Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

You are viewing this page in draft mode.

Stronger temperature–moisture couplings exacerbate the impact of climate warming on global crop yields

Abstract

Rising air temperatures are a leading risk to global crop production. Recent research has emphasized the critical role of moisture availability in regulating crop responses to heat and the importance of temperature–moisture couplings in driving concurrent heat and drought. Here, we demonstrate that the heat sensitivity of key global crops depends on the local strength of couplings between temperature and moisture in the climate system. Over 1970–2013, maize and soy yields dropped more during hotter growing seasons in places where decreased precipitation and evapotranspiration more strongly accompanied higher temperatures, suggestive of compound heat–drought impacts on crops. On the basis of this historical pattern and a suite of climate model projections, we show that changes in temperature–moisture couplings in response to warming could enhance the heat sensitivity of these crops as temperatures rise, worsening the impact of warming by −5% (−17 to 11% across climate models) on global average. However, these changes will benefit crops where couplings weaken, including much of Asia, and projected impacts are highly uncertain in some regions. Our results demonstrate that climate change will impact crops not only through warming but also through changing drivers of compound heat–moisture stresses, which may alter the sensitivity of crop yields to heat as warming proceeds. Robust adaptation of cropping systems will need to consider this underappreciated risk to food production from climate change.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Crop yield sensitivity to temperature and temperature–moisture couplings across global croplands.
Fig. 2: Global dependence of yield sensitivity to temperature on two temperature–moisture couplings.
Fig. 3: Schematic of potential mechanisms for compound heat and moisture impacts on crops in regions with strong temperature–moisture couplings.
Fig. 4: Projected future changes in temperature–moisture couplings and yield sensitivity to temperature in response to warming.
Fig. 5: Projected additional impact of future warming on maize yields due to changing temperature–moisture couplings.
Fig. 6: Uncertainty in projected additional maize yield impact due to changing temperature–moisture couplings.

Data availability

The datasets supporting the results of this paper are freely available from the references and links listed in Supplementary Table 1. The crop yield data are available from D.R. upon request. The intermediate datasets are available at https://github.com/clesk/couplings-heat-crops. Source data are provided with this paper.

Code availability

The processing and analysis codes are available at https://github.com/clesk/couplings-heat-crops.

References

  1. 1.

    Lobell, D. B. & Field, C. B. Global scale climate-crop yield relationships and the impacts of recent warming. Environ. Res. Lett. 2, 014002 (2007).

    ADS  Article  Google Scholar 

  2. 2.

    Lobell, D. B. et al. The critical role of extreme heat for maize production in the United States. Nat. Clim. Change 3, 497–501 (2013).

    ADS  Article  Google Scholar 

  3. 3.

    Zhao, C. et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl Acad. Sci. USA 114, 9326–9331 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Schlenker, W. & Roberts, M. J. Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proc. Natl Acad. Sci. USA 106, 15594–15598 (2009).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Vogel, E. et al. The effects of climate extremes on global agricultural yields. Environ. Res. Lett. 14, 054010 (2019).

    ADS  Article  Google Scholar 

  6. 6.

    Lobell, D. B., Bänziger, M., Magorokosho, C. & Vivek, B. Nonlinear heat effects on African maize as evidenced by historical yield trials. Nat. Clim. Change 1, 42–45 (2011).

    ADS  Article  Google Scholar 

  7. 7.

    Urban, D. W., Sheffield, J. & Lobell, D. B. The impacts of future climate and carbon dioxide changes on the average and variability of US maize yields under two emission scenarios. Environ. Res. Lett. 10, 045003 (2015).

    ADS  Article  CAS  Google Scholar 

  8. 8.

    Prasad, P. V. V. et al. in Response of Crops to Limited Water: Understanding and Modeling Water Stress Effects on Plant Growth Processes (eds Ahuja, L. R. et al.) 301–356 (American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, 2008); https://doi.org/10.2134/advagricsystmodel1.c11

  9. 9.

    Troy, T. J., Kipgen, C. & Pal, I. The impact of climate extremes and irrigation on US crop yields. Environ. Res. Lett. 10, 054013 (2015).

    ADS  Article  Google Scholar 

  10. 10.

    Carter, E. K., Melkonian, J., Riha, S. J. & Shaw, S. B. Separating heat stress from moisture stress: analyzing yield response to high temperature in irrigated maize. Environ. Res. Lett. 11, 094012 (2016).

    ADS  Article  Google Scholar 

  11. 11.

    Matiu, M., Ankerst, D. P. & Menzel, A. Interactions between temperature and drought in global and regional crop yield variability during 1961-2014. PLoS ONE 12, e0178339 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  12. 12.

    Coffel, E. D. et al. Future hot and dry years worsen Nile Basin water scarcity despite projected precipitation increases. Earth’s Future 7, 967–977 (2019).

    ADS  Article  Google Scholar 

  13. 13.

    Rigden, A. J., Mueller, N. D., Holbrook, N. M., Pillai, N. & Huybers, P. Combined influence of soil moisture and atmospheric evaporative demand is important for accurately predicting US maize yields. Nat. Food 1, 127–133 (2020).

    Article  Google Scholar 

  14. 14.

    Schauberger, B. et al. Consistent negative response of US crops to high temperatures in observations and crop models. Nat. Commun. 8, 13931 (2017).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Ortiz-Bobea, A., Wang, H., Carrillo, C. M. & Ault, T. R. Unpacking the climatic drivers of US agricultural yields. Environ. Res. Lett. 14, 064003 (2019).

  16. 16.

    Siebert, S., Webber, H., Zhao, G. & Ewert, F. Heat stress is overestimated in climate impact studies for irrigated agriculture. Environ. Res. Lett. 12, 044012 (2017).

  17. 17.

    Lesk, C. & Anderson, W. Decadal variability modulates trends in concurrent heat and drought over global croplands. Environ. Res. Lett. 16 055024 (2021).

  18. 18.

    Berg, A. et al. Interannual coupling between summertime surface temperature and precipitation over land: processes and implications for climate change. J. Clim. 28, 1308–1328 (2015).

    ADS  Article  Google Scholar 

  19. 19.

    Seneviratne, S. I. et al. Investigating soil moisture–climate interactions in a changing climate: a review. Earth Sci. Rev. 99, 125–161 (2010).

    ADS  CAS  Article  Google Scholar 

  20. 20.

    Zscheischler, J. & Seneviratne, S. I. Dependence of drivers affects risks associated with compound events. Sci. Adv. 3, e1700263 (2017).

  21. 21.

    Trenberth, K. E. & Shea, D. J. Relationships between precipitation and surface temperature. Geophys. Res. Lett. 32, 1–4 (2005).

    Article  Google Scholar 

  22. 22.

    Seneviratne, S. I., Lüthi, D., Litschi, M. & Schär, C. Land–atmosphere coupling and climate change in Europe. Nature 443, 205–209 (2006).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Horton, R. M., Mankin, J. S., Lesk, C., Coffel, E. & Raymond, C. A review of recent advances in research on extreme heat events. Curr. Clim. Change Rep. 2, 242–259 (2016).

    Article  Google Scholar 

  24. 24.

    Berg, A. et al. Impact of soil moisture–atmosphere interactions on surface temperature distribution. J. Clim. 27, 7976–7993 (2014).

    ADS  Article  Google Scholar 

  25. 25.

    Miralles, D. G., Teuling, A. J., Van Heerwaarden, C. C. & De Arellano, J. V. G. Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation. Nat. Geosci. 7, 345–349 (2014).

    ADS  CAS  Article  Google Scholar 

  26. 26.

    Ray, D. K. et al. Climate change has likely already affected global food production. PLoS ONE 14, e0217148 (2019).

  27. 27.

    Ray, D. K., Gerber, J. S., Macdonald, G. K. & West, P. C. Climate variation explains a third of global crop yield variability. Nat. Commun. 6, 5989 (2015).

  28. 28.

    Liu, B. et al. Similar estimates of temperature impacts on global wheat yield by three independent methods. Nat. Clim. Change 6, 1130–1136 (2016).

    ADS  Article  Google Scholar 

  29. 29.

    Sánchez, B., Rasmussen, A. & Porter, J. R. Temperatures and the growth and development of maize and rice: a review. Glob. Change Biol. 20, 408–417 (2014).

    ADS  Article  Google Scholar 

  30. 30.

    Welch, J. R. et al. Rice yields in tropical/subtropical Asia exhibit large but opposing sensitivities to minimum and maximum temperatures. Proc. Natl Acad. Sci. USA 107, 14562–14567 (2010).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Zhang, T., Lin, X. & Sassenrath, G. F. Current irrigation practices in the central United States reduce drought and extreme heat impacts for maize and soybean, but not for wheat. Sci. Total Environ. 508, 331–342 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  32. 32.

    Mittler, R. Abiotic stress, the field environment and stress combination. Trends Plant Sci. 11, 15–19 (2006).

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Swann, A. L. S. Plants and drought in a changing climate. Curr. Clim. Change Rep. 4, 192–201 (2018).

    Article  Google Scholar 

  34. 34.

    Skinner, C. B., Poulsen, C. J. & Mankin, J. S. Amplification of heat extremes by plant CO2 physiological forcing. Nat. Commun. 9, 1–11 (2018).

    CAS  Article  Google Scholar 

  35. 35.

    Gates, D. M. Transpiration and leaf temperature. Annu. Rev. Plant Physiol. 19, 211–238 (1968).

    Article  Google Scholar 

  36. 36.

    Crafts-Brandner, S. J. & Salvucci, M. E. Sensitivity of photosynthesis in a C4 plant, maize, to heat stress. Plant Physiol. 129, 1773–1780 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Grossiord, C. et al. Plant responses to rising vapor pressure deficit. N. Phytol. 226, 1550–1566 (2020).

    Article  Google Scholar 

  38. 38.

    Rosenzweig, C. et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl Acad. Sci. USA 111, 3268–3273 (2014).

    ADS  CAS  PubMed  Article  Google Scholar 

  39. 39.

    Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    ADS  Article  Google Scholar 

  40. 40.

    Seth, A. et al. Monsoon responses to climate changes—connecting past, present and future. Curr. Clim. Change Rep. 5, 63–79 (2019).

  41. 41.

    Orlowsky, B. & Seneviratne, S. I. Statistical analyses of land–atmosphere feedbacks and their possible pitfalls. J. Clim. 23, 3918–3932 (2010).

    ADS  Article  Google Scholar 

  42. 42.

    Lesk, C., Coffel, E. & Horton, R. Net benefits to US soy and maize yields from intensifying hourly rainfall. Nat. Clim. Change 10, 819–822 (2020).

    ADS  Article  Google Scholar 

  43. 43.

    Vogel, M. M. et al. Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture–temperature feedbacks. Geophys. Res. Lett. 44, 1511–1519 (2017).

    ADS  Article  Google Scholar 

  44. 44.

    Mueller, B. et al. Evaluation of global observations-based evapotranspiration datasets and IPCC AR4 simulations. Geophys. Res. Lett. 38, 1–7 (2011).

    Google Scholar 

  45. 45.

    Pendergrass, A. G. et al. Flash droughts present a new challenge for subseasonal-to-seasonal prediction. Nat. Clim. Change 10, 191–199 (2020).

    ADS  Article  Google Scholar 

  46. 46.

    Mueller, N. D. et al. Global relationships between cropland intensification and summer temperature extremes over the last 50 years. J. Clim. 30, 7505–7528 (2017).

    ADS  Article  Google Scholar 

  47. 47.

    He, Y., Lee, E. & Mankin, J. S. Seasonal tropospheric cooling in northeast China associated with cropland expansion. Environ. Res. Lett. 15, 034032 (2020).

  48. 48.

    Ainsworth, E. A. & Long, S. P. 30 years of free-air carbon dioxide enrichment (FACE): what have we learned about future crop productivity and its potential for adaptation? Glob. Change Biol. 27, 27–49 (2021).

    ADS  Article  Google Scholar 

  49. 49.

    Deryng, D. et al. Regional disparities in the beneficial effects of rising CO2 concentrations on crop water productivity. Nat. Clim. Change 6, 786–790 (2016).

    ADS  Article  Google Scholar 

  50. 50.

    Challinor, A. J., Koehler, A.-K., Ramirez-Villegas, J., Whitfield, S. & Das, B. Current warming will reduce yields unless maize breeding and seed systems adapt immediately. Nat. Clim. Change 6, 954–958 (2016).

    ADS  Article  Google Scholar 

  51. 51.

    Lobell, D. B., Deines, J. M. & Di Tommaso, S. Changes in the drought sensitivity of US maize yields. Nat. Food 1, 729–735 (2020).

    Article  Google Scholar 

  52. 52.

    Bassu, S. et al. How do various maize crop models vary in their responses to climate change factors? Glob. Change Biol. 20, 2301–2320 (2014).

    ADS  Article  Google Scholar 

  53. 53.

    Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 dataset. Int. J. Clim. 34, 623–642 (2014).

    Article  Google Scholar 

  54. 54.

    Rodell, M. et al. The Global Land Data Assimilation System. Bull. Am. Meteorol. Soc. 85, 381–394 (2004).

    ADS  Article  Google Scholar 

  55. 55.

    Sacks, W. J., Deryng, D. & Foley, J. A. Crop planting dates: an analysis of global patterns. Glob. Ecol. Biogeogr. 19, 607–620 (2010).

    Google Scholar 

  56. 56.

    Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    ADS  Article  Google Scholar 

  57. 57.

    Vautard, R., Yiou, P. & Ghil, M. Singular-spectrum analysis: a toolkit for short, noisy chaotic signals. Physica D 58, 95–126 (1992).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This material is based on work supported by the National Science Foundation Graduate Research Fellowship under grant no. DGE—1644869. J.W. was supported by the National Science Foundation under grant no. BCS—184018. J.Z. acknowledges the Swiss National Science Foundation (Ambizione grant no. 179876) and the Helmholtz Initiative and Networking Fund (Young Investigator Group COMPOUNDX, grant agreement no. VH-NG-1537). S.I.S. acknowledges support from the European Union’s Horizon 2020 Research and Innovation Program (grant agreement no. 821003 (4C)) and the Swiss National Foundation in relation to the DAMOCLES COST Action (project ‘Compound events in a changing climate’). We thank J. Jägermeyr, J. Mankin, R. DeFries and M. Ting for constructive feedback on the methods and results. We acknowledge the World Climate Research Programme, which, through its Working Group on Coupled Modelling, coordinated CMIP6. We thank the climate modelling groups for producing and making available their model output, the Earth System Grid Federation (ESGF) for archiving the data, and the funding agencies who support CMIP6 and ESGF.

Author information

Affiliations

Authors

Contributions

C.L., E.C. and J.W. designed and coordinated this research. C.L. conducted the analysis. All authors discussed the methods and results and wrote the manuscript.

Corresponding author

Correspondence to Corey Lesk.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Food thanks Angeline Pendergrass and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9 and Table 1.

Reporting Summary

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lesk, C., Coffel, E., Winter, J. et al. Stronger temperature–moisture couplings exacerbate the impact of climate warming on global crop yields. Nat Food 2, 683–691 (2021). https://doi.org/10.1038/s43016-021-00341-6

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing