Nutr. Res. 59, 26317 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Darmon, N. & Drewnowski, A. Does social class predict diet quality? Am. J. Clin. Nutr. 87, 1107–1117 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. 10.

    Rehm, C. D., Peñalvo, J. L., Afshin, A. & Mozaffarian, D. Dietary intake among US adults, 1999–2012. JAMA 315, 2542–2553 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Wang, D. D. et al. Trends in dietary quality among adults in the United States, 1999 through 2010. JAMA Inter. Med. 174, 1587–1595 (2014).

    Article  Google Scholar 

  12. 12.

    White, R. R. & Hall, M. B. Nutritional and greenhouse gas impacts of removing animals from US agriculture. Proc. Natl Acad. Sci. 114, E10301–E10308 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Hallström, E., Gee, Q., Scarborough, P. & Cleveland, D. A. A healthier US diet could reduce greenhouse gas emissions from both the food and health care systems. Clim. Change 142, 199–212 (2017).

    ADS  Article  Google Scholar 

  14. 14.

    Heller, M. C., Willits-Smith, A., Meyer, R., Keoleian, G. A. & Rose, D. Greenhouse gas emissions and energy use associated with production of individual self-selected US diets. Environ. Res. Lett. 13, 044004 (2018).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Tom, M. S., Fischbeck, P. S. & Hendrickson, C. T. Energy use, blue water footprint, and greenhouse gas emissions for current food consumption patterns and dietary recommendations in the US. Environ. Syst. Decis. 36, 92–103 (2016).

    Article  Google Scholar 

  16. 16.

    Rehkamp, S. & Canning, P. Measuring embodied blue water in American diets: an EIO supply chain approach. Ecol. Econ. 147, 179–188 (2018).

    Article  Google Scholar 

  17. 17.

    Perignon, M., Vieux, F., Soler, L. G., Masset, G. & Darmon, N. Improving diet sustainability through evolution of food choices: review of epidemiological studies on the environmental impact of diets. Nutr. Rev. 75, 2–17 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Guenther, P. M. et al. Update of the Healthy Eating Index: HEI-2010. J. Acad. Nutr. Diet. https://doi.org/10.1016/j.jand.2012.12.016 (2013).

  19. 19.

    Dietary Guidelines Advisory Committee. Dietary Guidelines for Americans 2015–2020 (Government Printing Office, 2016).

  20. 20.

    Liang, S. et al. Socioeconomic drivers of greenhouse gas emissions in the United States. Environ. Sci. Technol. 50, 7535–7545 (2016).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    Yu, Y., Feng, K. & Hubacek, K. Tele-connecting local consumption to global land use. Glob. Environ. Change 23, 1178–1186 (2013).

    Article  Google Scholar 

  22. 22.

    Hoekstra, A. Y. & Mekonnen, M. M. The water footprint of humanity. Proc. Natl Acad. Sci. USA 109, 3232–3237 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Wu, X. D., Guo, J. L., Meng, J. & Chen, G. Q. Energy use by globalized economy: total-consumption-based perspective via multi-region input–output accounting. Sci. Total Environ. 662, 65–76 (2019).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Heller, M. C. & Keoleian, G. A. Greenhouse gas emission estimates of US dietary choices and food loss. J. Ind. Ecol. 19, 391–401 (2015).

    CAS  Article  Google Scholar 

  25. 25.

    Willits-Smith, A., Aranda, R., Heller, M. C. & Rose, D. Addressing the carbon footprint, healthfulness, and costs of self-selected diets in the USA: a population-based cross-sectional study. Lancet Planet. Health 4, e98–e106 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Behrens, P. et al. Evaluating the environmental impacts of dietary recommendations. Proc. Natl Acad. Sci. USA 114, 13412–13417 (2017).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Hitaj, C., Rehkamp, S., Canning, P. & Peters, C. J. Greenhouse gas emissions in the United States food system: current and healthy diet scenarios. Environ. Sci. Technol. 53, 5493–5503 (2019).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    Kim, D., Parajuli, R. & Thoma, G. J. Life cycle assessment of dietary patterns in the United States: a full food supply chain perspective. Sustainability 12, 1586 (2020).

    CAS  Article  Google Scholar 

  29. 29.

    Birney, C. I., Franklin, K. F., Davidson, F. T. & Webber, M. E. An assessment of individual foodprints attributed to diets and food waste in the United States. Environ. Res. Lett. 12, 105008 (2017).

    ADS  Article  Google Scholar 

  30. 30.

    Rose, D., Heller, M. C., Willits-Smith, A. M. & Meyer, R. J. Carbon footprint of self-selected US diets: nutritional, demographic, and behavioral correlates. Am. J. Clin. Nutr. 109, 526–534 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Darmon, N. & Drewnowski, A. Contribution of food prices and diet cost to socioeconomic disparities in diet quality and health: a systematic review and analysis. Nutr. Rev. 73, 643–660 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    McNaughton, S. A., Ball, K., Crawford, D. & Mishra, G. D. An index of diet and eating patterns is a valid measure of diet quality in an Australian population. J. Nutr. 138, 86–93 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    Malon, A. et al. Compliance with French nutrition and health program recommendations is strongly associated with socioeconomic characteristics in the general adult population. J. Am. Diet. Assoc. 110, 848–856 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Lallukka, T., Laaksonen, M., Rahkonen, O., Roos, E. & Lahelma, E. Multiple socio-economic circumstances and healthy food habits. Eur. J. Clin. Nutr. 61, 701 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    Northstone, K. & Emmett, P. Dietary patterns of men in ALSPAC: associations with socio-demographic and lifestyle characteristics, nutrient intake and comparison with women’s dietary patterns. Eur. J. Clin. Nutr. 64, 978–986 (2010).

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Harrington, J. et al. Sociodemographic, health and lifestyle predictors of poor diets. Public Health Nutr. 14, 2166–2175 (2011).

    PubMed  Article  Google Scholar 

  37. 37.

    Hulshof, K., Brussaard, J., Kruizinga, A., Telman, J. & Löwik, M. Socio-economic status, dietary intake and 10 y trends: the Dutch National Food Consumption Survey. Eur. J. Clin. Nutr. 57, 128 (2003).

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Rao, N. D. et al. Healthy, affordable and climate-friendly diets in India. Global Environ. Change 49, 154–165 (2018).

    Article  Google Scholar 

  39. 39.

    Fisberg, R. M. et al. Dietary quality and associated factors among adults living in the state of São Paulo, Brazil. J. Am. Diet. Assoc. 106, 2067–2072 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  40. 40.

    He, P., Baiocchi, G., Hubacek, K., Feng, K. & Yu, Y. The environmental impacts of rapidly changing diets and their nutritional quality in China. Nat. Sustain. 1, 122–127 (2018).

    Article  Google Scholar 

  41. 41.

    Allcott, H. et al. Food deserts and the causes of nutritional inequality. Q. J. Econ. 134, 1793–1844 (2019).

    MATH  Article  Google Scholar 

  42. 42.

    Hirvonen, K., Bai, Y., Headey, D. & Masters, W. A. Affordability of the EAT–Lancet reference diet: a global analysis. Lancet Glob. Health 8, e59–e66 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  43. 43.

    Darmon, N., Lacroix, A., Muller, L. & Ruffieux, B. Food price policies improve diet quality while increasing socioeconomic inequalities in nutrition. Int. J. Behav. Nutr. Phys. Act. 11, 66 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Swinburn, B. A. et al. The global syndemic of obesity, undernutrition, and climate change: the Lancet Commission report. Lancet 393, 791–846 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  45. 45.

    Johnson, D. S., Smeeding, T. M. & Torrey, B. B. Economic inequality through the prisms of income and consumption. Monthly Lab. Rev. 128, 11–24 (2005).

    Google Scholar 

  46. 46.

    America’s Shrinking Middle Class: a Close Look at Changes within Metropolitan Areas (Pew Research Center, 2016).

  47. 47.

    Miller, R. E. & Blair, P. D. Input–Output Analysis: Foundations and Extensions (Cambridge Univ. Press, 2009).

  48. 48.

    Ang, B. W., Zhang, F. & Choi, K.-H. Factorizing changes in energy and environmental indicators through decomposition. Energy 23, 489–495 (1998).

    Article  Google Scholar 

  49. 49.

    Ang, B. W. LMDI decomposition approach: a guide for implementation. Energy Policy 86, 233–238 (2015).

    Article  Google Scholar 

  50. 50.

    Bowman, S., Clemens, J., Friday, J., Thoerig, R. & Moshfegh, A. Food Patterns Equivalents Database 2011–12: Methodology and User Guide (USDA, 2014).

  51. 51.

    Trumbo, P., Schlicker, S., Yates, A. A. & Poos, M. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. J. Am. Diet. Assoc. 102, 1621–1630 (2002).

    PubMed  Article  PubMed Central  Google Scholar 

  52. 52.

    Macdiarmid, J. & Blundell, J. Assessing dietary intake: who, what and why of under-reporting. Nutr. Res. Rev. 11, 231–253 (1998).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  53. 53.

    Dodd, K. W. et al. Statistical methods for estimating usual intake of nutrients and foods: a review of the theory. J. Am. Diet. Assoc. 106, 1640–1650 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  54. 54.

    Zhang, S. et al. A new multivariate measurement error model with zero-inflated dietary data, and its application to dietary assessment. Ann. Appl. Stat. 5, 1456–1487 (2011).

    MathSciNet  PubMed  PubMed Central  MATH  Google Scholar 

  55. 55.

    Tooze, J. A. et al. A mixed-effects model approach for estimating the distribution of usual intake of nutrients: the NCI method. Stat. Med. 29, 2857–2868 (2010).

    MathSciNet  PubMed  Article  PubMed Central  Google Scholar 

  56. 56.

    Freedman, L. S., Guenther, P. M., Krebs-Smith, S. M., Dodd, K. W. & Midthune, D. A population’s distribution of Healthy Eating Index-2005 component scores can be estimated when more than one 24-hour recall is available. J. Nutr. 140, 1529–1534 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. 57.

    Lenzen, M., Kanemoto, K., Moran, D. & Geschke, A. Mapping the structure of the world economy. Environ. Sci. Technol. 46, 8374–8381 (2012).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  58. 58.

    Rodrigues, J. F. D., Moran, D., Wood, R. & Behrens, P. Uncertainty of consumption-based carbon accounts. Environ. Sci. Technol. 52, 7577–7586 (2018).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. 59.

    Lenzen, M., Wood, R. & Wiedmann, T. Uncertainty analysis for multi-region input–output models—a case study of the UK’s carbon footprint. Econ. Syst. Res. 22, 43–63 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under a Young Scholar Program Grant (71904098) and the China Postdoctoral Science Foundation under a Chinese Postdoc Scientific Grant (2019M650704).

Author information

Affiliations

Authors

Contributions

P.H., K.F. and G.B. designed the study. P.H. prepared the data and led the analysis. P.H. and G.B. drew the figures. All authors participated in discussing the results and contributed to writing the manuscript.

Corresponding authors

Correspondence to Pan He, Kuishuang Feng or Giovanni Baiocchi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Food thanks Gregory Miller, Laura Pereira and Donald Rose for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods and data description, Figs. 1–11 and Tables 1–19.

Supplementary Data

Statistical source data for Supplementary Figs. 2–11.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

He, P., Feng, K., Baiocchi, G. et al. Shifts towards healthy diets in the US can reduce environmental impacts but would be unaffordable for poorer minorities. Nat Food 2, 664–672 (2021). https://doi.org/10.1038/s43016-021-00350-5

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing